cdnval.F90 43.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
MODULE m_cdnval
  use m_juDFT
CONTAINS
  SUBROUTINE cdnval(eig_id, mpi,kpts,jspin,sliceplot,noco, input,banddos,cell,atoms,enpara,stars,&
       vacuum,dimension, sphhar, sym,obsolete, igq_fft,vr, vz, oneD, n_mmp,results, qpw,rhtxy,&
       rho,rht,cdom,cdomvz,cdomvxy,qa21, chmom,clmom)
    !
    !     ***********************************************************
    !         this subroutin is a modified version of cdnval.F.
    !         it calculates a layer charge distribution and an orbital
    !         composition for each state in a film.
    !         this information is written in the  'ek_orbcomp'  file
    !                                    Yu.Koroteev  01.12.2003
    !     ***********************************************************
    !     flapw7 valence density generator
    !                                         c.l.fu
    !     zelec used to calculate ne - 6.12.95 r.pentcheva
    !
    !     changed subroutine to allow parallel writing of vacdos&dosinp
    !     used temporary direct access file 84,tmp_dos to store data used
    !     in cdninf
    !     call of cdninf changed, sympsi is called from cdnval now
    !     look for 'ifdef CPP_MPI' -blocks!               d.wortmann 6.5.99
    !
    !******** ABBREVIATIONS ************************************************
    !     nbands   : number of bands in the energy window
    !     noccbd   : number of occupied bands
    !     slice    : when set to .true. the charge density of a enery range
    !                (slice) or a single state is calculated
    !     e1s,e2s  : (used if slice) energy range for the slice. if both
    !                are set to 0.0 the charge density of the band nr. nnne
    !                is calculated
    !     pallst   : (used if slice) if set to .true. bands above the
    !                Fermi-Energy are taken into account
    !     nnne     : (used if slice) number of the band of which the charge
    !                density is calculated if e1s and e2s are 0.0
    !     kk       : (used if slice) if set to 0 all k-points are used to
    !                calculate the charge density of the slice, otherwise
    !                only k-points kk is taken into account
    !     nslibd   : number of bands in slice
    !     ener     : band energy averaged over all bands and k-points,
    !                wheighted with the l-like charge of each atom type
    !     sqal     : l-like charge of each atom type. sum over all k-points
    !                and bands
    !***********************************************************************
    !
47
    USE m_eig66_io,ONLY: write_dos
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    USE m_radfun
    USE m_radflo
    USE m_rhomt
    USE m_rhonmt
    USE m_rhomtlo
    USE m_rhonmtlo
    USE m_mcdinit
    USE m_sphpts
    USE m_points
    USE m_sympsi
    USE m_enpara, ONLY : w_enpara,mix_enpara
    USE m_eparas      ! energy parameters and partial charges
    USE m_qal21       ! off-diagonal part of partial charges
    USE m_abcof
    USE m_topulay
    USE m_nmat        ! calculate density matrix for LDA + U
    USE m_vacden
    USE m_nstm3
    USE m_pwden
    USE m_forcea8
    USE m_forcea12
    USE m_forcea21
    USE m_checkdop    ! check continuity of density on MT radius R
    USE m_int21       ! integrate (spin) off-diagonal radial functions
    USE m_int21lo     ! -"- for u_lo
    USE m_rhomt21     ! calculate (spin) off-diagonal MT-density coeff's
    USE m_rhonmt21    ! -"-                       non-MT-density coeff's
75
    USE m_cdnmt       ! calculate the density and orbital moments etc.
76 77 78 79 80 81 82 83 84 85 86 87
    USE m_orbmom      ! coeffd for orbital moments
    USE m_qmtsl       ! These subroutines divide the input%film into vacuum%layers
    USE m_qintsl      ! (slabs) and intergate the DOS in these vacuum%layers
    USE m_slabdim     ! (mt + interstitial)
    USE m_slabgeom    ! (written by Yu.Koroteev, 2003/2004)
    USE m_orbcomp     ! calculate corbital composition (like p_x,p_y,p_z)
    USE m_Ekwritesl   ! and write to file.
    USE m_abcrot2
    USE m_doswrite
    USE m_cylpts
    USE m_cdnread, ONLY : cdn_read0, cdn_read
#ifdef CPP_MPI
88
    USE m_mpi_col_den ! collect density data from parallel nodes
89 90
#endif
    USE m_types
91
    USE m_xmlOutput
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    IMPLICIT NONE
    TYPE(t_results),INTENT(INOUT)   :: results
    TYPE(t_mpi),INTENT(IN)   :: mpi
    TYPE(t_dimension),INTENT(IN)   :: dimension
    TYPE(t_oneD),INTENT(IN)   :: oneD
    TYPE(t_enpara),INTENT(INOUT)   :: enpara
    TYPE(t_obsolete),INTENT(IN)   :: obsolete
    TYPE(t_banddos),INTENT(IN)   :: banddos
    TYPE(t_sliceplot),INTENT(IN)   :: sliceplot
    TYPE(t_input),INTENT(IN)   :: input
    TYPE(t_vacuum),INTENT(IN)   :: vacuum
    TYPE(t_noco),INTENT(IN)   :: noco
    TYPE(t_sym),INTENT(IN)   :: sym
    TYPE(t_stars),INTENT(IN)   :: stars
    TYPE(t_cell),INTENT(IN)   :: cell
    TYPE(t_kpts),INTENT(IN)   :: kpts
    TYPE(t_sphhar),INTENT(IN)   :: sphhar
    TYPE(t_atoms),INTENT(IN)   :: atoms
    !     .. Scalar Arguments ..
    INTEGER, INTENT (IN) :: eig_id,jspin

    !     .. Array Arguments ..
    COMPLEX, INTENT(INOUT) :: qpw(stars%n3d,dimension%jspd)
    COMPLEX, INTENT(INOUT) :: rhtxy(vacuum%nmzxyd,oneD%odi%n2d-1,2,dimension%jspd)
    COMPLEX, INTENT(INOUT) :: cdom(stars%n3d)
    COMPLEX, INTENT(INOUT) :: cdomvz(vacuum%nmzd,2)
    COMPLEX, INTENT(INOUT) :: cdomvxy(vacuum%nmzxyd,oneD%odi%n2d-1,2)
    COMPLEX, INTENT(INOUT) :: qa21(atoms%ntypd)
    INTEGER, INTENT (IN) :: igq_fft(0:stars%kq1d*stars%kq2d*stars%kq3d-1)
    REAL, INTENT    (IN) :: vz(vacuum%nmzd,2)
    REAL, INTENT    (IN) :: vr(atoms%jmtd,0:sphhar%nlhd,atoms%ntypd,dimension%jspd)
    REAL, INTENT   (OUT) :: chmom(atoms%ntypd,dimension%jspd),clmom(3,atoms%ntypd,dimension%jspd)
    REAL, INTENT (INOUT) :: rho(atoms%jmtd,0:sphhar%nlhd,atoms%ntypd,dimension%jspd)
    REAL, INTENT (INOUT) :: rht(vacuum%nmzd,2,dimension%jspd)
    COMPLEX, INTENT(INOUT) :: n_mmp(-3:3,-3:3,atoms%n_u)

#ifdef CPP_MPI
    INCLUDE 'mpif.h'
#endif
    !     .. Local Scalars ..
    TYPE(t_lapw):: lapw
    INTEGER :: llpd
    REAL wk,wronk,sign,emcd_lo,emcd_up
    INTEGER i,ie,iv,ivac,j,k,l,l1,lh ,n,ilo,isp,nat,&
                 nbands,noded,nodeu,noccbd,nslibd,na,&
                 ikpt,npd ,jsp_start,jsp_end,ispin
    INTEGER  skip_t,skip_tt
    INTEGER n_size,i_rec,n_rank ,ncored,n_start,n_end,noccbd_l
    COMPLEX,parameter:: czero=(0.0,0.0)
    LOGICAL l_fmpl,l_mcd,l_evp,l_orbcomprot
    !     ...Local Arrays ..
    INTEGER n_bands(0:dimension%neigd),ncore(atoms%ntypd)
    REAL    cartk(3),bkpt(3),xp(3,dimension%nspd),e_mcd(atoms%ntypd,input%jspins,dimension%nstd)
    REAL    ello(atoms%nlod,atoms%ntypd,dimension%jspd),evac(2,dimension%jspd)
    REAL    epar(0:atoms%lmaxd,atoms%ntypd,dimension%jspd),evdu(2,dimension%jspd)
    REAL    eig(dimension%neigd)
    REAL    vz0(2)
    REAL    uuilon(atoms%nlod,atoms%ntypd),duilon(atoms%nlod,atoms%ntypd)
    REAL    ulouilopn(atoms%nlod,atoms%nlod,atoms%ntypd)

    INTEGER, PARAMETER :: n2max_nstm3=13
153

154 155 156 157 158
    INTEGER nsld,nsl
    !
    INTEGER, ALLOCATABLE :: nmtsl(:,:),nslat(:,:)
    REAL,    ALLOCATABLE :: zsl(:,:),volsl(:)
    REAL,    ALLOCATABLE :: volintsl(:)
159 160
    REAL,    ALLOCATABLE :: qintsl(:,:),qmtsl(:,:)
    REAL,    ALLOCATABLE :: orbcomp(:,:,:),qmtp(:,:)
161
    REAL,    ALLOCATABLE :: qis(:,:,:),qvac(:,:,:,:),qvlay(:,:,:,:,:)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    !-new_sl
    !-dw
    INTEGER, ALLOCATABLE :: gvac1d(:),gvac2d(:) ,kveclo(:)
    INTEGER, ALLOCATABLE :: jsym(:),ksym(:)

#if ( !defined(CPP_INVERSION) || defined(CPP_SOC) )
    COMPLEX, ALLOCATABLE :: z(:,:)
#else
    REAL,    ALLOCATABLE :: z(:,:)
#endif
    REAL,    ALLOCATABLE :: aclo(:,:,:),acnmt(:,:,:,:,:)
    REAL,    ALLOCATABLE :: bclo(:,:,:),bcnmt(:,:,:,:,:)
    REAL,    ALLOCATABLE :: cclo(:,:,:,:),ccnmt(:,:,:,:,:),we(:)
    REAL,    ALLOCATABLE :: f(:,:,:,:),g(:,:,:,:),flo(:,:,:,:)
    REAL,    ALLOCATABLE :: uloulopn(:,:,:,:),uloulopn21(:,:,:)
    REAL,    ALLOCATABLE :: uu(:,:,:),dd(:,:,:),du(:,:,:)
    REAL,    ALLOCATABLE :: uunmt(:,:,:,:),ddnmt(:,:,:,:)
    REAL,    ALLOCATABLE :: dunmt(:,:,:,:),udnmt(:,:,:,:),sqlo(:,:,:)
    REAL,    ALLOCATABLE :: qal(:,:,:,:),sqal(:,:,:),ener(:,:,:)
    REAL,    ALLOCATABLE :: svac(:,:),pvac(:,:),mcd(:,:,:)
    REAL,    ALLOCATABLE :: enerlo(:,:,:),qmat(:,:,:,:)
    COMPLEX, ALLOCATABLE :: acof(:,:,:,:),bcof(:,:,:,:),ccof(:,:,:,:,:)
    COMPLEX, ALLOCATABLE :: acoflo(:,:,:,:),bcoflo(:,:,:,:)
    COMPLEX, ALLOCATABLE :: cveccof(:,:,:,:,:),f_a12(:,:)
    COMPLEX, ALLOCATABLE :: e1cof(:,:,:),e2cof(:,:,:),f_a21(:,:)
    COMPLEX, ALLOCATABLE :: f_b4(:,:),f_b8(:,:)
    COMPLEX, ALLOCATABLE :: aveccof(:,:,:,:),bveccof(:,:,:,:)
    COMPLEX, ALLOCATABLE :: uloulop21(:,:,:)
    COMPLEX, ALLOCATABLE :: uunmt21(:,:,:),ddnmt21(:,:,:)
    COMPLEX, ALLOCATABLE :: dunmt21(:,:,:),udnmt21(:,:,:)
    COMPLEX, ALLOCATABLE :: qstars(:,:,:,:),m_mcd(:,:,:,:)
    TYPE (t_orb),  ALLOCATABLE :: orb(:,:,:,:)
    TYPE (t_orbl), ALLOCATABLE :: orbl(:,:,:,:)
    TYPE (t_orblo),ALLOCATABLE :: orblo(:,:,:,:,:)
    TYPE (t_mt21), ALLOCATABLE :: mt21(:,:)
    TYPE (t_lo21), ALLOCATABLE :: lo21(:,:)
    TYPE (t_usdus):: usdus
    !     ..
    !     ..
    llpd=(atoms%lmaxd*(atoms%lmaxd+3))/2
    !---> l_fmpl is meant as a switch to to a plot of the full magnet.
    !---> density without the atomic sphere approximation for the magnet.
    !---> density. It is not completely implemented (lo's missing).
    l_fmpl = .false.
    IF (noco%l_mperp) THEN
       !--->    when the off-diag. part of the desinsity matrix, i.e. m_x and
       !--->    m_y, is calculated inside the muffin-tins (l_mperp = T), cdnval
       !--->    is called only once. therefore, several spin loops have been
       !--->    added. if l_mperp = F, these loops run only from jspin - jspin.
       jsp_start = 1
       jsp_end   = 2
       ALLOCATE ( mt21(0:atoms%lmaxd,atoms%ntypd),lo21(atoms%nlod,atoms%ntypd) )  ! Deallocation at end of subroutine
       ALLOCATE ( uloulopn21(atoms%nlod,atoms%nlod,atoms%ntypd) )
       ALLOCATE ( uloulop21(atoms%nlod,atoms%nlod,atoms%ntypd) )
       ALLOCATE ( qmat(0:3,atoms%ntypd,dimension%neigd,4) )
       IF (l_fmpl) THEN
          ALLOCATE ( uunmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
          ALLOCATE ( ddnmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
          ALLOCATE ( dunmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
          ALLOCATE ( udnmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
       ELSE
          ALLOCATE ( uunmt21(1,1,1),ddnmt21(1,1,1) )
          ALLOCATE ( dunmt21(1,1,1),udnmt21(1,1,1) )
       ENDIF
    ELSE
       jsp_start = jspin
       jsp_end   = jspin
       ALLOCATE ( mt21(1,1),lo21(1,1),uunmt21(1,1,1) )
       ALLOCATE ( ddnmt21(1,1,1),dunmt21(1,1,1),udnmt21(1,1,1) )
       ALLOCATE ( uloulopn21(1,1,1),uloulop21(1,1,1),qmat(1,1,1,1) )
    ENDIF
    !
234
    !---> if l_mperp = F, these variables are only needed for one spin
235 236 237 238 239 240 241 242 243
    !---> at a time, otherwise for both spins:
    !
    ALLOCATE ( f(atoms%jmtd,2,0:atoms%lmaxd,jsp_start:jsp_end) )      ! Deallocation before mpi_col_den
    ALLOCATE ( g(atoms%jmtd,2,0:atoms%lmaxd,jsp_start:jsp_end) )
    ALLOCATE (   usdus%us(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE (  usdus%uds(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE (  usdus%dus(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%duds(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%ddn(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
244
    ALLOCATE ( lapw%k1(dimension%nvd,dimension%jspd),lapw%k2(dimension%nvd,dimension%jspd),lapw%k3(dimension%nvd,dimension%jspd) )
245 246 247 248 249 250
    ALLOCATE ( jsym(dimension%neigd),ksym(dimension%neigd) )
    ALLOCATE ( gvac1d(dimension%nv2d),gvac2d(dimension%nv2d) )
    ALLOCATE (  usdus%ulos(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%dulos(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%uulon(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%dulon(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
251
    ALLOCATE ( usdus%uloulopn(atoms%nlod,atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    ALLOCATE ( uu(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( dd(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( du(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( uunmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( ddnmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( dunmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( udnmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( qal(0:3,atoms%ntypd,dimension%neigd,jsp_start:jsp_end) )
    ALLOCATE ( sqal(0:3,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( ener(0:3,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE (   sqlo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( enerlo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( svac(2,jsp_start:jsp_end) )
    ALLOCATE ( pvac(2,jsp_start:jsp_end) )
    ALLOCATE ( qstars(vacuum%nstars,dimension%neigd,vacuum%layerd,2) )
    !
    ! --> Initializations
    !
    uu(:,:,:) = 0.0 ; dd(:,:,:) = 0.0 ; du(:,:,:) = 0.0
    IF (noco%l_mperp) THEN
272 273
       mt21(:,:)%uu = czero ; mt21(:,:)%ud = czero
       mt21(:,:)%du = czero ; mt21(:,:)%dd = czero
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
       lo21(:,:)%uulo = czero ; lo21(:,:)%ulou = czero
       lo21(:,:)%dulo = czero ; lo21(:,:)%ulod = czero
       uloulop21(:,:,:) = czero
    ENDIF
    uunmt(:,:,:,:) = 0.0 ; ddnmt(:,:,:,:) = 0.0
    udnmt(:,:,:,:) = 0.0 ; dunmt(:,:,:,:) = 0.0
    IF (l_fmpl) THEN
       IF (.not.noco%l_mperp)  CALL juDFT_error("for fmpl set noco%l_mperp = T!" ,calledby ="cdnval")
       uunmt21(:,:,:) = czero ; ddnmt21(:,:,:) = czero
       udnmt21(:,:,:) = czero ; dunmt21(:,:,:) = czero
    ENDIF
    svac(:,:) = 0.0 ; pvac(:,:) = 0.0
    sqal(:,:,:) = 0.0 ; ener(:,:,:) = 0.0
    !+soc
    IF (noco%l_soc) THEN
289
       ALLOCATE ( orb(0:atoms%lmaxd,-atoms%lmaxd:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
       ALLOCATE ( orbl(atoms%nlod,-atoms%llod:atoms%llod,atoms%ntypd,jsp_start:jsp_end)     )
       ALLOCATE ( orblo(atoms%nlod,atoms%nlod,-atoms%llod:atoms%llod,atoms%ntypd,jsp_start:jsp_end))
       orb(:,:,:,:)%uu = 0.0 ; orb(:,:,:,:)%dd = 0.0
       orb(:,:,:,:)%uum = czero ; orb(:,:,:,:)%uup = czero
       orb(:,:,:,:)%ddm = czero ; orb(:,:,:,:)%ddp = czero
       orbl(:,:,:,:)%uulo = 0.0 ; orbl(:,:,:,:)%dulo = 0.0
       orbl(:,:,:,:)%uulom = czero ; orbl(:,:,:,:)%uulop = czero
       orbl(:,:,:,:)%dulom = czero ; orbl(:,:,:,:)%dulop = czero
       orblo(:,:,:,:,:)%z = 0.0
       orblo(:,:,:,:,:)%p = czero ; orblo(:,:,:,:,:)%m = czero
    ELSE
       ALLOCATE ( orb(0:0,-atoms%lmaxd:-atoms%lmaxd,1,jsp_start:jsp_end) )
       ALLOCATE ( orbl(1,-atoms%llod:-atoms%llod,1,jsp_start:jsp_end) )
       ALLOCATE ( orblo(1,1,-atoms%llod:-atoms%llod,1,jsp_start:jsp_end) )
    ENDIF
    !+for
    IF (input%l_f) THEN
307
       ALLOCATE ( f_a12(3,atoms%ntypd),f_a21(3,atoms%ntypd) )
308 309 310 311 312 313 314 315 316 317 318 319
       ALLOCATE ( f_b4(3,atoms%ntypd),f_b8(3,atoms%ntypd) )
       f_b4(:,:) = czero  ; f_a12(:,:) = czero
       f_b8(:,:) = czero  ; f_a21(:,:) = czero
    ELSE
       ALLOCATE ( f_b8(1,1) )
    ENDIF
    !
    INQUIRE (file='mcd_inp',exist=l_mcd)
    IF (l_mcd) THEN
       OPEN (23,file='mcd_inp',STATUS='old',FORM='formatted')
       READ (23,*) emcd_lo,emcd_up
       CLOSE (23)
320
       ALLOCATE ( m_mcd(dimension%nstd,(3+1)**2,3*atoms%ntypd,2) )
321 322 323 324 325
       ALLOCATE ( mcd(3*atoms%ntypd,dimension%nstd,dimension%neigd) )
       IF (.not.banddos%dos) WRITE (*,*) 'For mcd-spectra set banddos%dos=T!'
    ELSE
       ALLOCATE ( m_mcd(1,1,1,1),mcd(1,1,1) )
    ENDIF
326

327 328
    ALLOCATE ( kveclo(atoms%nlotot) )

329 330 331
    IF (mpi%irank==0) THEN
       WRITE (6,FMT=8000) jspin
       WRITE (16,FMT=8000) jspin
332
       CALL openXMLElementPoly('mtCharges',(/'spin'/),(/jspin/))
333
    END IF
334 335 336 337 338 339 340 341 342
8000 FORMAT (/,/,10x,'valence density: spin=',i2)

    CALL cdn_read0(&
         eig_id,&
         mpi%irank,mpi%isize,jspin,dimension%jspd,&
         noco%l_noco,&
         ello,evac,epar,bkpt,wk,n_bands,n_size)!keep

    !+lo
343
    !---> if local orbitals are used, the eigenvector has a higher
344 345 346 347 348 349 350 351 352 353
    !---> dimension then nvd
    ALLOCATE ( aclo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end), &
         bclo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end),&
         cclo(atoms%nlod,atoms%nlod,atoms%ntypd,jsp_start:jsp_end),&
         acnmt(0:atoms%lmaxd,atoms%nlod,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end), &
         bcnmt(0:atoms%lmaxd,atoms%nlod,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end), &
         ccnmt(atoms%nlod,atoms%nlod,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    aclo(:,:,:) = 0.0 ; bclo(:,:,:) = 0.0 ; ccnmt(:,:,:,:,:) = 0.0
    acnmt(:,:,:,:,:)=0.0 ; bcnmt(:,:,:,:,:)=0.0 ; cclo(:,:,:,:)=0.0

354 355 356 357 358
    ALLOCATE ( qis(dimension%neigd,kpts%nkptd,dimension%jspd), &
               qvac(dimension%neigd,2,kpts%nkptd,dimension%jspd), &
               qvlay(dimension%neigd,vacuum%layerd,2,kpts%nkptd,dimension%jspd) )
    qvac(:,:,:,:)=0.0 ;  qvlay(:,:,:,:,:)=0.0

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    skip_tt = dot_product(enpara%skiplo(:atoms%ntype,jspin),atoms%neq(:atoms%ntype))
    IF (noco%l_soc.OR.noco%l_noco)  skip_tt = 2 * skip_tt
    !-lo
    !---> set up l-dependent m.t. wavefunctions
    na = 1
    ncored = 0

    ALLOCATE ( flo(atoms%jmtd,2,atoms%nlod,dimension%jspd) )
    DO  n = 1,atoms%ntype
       IF (input%cdinf.AND.mpi%irank==0) WRITE (6,FMT=8001) n
       DO  l = 0,atoms%lmax(n)
          DO ispin = jsp_start,jsp_end
             CALL radfun(&
                  l,n,ispin,epar(l,n,ispin),vr(1,0,n,ispin),atoms,&
                  f(1,1,l,ispin),g(1,1,l,ispin),usdus,&
                  nodeu,noded,wronk)
             IF (input%cdinf.AND.mpi%irank==0) WRITE (6,FMT=8002) l,&
                  epar(l,n,ispin),usdus%us(l,n,ispin),usdus%dus(l,n,ispin),nodeu,&
                  usdus%uds(l,n,ispin),usdus%duds(l,n,ispin),noded,usdus%ddn(l,n,ispin),&
                  wronk
379
          END DO
380 381 382 383 384 385
          IF (noco%l_mperp) THEN
             CALL int_21(&
                  f,g,atoms,n,l,&
                  mt21(l,n)%uun,mt21(l,n)%udn,&
                  mt21(l,n)%dun,mt21(l,n)%ddn)
          END IF
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
       END DO
       IF (l_mcd) THEN
          CALL mcd_init(&
               atoms,input,dimension,&
               vr(:,0,:,:),g,f,emcd_up,emcd_lo,n,jspin,&
               ncore,e_mcd,m_mcd)
          ncored = max(ncore(n),ncored)
       END IF
       !
       !--->   generate the extra wavefunctions for the local orbitals,
       !--->   if there are any.
       !
       IF ( atoms%nlo(n) > 0 ) THEN
          DO ispin = jsp_start,jsp_end
             CALL radflo(atoms,n,ispin, ello(1,1,ispin),vr(:,0,n,ispin), f(1,1,0,ispin),&
                         g(1,1,0,ispin),mpi, usdus, uuilon,duilon,ulouilopn, flo(:,:,:,ispin))
          END DO
       END IF

       DO ilo = 1, atoms%nlo(n)
          IF (noco%l_mperp) THEN
             CALL int_21lo(f,g,atoms,n, flo,ilo,&
                           lo21(ilo,n)%uulon,lo21(ilo,n)%dulon,&
                           lo21(ilo,n)%uloun,lo21(ilo,n)%ulodn,&
                           uloulopn21(1,1,n))
          END IF
       END DO

       na = na + atoms%neq(n)
    END DO
    DEALLOCATE (flo)
8001 FORMAT (1x,/,/,' wavefunction parameters for atom type',i3,':',/,&
             t32,'radial function',t79,'energy derivative',/,t3,'l',t8,&
             'energy',t26,'value',t39,'derivative',t53,'nodes',t68,&
             'value',t81,'derivative',t95,'nodes',t107,'norm',t119,&
             'wronskian')
8002 FORMAT (i3,f10.5,2 (5x,1p,2e16.7,i5),1p,2e16.7)

    IF (input%film) vz0(:) = vz(vacuum%nmz,:)
425
    nsld=1
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    !+q_sl
    IF ((banddos%ndir.EQ.-3).AND.banddos%dos) THEN
       IF (oneD%odi%d1)  CALL juDFT_error("layer-resolved feature does not work with 1D",calledby ="cdnval")
       CALL slab_dim(atoms, nsld)
       ALLOCATE ( nmtsl(atoms%ntypd,nsld),nslat(atoms%natd,nsld) )
       ALLOCATE ( zsl(2,nsld),volsl(nsld) )
       ALLOCATE ( volintsl(nsld) )
       CALL slabgeom(&
                     atoms,cell,nsld,&
                     nsl,zsl,nmtsl,nslat,volsl,volintsl)

       ALLOCATE ( qintsl(nsld,dimension%neigd))
       ALLOCATE ( qmtsl(nsld,dimension%neigd))
       ALLOCATE ( orbcomp(dimension%neigd,23,atoms%natd) )
       ALLOCATE ( qmtp(dimension%neigd,atoms%natd) )
       IF (.NOT.input%film) qvac(:,:,:,jspin) = 0.0
442 443 444
    ELSE
       ALLOCATE(nmtsl(1,1),nslat(1,1),zsl(1,1),volsl(1),volintsl(1))
       ALLOCATE(qintsl(1,1),qmtsl(1,1),orbcomp(1,1,1),qmtp(1,1))
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    END IF
    !-q_sl
    !
    !-->   loop over k-points: each can be a separate task
    !
    IF (kpts%nkpt < mpi%isize) THEN
       l_evp = .true.
       IF (l_mcd) THEN
          mcd(:,:,:) = 0.0
       ENDIF
       ener(:,:,:) = 0.0
       sqal(:,:,:) = 0.0
       qal(:,:,:,:) = 0.0
       enerlo(:,:,:) = 0.0
       sqlo(:,:,:) = 0.0
    ELSE
       l_evp = .false.
    END IF
    ALLOCATE ( we(dimension%neigd) )
    i_rec = 0 ; n_rank = 0
    DO ikpt = 1,kpts%nkpt
       i_rec = i_rec + 1
       IF ((mod(i_rec-1,mpi%isize).EQ.mpi%irank).OR.l_evp) THEN
          !-t3e
          we=0.0
          !--->    determine number of occupied bands and set weights (we)
          noccbd = 0
          DO i = 1,dimension%neigd ! nbands
             we(i) = results%w_iks(n_bands(n_rank)+i,ikpt,jspin)
             IF (noco%l_noco) we(i) = results%w_iks(i,ikpt,1)
             IF ((we(i).GE.1.e-8).OR.input%pallst) THEN
                noccbd = noccbd + 1
             ELSE
                we(i)=0.0
             END IF
          END DO
          ! uncomment this so that cdinf plots works for all states
          ! noccbd = neigd
483 484

          !
485
          ! -> Gu test: distribute ev's among the processors...
486
          !
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
          skip_t = skip_tt
          IF (l_evp.AND.(mpi%isize.GT.1)) THEN
             IF (banddos%dos) THEN
                noccbd_l = CEILING( real(n_bands(1)) / mpi%isize )
                n_start = mpi%irank*noccbd_l + 1
                n_end   = min( (mpi%irank+1)*noccbd_l , n_bands(1) )
             ELSE
                noccbd_l = CEILING( real(noccbd) / mpi%isize )
                n_start = mpi%irank*noccbd_l + 1
                n_end   = min( (mpi%irank+1)*noccbd_l , noccbd )
             END IF
             noccbd = n_end - n_start + 1
             IF (noccbd<1) THEN
                noccbd=0
             ELSE
                we(1:noccbd) = we(n_start:n_end)
             END IF
             IF (n_start > skip_tt) THEN
                skip_t  = 0
             END IF
             IF (n_end <= skip_tt) THEN
                skip_t  = noccbd
             END IF
             IF ((n_start <= skip_tt).AND.(n_end > skip_tt)) THEN
                skip_t  = mod(skip_tt,noccbd)
             END IF
513
          ELSE
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
             n_start = 1
             IF (banddos%dos) THEN
                noccbd_l = n_bands(1)
                n_end    = n_bands(1)
                noccbd   = n_bands(1)
             ELSE
                noccbd_l = noccbd
                n_end    = noccbd
             END IF
          END IF
          IF (.NOT.ALLOCATED(z)) ALLOCATE (z(dimension%nbasfcn,dimension%neigd))
          z = 0
          CALL cdn_read(&
                        eig_id,dimension%nvd,dimension%jspd,mpi%irank,mpi%isize,&
                        ikpt,jspin,dimension%nbasfcn,noco%l_ss,noco%l_noco,&
                        noccbd,n_start,n_end,&
                        lapw%nmat,lapw%nv,ello,evdu,epar,kveclo,&
                        lapw%k1,lapw%k2,lapw%k3,bkpt,wk,nbands,eig,z)
          !IF (l_evp.AND.(isize.GT.1)) THEN
          !  eig(1:noccbd) = eig(n_start:n_end)
          !ENDIF
          !
          IF (vacuum%nstm.EQ.3.AND.input%film) THEN
             CALL nstm3(&
538 539 540 541 542
                        sym,atoms,vacuum,stars,ikpt,lapw%nv(jspin),&
                        input,jspin,kpts,&
                        cell,wk,lapw%k1(:,jspin),lapw%k2(:,jspin),&
                        evac(1,jspin),vz,vz0,&
                        gvac1d,gvac2d)
543
          END IF
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
          IF (noccbd.EQ.0) GO TO 199
          !
          !--->    if slice, only a certain bands are taken into account
          !--->    in order to do this the coresponding eigenvalues, eigenvectors
          !--->    and weights have to be copied to the beginning of the arrays
          !--->    eig, z and we and the number of occupied bands (noccbd) has to
          !--->    changed
          IF (sliceplot%slice) THEN
             IF (mpi%irank==0) WRITE (16,FMT=*) 'NNNE',sliceplot%nnne
             IF (mpi%irank==0) WRITE (16,FMT=*) 'sliceplot%kk',sliceplot%kk
             nslibd = 0
             IF (input%pallst) we(:nbands) = wk
             IF (sliceplot%kk.EQ.0) THEN
                IF (mpi%irank==0) THEN
                   WRITE (16,FMT='(a)') 'ALL K-POINTS ARE TAKEN IN SLICE'
                   WRITE (16,FMT='(a,i2)') ' sliceplot%slice: k-point nr.',ikpt
                END IF
                DO i = 1,nbands
                   IF (eig(i).GE.sliceplot%e1s .AND. eig(i).LE.sliceplot%e2s) THEN
                      nslibd = nslibd + 1
                      eig(nslibd) = eig(i)
                      we(nslibd) = we(i)
                      z(:,nslibd) = z(:,i)
                   END IF
                END DO
                IF (mpi%irank==0) WRITE (16,'(a,i3)') ' eigenvalues in sliceplot%slice:',nslibd
             ELSE IF (sliceplot%kk.EQ.ikpt) THEN
                IF (mpi%irank==0) WRITE (16,FMT='(a,i2)') ' sliceplot%slice: k-point nr.',ikpt
                IF ((sliceplot%e1s.EQ.0.0) .AND. (sliceplot%e2s.EQ.0.0)) THEN
                   IF (mpi%irank==0) WRITE (16,FMT='(a,i5,f10.5)') 'slice: eigenvalue nr.',&
                                               sliceplot%nnne,eig(sliceplot%nnne)
                   nslibd = nslibd + 1
                   eig(nslibd) = eig(sliceplot%nnne)
                   we(nslibd) = we(sliceplot%nnne)
                   z(:,nslibd) = z(:,sliceplot%nnne)
                ELSE
                   DO i = 1,nbands
                      IF (eig(i).GE.sliceplot%e1s .AND. eig(i).LE.sliceplot%e2s) THEN
583
                         nslibd = nslibd + 1
584 585 586
                         eig(nslibd) = eig(i)
                         we(nslibd) = we(i)
                         z(:,nslibd) = z(:,i)
587
                      END IF
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
                   END DO
                   IF (mpi%irank==0) WRITE (16,FMT='(a,i3)')' eigenvalues in sliceplot%slice:',nslibd
                END IF
             END IF
             noccbd = nslibd
             IF (nslibd.EQ.0) GO TO 199 !200
          END IF ! sliceplot%slice

          !--->    in normal iterations the charge density of the unoccupied
          !--->    does not need to be calculated (in pwden, vacden and abcof)
          IF (banddos%dos.AND. .NOT.(l_evp.AND.(mpi%isize.GT.1)) ) THEN
             noccbd=nbands
          END IF
          !     ----> add in spin-doubling factor
          we(:noccbd) = 2.*we(:noccbd)/input%jspins

          !---> pk non-collinear
          !--->    valence density in the interstitial and vacuum region
          !--->    has to be called only once (if jspin=1) in the non-collinear
          !--->    case
          !     ----> valence density in the interstitial region
          IF (.NOT.((jspin.EQ.2) .AND. noco%l_noco)) THEN
             CALL timestart("cdnval: pwden")
             CALL pwden(&
612 613 614 615 616 617
                        stars,kpts,banddos,oneD,&
                        input,mpi,noco,cell,atoms,sym,ikpt,&
                        jspin,lapw,noccbd,&
                        igq_fft,we,z,&
                        eig,bkpt,&
                        qpw,cdom,qis,results%force,f_b8)
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
             CALL timestop("cdnval: pwden")
          END IF
          !+new
          !--->    charge of each valence state in this k-point of the SBZ
          !--->    in the layer interstitial region of the film
          !
          IF (banddos%dos.AND.(banddos%ndir.EQ.-3))  THEN
             IF (.NOT.((jspin.EQ.2) .AND. noco%l_noco)) THEN
                CALL q_int_sl(&
                              jspin,stars,atoms,sym,&
                              volsl,volintsl,&
                              cell,&
                              z,noccbd,lapw,&
                              nsl,zsl,nmtsl,oneD,&
                              qintsl(:,:))
633
                               !
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
             END IF
          END IF
          !-new c
          !--->    valence density in the vacuum region
          IF (input%film) THEN
             IF (.NOT.((jspin.EQ.2) .AND. noco%l_noco)) THEN
                CALL timestart("cdnval: vacden")
                CALL vacden(&
                            vacuum,dimension,stars,oneD,&
                            kpts,input,&
                            cell,atoms,noco,banddos,&
                            gvac1d,gvac2d,&
                            we,ikpt,jspin,vz,vz0,&
                            noccbd,z,bkpt,lapw,&
                            evac,eig,&
                            rhtxy,rht,qvac,qvlay,&
                            qstars,cdomvz,cdomvxy)
                CALL timestop("cdnval: vacden")
             END IF
             !--->       perform Brillouin zone integration and summation over the
             !--->       bands in order to determine the vacuum energy parameters.
             DO ispin = jsp_start,jsp_end
                DO ivac = 1,vacuum%nvac
                   pvac(ivac,ispin)=pvac(ivac,ispin)+dot_product(eig(:noccbd)*qvac(:noccbd,ivac,ikpt,ispin),we(:noccbd))
                   svac(ivac,ispin)=svac(ivac,ispin)+dot_product(qvac(:noccbd,ivac,ikpt,ispin),we(:noccbd))
                END DO
             END DO
          END IF
662

663 664 665 666
          !--->    valence density in the atomic spheres
          !--->    construct a(tilta) and b(tilta)
          IF (noco%l_mperp) THEN
             ALLOCATE ( acof(noccbd,0:dimension%lmd,atoms%natd,dimension%jspd),&
667 668 669
                        ! Deallocated before call to sympsi
                        bcof(noccbd,0:dimension%lmd,atoms%natd,dimension%jspd),                &
                        ccof(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd,dimension%jspd) )
670 671
          ELSE
             ALLOCATE ( acof(noccbd,0:dimension%lmd,atoms%natd,jspin:jspin),&
672 673
                        bcof(noccbd,0:dimension%lmd,atoms%natd,jspin:jspin),&
                        ccof(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd,jspin:jspin) )
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
          END IF

          DO ispin = jsp_start,jsp_end
             IF (input%l_f) THEN
                CALL timestart("cdnval: to_pulay")
                ALLOCATE (e1cof(noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
                          ! Deallocated after call to force_a21
                          e2cof(noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
                          acoflo(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd),&
                          bcoflo(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd),&
                          aveccof(3,noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
                          bveccof(3,noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
                          cveccof(3,-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd) )

                CALL to_pulay(atoms,noccbd,sym, lapw, noco,cell,bkpt, z,noccbd,eig,usdus,&
                              kveclo,ispin,oneD, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                              e1cof,e2cof,aveccof,bveccof, ccof(-atoms%llod,1,1,1,ispin),acoflo,bcoflo,cveccof)
                CALL timestop("cdnval: to_pulay")

             ELSE
                CALL timestart("cdnval: abcof")
                CALL abcof(atoms,noccbd,sym, cell, bkpt,lapw,noccbd,z, usdus, noco,ispin,kveclo,oneD,&
696
                           acof(:,0:,:,ispin),bcof(:,0:,:,ispin),ccof(-atoms%llod:,:,:,:,ispin))
697
                CALL timestop("cdnval: abcof")
698

699
             END IF
700

701 702
             IF (atoms%n_u.GT.0) THEN
                CALL n_mat(atoms,sym,noccbd,usdus,ispin,we, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
703
                           ccof(-atoms%llod:,:,:,:,ispin), n_mmp)
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
             END IF
             !
             !--->       perform Brillouin zone integration and summation over the
             !--->       bands in order to determine the energy parameters for each
             !--->       atom and angular momentum
             !
             IF (.not.sliceplot%slice) THEN
                CALL eparas(ispin,atoms,noccbd,mpi,ikpt,noccbd,we,eig,ccof,&
                            skip_t,l_evp,acof(:,0:,:,ispin),bcof(:,0:,:,ispin),usdus,&
                            ncore,l_mcd,m_mcd,&
                            enerlo(1,1,ispin),sqlo(1,1,ispin),&
                            ener(0,1,ispin),sqal(0,1,ispin),&
                            qal(0:,:,:,ispin),mcd)

                IF (noco%l_mperp.AND.(ispin == jsp_end)) THEN
                   CALL qal_21(atoms, input,noccbd,we,ccof,&
                               noco,acof,bcof,mt21,lo21,uloulopn21,&
                               qal,qmat)
                END IF
             END IF
             !
             !+new
             !--->    layer charge of each valence state in this k-point of the SBZ
             !--->    from the mt-sphere region of the film
             !
             IF (banddos%dos.AND.(banddos%ndir.EQ.-3))  THEN
                CALL q_mt_sl(ispin, atoms,noccbd,nsld, ikpt,noccbd,ccof(-atoms%llod,1,1,1,ispin),&
                             skip_t,noccbd, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),usdus,&
                             nmtsl,nsl, qmtsl(:,:))

                INQUIRE (file='orbcomprot',exist=l_orbcomprot)
                IF (l_orbcomprot) THEN                           ! rotate ab-coeffs
                   CALL abcrot2(atoms, noccbd,&
                                acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                                ccof(-atoms%llod:,:,:,:,ispin))
                END IF

                CALL orb_comp(ispin,noccbd,atoms,noccbd,usdus,acof(1:,0:,1:,ispin),bcof(1:,0:,1:,ispin),&
                     ccof(-atoms%llod:,1:,1:,1:,ispin), orbcomp, qmtp)
             END IF
             !-new
             !--->          set up coefficients for the spherical and
             CALL timestart("cdnval: rhomt")
             CALL rhomt(atoms,we,noccbd, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
748
                        uu(0:,:,ispin),dd(0:,:,ispin),du(0:,:,ispin))
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
             CALL timestop("cdnval: rhomt")
             !+soc
             IF (noco%l_soc) THEN
                CALL orbmom(atoms,noccbd, we,acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                            ccof(-atoms%llod:,:,:,:,ispin), orb(0:,-atoms%lmaxd:,:,ispin),orbl(:,-atoms%llod:,:,ispin),&
                            orblo(:,:,-atoms%llod:,:,ispin) )
             END IF
             !     -soc
             !--->          non-spherical m.t. density
             CALL timestart("cdnval: rhonmt")
             CALL rhonmt(atoms,sphhar, we,noccbd,sym, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                         uunmt(0:,:,:,ispin),ddnmt(0:,:,:,ispin), udnmt(0:,:,:,ispin),dunmt(0:,:,:,ispin))
             CALL timestop("cdnval: rhonmt")

             !--->          set up coefficients of the local orbitals and the
             !--->          flapw - lo cross terms for the spherical and
             !--->          non-spherical mt density
             CALL timestart("cdnval: rho(n)mtlo")
             CALL rhomtlo(atoms,&
                          noccbd,we,acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                          ccof(-atoms%llod:,:,:,:,ispin),&
                          aclo(:,:,ispin),bclo(:,:,ispin),cclo(:,:,:,ispin))
771
                            !
772 773 774 775 776 777 778 779 780 781
             CALL rhonmtlo(&
                           atoms,sphhar,&
                           noccbd,we,acof(:,0:,:,ispin),&
                           bcof(:,0:,:,ispin),ccof(-atoms%llod:,:,:,:,ispin),&
                           acnmt(0:,:,:,:,ispin),bcnmt(0:,:,:,:,ispin),&
                           ccnmt(:,:,:,:,ispin))
             CALL timestop("cdnval: rho(n)mtlo")

             IF (input%l_f) THEN
                CALL timestart("cdnval: force_a12/21")
782

783
#ifndef CPP_APW
784 785 786
                CALL force_a12(atoms,noccbd,sym, dimension,cell,oneD,&
                               we,ispin,noccbd,usdus,acof(:,0:,:,ispin),&
                               bcof(:,0:,:,ispin),e1cof,e2cof, acoflo,bcoflo, results,f_a12)
787
#endif
788
                CALL force_a21(atoms,dimension,noccbd,sym,&
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
                               oneD,cell,we,ispin,epar(0:,:,ispin),noccbd,eig,usdus,acof(:,0:,:,ispin),&
                               bcof(:,0:,:,ispin),ccof(-atoms%llod:,:,:,:,ispin), aveccof,bveccof,cveccof,&
                               results,f_a21,f_b4)

                DEALLOCATE (e1cof,e2cof,aveccof,bveccof)
                DEALLOCATE (acoflo,bcoflo,cveccof)
                CALL timestop("cdnval: force_a12/21")
             END IF
          END DO !--->    end loop over ispin

          IF (noco%l_mperp) THEN
             CALL rhomt21(atoms, we,noccbd,acof,bcof, ccof,&
                          mt21,lo21,uloulop21)
             IF (l_fmpl) THEN
                CALL rhonmt21(atoms,llpd,sphhar, we,noccbd,sym, acof,bcof,&
                              uunmt21,ddnmt21,udnmt21,dunmt21)
             END IF
          END IF

          DEALLOCATE (acof,bcof,ccof)
809
                         !
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
199       CONTINUE
          IF ((banddos%dos .OR. banddos%vacdos .OR. input%cdinf)  ) THEN
             CALL timestart("cdnval: write_info")
             !
             !--->    calculate charge distribution of each state (l-character ...)
             !--->    and write the information to the files dosinp and vacdos
             !--->    for dos and bandstructure plots
             !

             !--dw    parallel writing of vacdos,dosinp....
             !        write data to direct access file first, write to formated file later by PE 0 only!
             !--dw    since z is no longer an argument of cdninf sympsi has to be called here!
             !
             cartk=matmul(bkpt,cell%bmat)
             IF (banddos%ndir.GT.0) THEN
                CALL sympsi(bkpt,lapw%nv(jspin),lapw%k1(:,jspin),lapw%k2(:,jspin),&
                            lapw%k3(:,jspin),sym,dimension,nbands,cell, z,eig,noco, ksym,jsym)
             END IF
             !
             !--dw   now write k-point data to tmp_dos
             !
             CALL write_dos(eig_id,ikpt,jspin,qal(:,:,:,jspin),qvac(:,:,ikpt,jspin),qis(:,ikpt,jspin),&
                            qvlay(:,:,:,ikpt,jspin),qstars,ksym,jsym,mcd,qintsl,&
                            qmtsl(:,:),qmtp(:,:),orbcomp)
834
                
835 836 837 838 839 840 841 842 843 844
             CALL timestop("cdnval: write_info")
             !-new_sl
          END IF

          !--->  end of loop over PE's
          DEALLOCATE (z)
       END IF ! --> end "IF ((mod(i_rec-1,mpi%isize).EQ.mpi%irank).OR.l_evp) THEN"
    END DO !---> end of k-point loop
    DEALLOCATE (we,f,g,usdus%us,usdus%dus,usdus%duds,usdus%uds,usdus%ddn)
    !+t3e
845
#ifdef CPP_MPI
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
    CALL timestart("cdnval: mpi_col_den")
    DO ispin = jsp_start,jsp_end
       CALL mpi_col_den(mpi,sphhar,atoms,oneD,stars,vacuum,&
                        input,noco,l_fmpl,ispin,llpd, rhtxy(1,1,1,ispin),&
                        rht(1,1,ispin),qpw(1,ispin), ener(0,1,ispin),sqal(0,1,ispin),&
                        results,svac(1,ispin),pvac(1,ispin),uu(0,1,ispin),&
                        dd(0,1,ispin),du(0,1,ispin),uunmt(0,1,1,ispin),ddnmt(0,1,1,ispin),&
                        udnmt(0,1,1,ispin),dunmt(0,1,1,ispin),sqlo(1,1,ispin),&
                        aclo(1,1,ispin),bclo(1,1,ispin),cclo(1,1,1,ispin),&
                        acnmt(0,1,1,1,ispin),bcnmt(0,1,1,1,ispin),&
                        ccnmt(1,1,1,1,ispin),enerlo(1,1,ispin),&
                        orb(0,-atoms%lmaxd,1,ispin),orbl(1,-atoms%llod,1,ispin),&
                        orblo(1,1,-atoms%llod,1,ispin),mt21,lo21,uloulop21,&
                        uunmt21,ddnmt21,udnmt21,dunmt21,cdom,cdomvz,cdomvxy,n_mmp)
    END DO
    CALL timestop("cdnval: mpi_col_den")
862
#endif
863 864 865 866
    IF (((jspin.eq.input%jspins).OR.noco%l_mperp) .AND. (banddos%dos.or.banddos%vacdos.or.input%cdinf) ) THEN
       CALL timestart("cdnval: dos")
       IF (mpi%irank==0) THEN
          CALL doswrite(&
867
                        eig_id,dimension,kpts,atoms,vacuum,&
868 869 870 871 872
                        input,banddos,&
                        sliceplot,noco,sym,&
                        cell,&
                        l_mcd,ncored,ncore,e_mcd,&
                        results%ef,nsld,oneD)
873 874 875 876 877 878 879 880
          IF (banddos%dos.AND.(banddos%ndir.EQ.-3)) THEN
             CALL Ek_write_sl(&
                              eig_id,dimension,kpts,atoms,vacuum,&
                              nsld,input,jspin,&
                              sym,cell,&
                              nsl,nslat)
          END IF
       END IF
881
#ifdef CPP_MPI                
882
       CALL MPI_BARRIER(mpi%mpi_comm,ie)
883
#endif
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
       CALL timestop("cdnval: dos")
    END IF

    IF (mpi%irank==0) THEN
       CALL cdnmt(&
                  dimension%jspd,atoms,sphhar,llpd,&
                  noco,l_fmpl,jsp_start,jsp_end,&
                  epar,ello,vr(:,0,:,:),uu,du,dd,uunmt,udnmt,dunmt,ddnmt,&
                  usdus,usdus%uloulopn,aclo,bclo,cclo,acnmt,bcnmt,ccnmt,&
                  orb,orbl,orblo,mt21,lo21,uloulopn21,uloulop21,&
                  uunmt21,ddnmt21,udnmt21,dunmt21,&
                  chmom,clmom,&
                  qa21,rho)

       DO ispin = jsp_start,jsp_end
          WRITE (6,*) 'Energy Parameters for spin:',ispin
          IF (.not.sliceplot%slice) THEN
             CALL mix_enpara(&
                             ispin,atoms,vacuum,obsolete,input,&
                             enpara,&
                             vr(:,0,:,:),vz,pvac(1,ispin),&
                             svac(1,ispin),&
                             ener(0,1,ispin),sqal(0,1,ispin),&
                             enerlo(1,1,ispin),&
                             sqlo(1,1,ispin))
             CALL w_enpara(&
                           atoms,jspin,input%film,&
                           enpara,16)
          END IF

          !--->      check continuity of charge density
          IF (input%cdinf) THEN
             CALL timestart("cdnval: cdninf-stuff")

             WRITE (6,FMT=8210) ispin
8210         FORMAT (/,5x,'check continuity of cdn for spin=',i2)
             IF (input%film .AND. .NOT.oneD%odi%d1) THEN
                !--->             vacuum boundaries
                npd = min(dimension%nspd,25)
                CALL points(xp,npd)
                DO ivac = 1,vacuum%nvac
                   sign = 3. - 2.*ivac
                   DO j = 1,npd
                      xp(3,j) = sign*cell%z1/cell%amat(3,3)
                   END DO
                   CALL checkdop(&
930 931 932 933
                                 xp,npd,0,0,ivac,1,ispin,.true.,dimension,atoms,&
                                 sphhar,stars,sym,&
                                 vacuum,cell,oneD,&
                                 qpw,rho,rhtxy,rht)
934 935 936 937 938 939
                END DO
             ELSE IF (oneD%odi%d1) THEN
                !-odim
                npd = min(dimension%nspd,25)
                CALL cylpts(xp,npd,cell%z1)
                CALL checkdop(&
940 941 942 943
                              xp,npd,0,0,ivac,1,ispin,.true.,dimension,atoms,&
                              sphhar,stars,sym,&
                              vacuum,cell,oneD,&
                              qpw,rho,rhtxy,rht)
944 945 946 947 948 949 950
                !+odim
             END IF
             !--->          m.t. boundaries
             nat = 1
             DO n = 1, atoms%ntype
                CALL sphpts(xp,dimension%nspd,atoms%rmt(n),atoms%pos(1,atoms%nat))
                CALL checkdop(&
951 952 953 954
                              xp,dimension%nspd,n,nat,0,-1,ispin,.true.,&
                              dimension,atoms,sphhar,stars,sym,&
                              vacuum,cell,oneD,&
                              qpw,rho,rhtxy,rht)
955 956 957 958 959 960 961 962 963 964
                nat = nat + atoms%neq(n)
             END DO
             CALL timestop("cdnval: cdninf-stuff")

          END IF
          !+for
          !--->      forces of equ. A8 of Yu et al.
          IF ((input%l_f)) THEN
             CALL timestart("cdnval: force_a8")
             CALL force_a8(atoms,sphhar, ispin, vr,rho,&
965
                           f_a12,f_a21,f_b4,f_b8,results%force)
966 967
             CALL timestop("cdnval: force_a8")
          END IF
968
                            !-for
969
       END DO ! end of loop ispin = jsp_start,jsp_end
970
       CALL closeXMLElement('mtCharges')
971 972 973
    END IF ! end of (mpi%irank==0)
    !+t3e
    !Note: no deallocation anymore, we rely on Fortran08 :-)
974

975 976 977 978 979 980
    IF ((jsp_end.EQ.input%jspins)) THEN
       IF ((banddos%dos.OR.banddos%vacdos).AND.(banddos%ndir/=-2))  CALL juDFT_end("DOS OK",mpi%irank)
       IF (vacuum%nstm.EQ.3)  CALL juDFT_end("VACWAVE OK",mpi%irank)
    END IF
  END SUBROUTINE cdnval
END MODULE m_cdnval