pwden.F90 27 KB
Newer Older
1 2 3 4 5 6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7 8 9
MODULE m_pwden
CONTAINS
  SUBROUTINE pwden(stars,kpts,banddos,oneD, input,mpi,noco,cell,atoms,sym, &
10
       ikpt,jspin,lapw,ne, igq_fft,we,eig,bkpt, qpw,cdom, qis,forces,f_b8,zMat,realdata)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    !     In this subroutine the star function expansion coefficients of
    !     the plane wave charge density is determined.
    !
    !     This subroutine is called for each k-point and each spin.
    !
    !
    !     Two methods are implemented to calculate the charge density
    !     1) which uses the FFT. The effort in calculating the charge
    !        density is proportional to M * N * log(N) , M being number of
    !        states and N being number of plane waves. This is the method
    !        which we use for production runs
    !     2) the traditional method for calculating the charge density
    !        using the double summation. In this case the effort scales as
    !        M * N * N. The method is only used for test purposes or for
    !        special cases.
    !
    !
    !     INPUT:    eigen vectors
    !               reciprocal lattice information
    !               Brillouine zone sampling
    !               FFT information
    !
    !     OUTPUT:   qpw(s)
    !               1) using FFT
    !
    !                2) traditional method
    !
    !                             -1             ef
    !                qpw  (g) = vol * sum{ sum{ sum{ sum{ w(k) * f(nu) *
    !                                  sp   k    nu   g'
    !                                     *
    !                                    c(g'-g,nu,k) * c(g',nu,k) } } } }
    !                or :
    !                             -1             ef
    !                qpw  (g) = vol * sum{ sum{ sum{ sum{ w(k) * f(nu) *
    !                                  sp   k    nu   g'
    !                                     *
    !                                    c(g',nu,k) * c(g'+g,nu,k) } } } }
    !
    !                qpw(g) are actuall 
    ! 
    !                the weights w(k) are normalized: sum{w(k)} = 1
    !                                                  k                -6
    !                         a) 1                           for kT < 10
    !                f(nu) = {                           -1             -6
    !                         b){ 1+exp(e(k,nu) -ef)/kt) }   for kt >=10
    !
    !
    !                                      Stefan Bl"ugel, JRCAT, Feb. 1997
    !                                      Gustav Bihlmayer, UniWien       
    !
    !     In non-collinear calculations the density becomes a hermitian 2x2
    !     matrix. This subroutine generates this density matrix in the 
    !     interstitial region. The diagonal elements of this matrix 
    !     (n_11 & n_22) are stored in qpw, while the real and imaginary part
    !     of the off-diagonal element are store in cdom. 
    !
    !     Philipp Kurz 99/07
    !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    !
    !
73
!DEC$ NOOPTIMIZE
74 75 76 77 78 79 80 81
#include"cpp_double.h"
    USE m_forceb8
    USE m_pwint
    USE m_juDFT
    USE m_rfft
    USE m_cfft
    USE m_types
    IMPLICIT NONE
82
    TYPE(t_lapw),INTENT(IN)     :: lapw
83 84 85 86 87 88 89 90 91 92
    TYPE(t_mpi),INTENT(IN)      :: mpi
    TYPE(t_oneD),INTENT(IN)     :: oneD
    TYPE(t_banddos),INTENT(IN)  :: banddos
    TYPE(t_input),INTENT(IN)    :: input
    TYPE(t_noco),INTENT(IN)     :: noco
    TYPE(t_sym),INTENT(IN)      :: sym
    TYPE(t_stars),INTENT(IN)    :: stars
    TYPE(t_cell),INTENT(IN)     :: cell
    TYPE(t_kpts),INTENT(IN)     :: kpts
    TYPE(t_atoms),INTENT(IN)    :: atoms
93 94
    TYPE(t_zMat),INTENT(IN)     :: zMat

95 96 97 98 99 100
    INTEGER, INTENT (IN)        :: igq_fft(0:stars%kq1d*stars%kq2d*stars%kq3d-1)
    REAL,INTENT(IN)   :: we(:) !(nobd) 
    REAL,INTENT(IN)   :: eig(:)!(dimension%neigd)
    REAL,INTENT(IN)   :: bkpt(3)
    !----->  BASIS FUNCTION INFORMATION
    INTEGER,INTENT(IN):: ne
101
    LOGICAL,OPTIONAL,INTENT(IN)::realdata
102 103 104 105
    !----->  CHARGE DENSITY INFORMATION
    INTEGER,INTENT(IN)    :: ikpt,jspin 
    COMPLEX,INTENT(INOUT) :: qpw(:,:) !(stars%n3d,dimension%jspd)
    COMPLEX,INTENT(INOUT) :: cdom(:)!(stars%n3d)
Daniel Wortmann's avatar
Daniel Wortmann committed
106 107 108
    REAL,INTENT(OUT)      :: qis(:,:,:) !(dimension%neigd,kpts%nkpt,dimension%jspd)
    COMPLEX, INTENT (INOUT) ::  f_b8(3,atoms%ntype)
    REAL,    INTENT (INOUT) :: forces(:,:,:) !(3,atoms%ntype,dimension%jspd)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    !
    !-----> LOCAL VARIABLES
    !
    !----->  FFT  INFORMATION
    INTEGER :: ifftq2d,ifftq3d

    INTEGER  isn,nu,iv,ir,ik,il,im,in,istr,nw1,nw2,nw3,i,j
    INTEGER  ifftq1,ifftq2,ifftq3
    INTEGER  idens,ndens,ispin,jkpt,jsp_start,jsp_end
    REAL     q0,q0_11,q0_22,scale,xk(3)
    REAL     s
    COMPLEX  x
    INTEGER,PARAMETER::  ist(-1:1)=(/1,0,0/)
    REAL,PARAMETER:: zero   = 0.00,  tol_3=1.0e-3 
    !
    INTEGER  iv1d(SIZE(lapw%k1,1),input%jspins)
    REAL wtf(ne),wsave(stars%kq3d+15)
    REAL,    ALLOCATABLE :: psir(:),psii(:),rhon(:)
    REAL,    ALLOCATABLE :: psi1r(:),psi1i(:),psi2r(:),psi2i(:)
    REAL,    ALLOCATABLE :: rhomat(:,:)
    REAL,    ALLOCATABLE :: kpsir(:),kpsii(:)
    REAL,    ALLOCATABLE :: ekin(:)
    COMPLEX, ALLOCATABLE :: cwk(:),ecwk(:)
    !
133 134
    LOGICAL l_real
    REAL     CPP_BLAS_sdot
135 136 137
    EXTERNAL CPP_BLAS_sdot
    COMPLEX  CPP_BLAS_cdotc
    EXTERNAL CPP_BLAS_cdotc
138 139 140 141

    IF (PRESENT(realdata)) THEN
       l_real=realdata
    ELSE
142
       l_real=zMat%l_real
143
    ENDIF
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

    !------->          ABBREVIATIONS
    !
    !     rhon  : charge density in real space
    !     ne    : number of occupied states
    !     nv    : number of g-components in eigenstate
    !     cv=z  : wavefunction in g-space (reciprocal space)
    !     psir   : wavefunction in r-space (real-space)
    !     cwk   : complex work array: charge density in g-space (as stars)
    !     qpw   : charge density stored as stars
    !     trdchg: logical key, determines the mode of charge density
    !             calculation: false (default) : fft
    !                          true            : double sum over stars
    !     we    : weights for the BZ-integration for a particular k-point
    !     omtil : volume (slab) unit cell, between -.5*D_tilde and +.5*D_tilde
    !     k1   : reciprocal lattice vectors G=G(k1,k2,k3) for wavefunction
    !     k2   :                             =k1*a_1 + k2*a_2 + k3*a_3
    !     k3   : where a_i= Bravais lattice vectors in reciprocal space
    !             kwi, depend on k-point.                            
    !     kq1d  : dimension of the charge density FFT box in the pos. domain
    !     kq2d  : defined in dimens.f program (subroutine apws).1,2,3 indicate
    !     kq3d  ; a_1, a_2, a_3 directions.
    !     kq(i) : i=1,2,3 actual length of the fft-box for which FFT is done.
    !     nstr  : number of members (arms) of reciprocal lattice (g) vector
    !             of each star.
    !     ng3_fft: number of stars in the  charge density  FFT-box
    !     ng3   : number of 3 dim. stars in the charge density sphere defined
    !             by gmax
    !     kmxq_fft: number of g-vectors forming the ng3_fft stars in the
    !               charge density sphere 
    !     kimax : number of g-vectors forming the ng3 stars in the gmax-sphere
    !     iv1d  : maps vector (k1,k2,k3) of wave function into one
    !             dimensional vector of cdn-fft box in positive domain.
    !     ifftq3d: elements (g-vectors) in the charge density  FFT-box
    !     igfft : pointer from the g-sphere (stored as stars) to fft-grid 
    !             and     from fft-grid to g-sphere (stored as stars)
    !     pgfft : contains the phases of the g-vectors of sph.     
    !     isn   : isn = +1, FFT transform for g-space to r-space
    !             isn = -1, vice versa
    !


    ALLOCATE(cwk(stars%n3d),ecwk(stars%n3d))

    IF (noco%l_noco) THEN
       ALLOCATE ( psi1r(0:stars%kq1d*stars%kq2d*stars%kq3d-1),&
            psi1i(0:stars%kq1d*stars%kq2d*stars%kq3d-1),&
            psi2r(0:stars%kq1d*stars%kq2d*stars%kq3d-1),&
            psi2i(0:stars%kq1d*stars%kq2d*stars%kq3d-1),&
            rhomat(0:stars%kq1d*stars%kq2d*stars%kq3d-1,4) )
    ELSE
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
       IF (l_real) THEN
          ALLOCATE ( psir(-stars%kq1d*stars%kq2d:2*stars%kq1d*stars%kq2d*(stars%kq3d+1)-1),&
               psii(1),&
               rhon(-stars%kq1d*stars%kq2d:stars%kq1d*stars%kq2d*(stars%kq3d+1)-1) )
          IF (input%l_f) ALLOCATE ( kpsii(1),&
               kpsir(-stars%kq1d*stars%kq2d:2*stars%kq1d*stars%kq2d*(stars%kq3d+1)-1),&
               ekin(-stars%kq1d*stars%kq2d:2*stars%kq1d*stars%kq2d*(stars%kq3d+1)-1))
       ELSE
          ALLOCATE ( psir(0:stars%kq1d*stars%kq2d*stars%kq3d-1),&
               psii(0:stars%kq1d*stars%kq2d*stars%kq3d-1),&
               rhon(0:stars%kq1d*stars%kq2d*stars%kq3d-1) )
          IF (input%l_f) ALLOCATE ( kpsir(0:stars%kq1d*stars%kq2d*stars%kq3d-1),&
               kpsii(0:stars%kq1d*stars%kq2d*stars%kq3d-1),&
               ekin(0:stars%kq1d*stars%kq2d*stars%kq3d-1) )
       ENDIF
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    ENDIF
    !
    !=======>  CALCULATE CHARGE DENSITY USING FFT
    ! 
    !
    !------> setup FFT
    !
    ifftq1  = stars%kq1_fft
    ifftq2  = stars%kq1_fft*stars%kq2_fft
    ifftq3  = stars%kq1_fft*stars%kq2_fft*stars%kq3_fft
    ifftq3d = stars%kq1d*stars%kq2d*stars%kq3d
    ifftq2d = stars%kq1d*stars%kq2d
    !
    nw1=NINT(stars%kq1_fft/4.+0.3)
    nw2=NINT(stars%kq2_fft/4.+0.3)
    nw3=NINT(stars%kq3_fft/4.+0.3)
    !
    !------> g=0 star: calculate the charge for this k-point and spin
    !                  analytically to test the quality of FFT
    !
    q0 = zero
    q0_11 = zero
    q0_22 = zero
    IF (noco%l_noco) THEN
       q0_11 = zero
       q0_22 = zero
236 237
       IF (.NOT.l_real ) THEN
          DO nu = 1 , ne
238 239
             q0_11 = q0_11 + we(nu) * CPP_BLAS_cdotc(lapw%nv(1),zMat%z_c(1,nu),1,zMat%z_c(1,nu),1)
             q0_22 = q0_22 + we(nu) * CPP_BLAS_cdotc(lapw%nv(2),zMat%z_c(lapw%nv(1)+atoms%nlotot+1,nu),1, zMat%z_c(lapw%nv(1)+atoms%nlotot+1,nu),1)
240 241
          ENDDO
       ENDIF
242 243 244
       q0_11 = q0_11/cell%omtil
       q0_22 = q0_22/cell%omtil
    ELSE
245 246
       IF (l_real) THEN
          DO nu = 1 , ne
247
             q0=q0+we(nu)*CPP_BLAS_sdot(lapw%nv(jspin),zMat%z_r(1,nu),1,zMat%z_r(1,nu),1)
248 249 250
          ENDDO
       ELSE
          DO nu = 1 , ne
251
             q0=q0+we(nu) *REAL(CPP_BLAS_cdotc(lapw%nv(jspin),zMat%z_c(1,nu),1,zMat%z_c(1,nu),1))
252 253
          ENDDO
       ENDIF
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
       q0 = q0/cell%omtil
    ENDIF
    !
    !--------> initialize charge density with zero
    !
    IF (noco%l_noco) THEN
       rhomat = 0.0
       IF (ikpt.LE.mpi%isize) THEN
          qis=0.0
       ENDIF
    ELSE
       rhon=0.0
       IF (input%l_f) ekin=0.0
    ENDIF
    !
    !------> calculate:  wtf(nu,k) =  w(k)*f(nu,k)/vol
    !
    wtf(:ne) = we(:ne)/cell%omtil
    !
    !------> prepare mapping from wave function box to cdn FFT box
    !
    IF (noco%l_ss) THEN
       jsp_start = 1
       jsp_end   = 2
    ELSE
       jsp_start = jspin
       jsp_end   = jspin
    ENDIF
    DO ispin = jsp_start,jsp_end
       DO iv = 1 , lapw%nv(ispin)
          !                                              -k1d <= L <= k1d
          !                                              -k2d <= M <= k2d
          !                                              -k3d <= N <= k3d
          il = lapw%k1(iv,ispin)
          im = lapw%k2(iv,ispin)
          in = lapw%k3(iv,ispin)
          !
          !------>  L,M,N LATTICE POINTS OF G-VECTOR IN POSITIVE DOMAIN
          !         (since charge density box = two times charge density box
          !          wrap arround error should not occur )
          !                                           0<= L <=2*k1-1 = kq1_fft-1
          !                                           0<= M <=2*k2-1 = kq2_fft-1
          !                                           0<= N <=2*k3-1 = kq3_fft-1
          !
          il = il  +  stars%kq1_fft * ist( isign(1,il) )
          im = im  +  stars%kq2_fft * ist( isign(1,im) )
          in = in  +  stars%kq3_fft * ist( isign(1,in) )
          !
          iv1d(iv,ispin) =  in*ifftq2 + im*ifftq1 + il
       ENDDO
    ENDDO

    !
    !------------> LOOP OVER OCCUPIED STATES
    !
    DO  nu = 1 , ne
       !
       !---> FFT transform c_nu,k(g) --> psi_nu,k(r), for each k-point
       !                                              and each nu-state
       IF (noco%l_noco) THEN
          psi1r=0.0
          psi1i=0.0
          psi2r=0.0
          psi2i=0.0
          !------> map WF into FFTbox
          IF (noco%l_ss) THEN
             DO iv = 1 , lapw%nv(1)
321 322
                psi1r( iv1d(iv,1) )   = REAL( zMat%z_c(iv,nu) )
                psi1i( iv1d(iv,1) )   = AIMAG( zMat%z_c(iv,nu) )
323 324
             ENDDO
             DO iv = 1 , lapw%nv(2)
325 326
                psi2r( iv1d(iv,2) ) =  REAL(zMat%z_c(lapw%nv(1)+atoms%nlotot+iv,nu))
                psi2i( iv1d(iv,2) ) = AIMAG(zMat%z_c(lapw%nv(1)+atoms%nlotot+iv,nu))
327 328 329
             ENDDO
          ELSE
             DO iv = 1 , lapw%nv(jspin)
330 331 332 333
                psi1r( iv1d(iv,jspin) ) = REAL( zMat%z_c(iv,nu) )
                psi1i( iv1d(iv,jspin) ) = AIMAG( zMat%z_c(iv,nu) )
                psi2r(iv1d(iv,jspin))=REAL( zMat%z_c(lapw%nv(1)+atoms%nlotot+iv,nu))
                psi2i(iv1d(iv,jspin))=AIMAG(zMat%z_c(lapw%nv(1)+atoms%nlotot+iv,nu))
334 335
             ENDDO
          ENDIF
336

337 338 339 340
       ELSE
          psir=0.0
          psii=0.0
          !------> map WF into FFTbox
341 342
          IF (l_real) THEN
             DO iv = 1 , lapw%nv(jspin)
343
                psir( iv1d(iv,jspin) ) = zMat%z_r(iv,nu)
344 345 346
             ENDDO
          ELSE
             DO iv = 1 , lapw%nv(jspin)
347 348
                psir( iv1d(iv,jspin) ) =  REAL(zMat%z_c(iv,nu))
                psii( iv1d(iv,jspin) ) = AIMAG(zMat%z_c(iv,nu))
349 350
             ENDDO
          ENDIF
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
       ENDIF
       !
       !------> do (real) inverse FFT; notice that the array psir is filled from
       !        0 to ifftq3-1, but starts at -ifftq2 to give work space for rfft
       !
       IF (noco%l_noco) THEN
          isn = 1

          CALL cfft(psi1r,psi1i,ifftq3,stars%kq1_fft,ifftq1,isn)
          CALL cfft(psi1r,psi1i,ifftq3,stars%kq2_fft,ifftq2,isn)
          CALL cfft(psi1r,psi1i,ifftq3,stars%kq3_fft,ifftq3,isn)

          CALL cfft(psi2r,psi2i,ifftq3,stars%kq1_fft,ifftq1,isn)
          CALL cfft(psi2r,psi2i,ifftq3,stars%kq2_fft,ifftq2,isn)
          CALL cfft(psi2r,psi2i,ifftq3,stars%kq3_fft,ifftq3,isn)
       ELSE
          isn = 1
368 369 370
          IF (l_real) THEN
             CALL rfft(isn,stars%kq1_fft,stars%kq2_fft,stars%kq3_fft+1,stars%kq1_fft,stars%kq2_fft,stars%kq3_fft,&
                  nw1,nw2,nw3,wsave,psir(ifftq3d), psir(-ifftq2))
371

372 373
             ! GM forces part
             IF (input%l_f) THEN
374 375 376
                DO in=-1,stars%kq3_fft,2
                   DO im=0,ifftq2-1
                      ir = ifftq2 * in + im
377
                      ekin(ir) = ekin(ir) - wtf(nu) * eig(nu) * (psir(ir)**2 + psir(ir+ifftq2)**2)
378 379 380
                   ENDDO
                ENDDO

381 382 383 384 385 386 387 388 389 390 391
                DO j = 1,3
                   kpsir(ifftq3d:)=0.0
                   kpsir(-ifftq2d:ifftq3d)=0.0
                   DO iv = 1 , lapw%nv(jspin)
                      xk(1)=lapw%k1(iv,jspin)+bkpt(1)
                      xk(2)=lapw%k2(iv,jspin)+bkpt(2)
                      xk(3)=lapw%k3(iv,jspin)+bkpt(3)
                      s = 0.0
                      DO i = 1,3
                         s = s + xk(i)*cell%bmat(i,j)
                      ENDDO
392
                      kpsir( iv1d(iv,jspin) ) = s * zMat%z_r(iv,nu)
393 394 395 396 397 398 399 400
                   ENDDO
                   CALL rfft(isn,stars%kq1_fft,stars%kq2_fft,stars%kq3_fft+1,stars%kq1_fft,stars%kq2_fft,stars%kq3_fft,&
                        nw1,nw2,nw3,wsave,kpsir(ifftq3d), kpsir(-ifftq2))
                   DO in=-1,stars%kq3_fft,2
                      DO im=0,ifftq2-1
                         ir = ifftq2 * in + im
                         ekin(ir) = ekin(ir) + wtf(nu) * 0.5 * (kpsir(ir)**2 + kpsir(ir+ifftq2)**2)
                      ENDDO
401
                   ENDDO
402 403 404 405 406 407 408 409 410 411
                ENDDO
             ENDIF
          ELSE
             CALL cfft(psir,psii,ifftq3,stars%kq1_fft,ifftq1,isn)
             CALL cfft(psir,psii,ifftq3,stars%kq2_fft,ifftq2,isn)
             CALL cfft(psir,psii,ifftq3,stars%kq3_fft,ifftq3,isn)
             ! GM forces part
             IF (input%l_f) THEN
                DO ir = 0,ifftq3d-1
                   ekin(ir) = ekin(ir) - wtf(nu)*eig(nu)* (psir(ir)**2+psii(ir)**2)
412 413
                ENDDO

414 415 416 417 418 419 420 421 422 423 424
                DO j = 1,3
                   kpsir=0.0
                   kpsii=0.0
                   DO iv = 1 , lapw%nv(jspin)
                      xk(1)=lapw%k1(iv,jspin)+bkpt(1)
                      xk(2)=lapw%k2(iv,jspin)+bkpt(2)
                      xk(3)=lapw%k3(iv,jspin)+bkpt(3)
                      s = 0.0
                      DO i = 1,3
                         s = s + xk(i)*cell%bmat(i,j)
                      ENDDO
425 426
                      kpsir( iv1d(iv,jspin) ) = s *  REAL(zMat%z_c(iv,nu))
                      kpsii( iv1d(iv,jspin) ) = s * AIMAG(zMat%z_c(iv,nu))
427
                   ENDDO
428

429 430 431 432 433 434 435
                   CALL cfft(kpsir,kpsii,ifftq3,stars%kq1_fft,ifftq1,isn)
                   CALL cfft(kpsir,kpsii,ifftq3,stars%kq2_fft,ifftq2,isn)
                   CALL cfft(kpsir,kpsii,ifftq3,stars%kq3_fft,ifftq3,isn)

                   DO ir = 0,ifftq3d-1
                      ekin(ir) = ekin(ir) + wtf(nu) * 0.5 * (kpsir(ir)**2+kpsii(ir)**2)
                   ENDDO
436
                ENDDO
437
             ENDIF
438 439 440 441 442 443 444 445 446 447
          ENDIF
       ENDIF
       !----> calculate rho(r) = sum w(k)*f(nu)*conjg(psi_nu,k(r))*psi_nu,k(r)
       !                         k,nu
       !      again, we fill rhon() from -ifftq2 to ifftq3-1 for the rfft
       !
       IF (noco%l_noco) THEN
          !--->             in the non-collinear case rho becomes a hermitian 2x2
          !--->             matrix (rhomat).
          DO ir = 0,ifftq3d-1
448 449 450 451
             rhomat(ir,1) = rhomat(ir,1) + wtf(nu)*( psi1r(ir)**2 + psi1i(ir)**2 )
             rhomat(ir,2) = rhomat(ir,2) + wtf(nu)*( psi2r(ir)**2 + psi2i(ir)**2 )
             rhomat(ir,3) = rhomat(ir,3) + wtf(nu)* (psi2r(ir)*psi1r(ir)+psi2i(ir)*psi1i(ir))
             rhomat(ir,4) = rhomat(ir,4) + wtf(nu)* (psi2r(ir)*psi1i(ir)-psi2i(ir)*psi1r(ir))
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
          ENDDO
          !--->             in a non-collinear calculation the interstitial charge
          !--->             cannot be calculated by a simple substraction if the
          !--->             muffin-tin (and vacuum) charge is know, because the
          !--->             total charge does not need to be one in each spin-
          !--->             channel. Thus it has to be calculated explicitly, if
          !--->             it is needed.
          IF (banddos%dos .OR. banddos%vacdos .OR. input%cdinf) THEN
             DO ir = 0,ifftq3d-1
                psi1r(ir) = (psi1r(ir)**2 + psi1i(ir)**2)
                psi2r(ir) = (psi2r(ir)**2 + psi2i(ir)**2)
             ENDDO
             isn = -1
             psi1i=0.0
             CALL cfft(psi1r,psi1i,ifftq3,stars%kq1_fft,ifftq1,isn)
             CALL cfft(psi1r,psi1i,ifftq3,stars%kq2_fft,ifftq2,isn)
             CALL cfft(psi1r,psi1i,ifftq3,stars%kq3_fft,ifftq3,isn)
             psi2i=0.0
             CALL cfft(psi2r,psi2i,ifftq3,stars%kq1_fft,ifftq1,isn)
             CALL cfft(psi2r,psi2i,ifftq3,stars%kq2_fft,ifftq2,isn)
             CALL cfft(psi2r,psi2i,ifftq3,stars%kq3_fft,ifftq3,isn)
             cwk=0.0
             DO ik = 0 , stars%kmxq_fft - 1
475
                cwk(stars%igfft(ik,1))=cwk(stars%igfft(ik,1))+CONJG(stars%pgfft(ik))*&
476 477 478
                     CMPLX(psi1r(igq_fft(ik)),psi1i(igq_fft(ik)))
             ENDDO
             DO istr = 1,stars%ng3_fft
479 480
                CALL pwint(stars,atoms,sym, oneD,cell,stars%kv3(1,istr),x)
                qis(nu,ikpt,1) = qis(nu,ikpt,1) + REAL(cwk(istr)*x)/cell%omtil/REAL(ifftq3)
481 482 483 484
             ENDDO

             cwk=0.0
             DO ik = 0 , stars%kmxq_fft - 1
485
                cwk(stars%igfft(ik,1))=cwk(stars%igfft(ik,1))+CONJG(stars%pgfft(ik))* CMPLX(psi2r(igq_fft(ik)),psi2i(igq_fft(ik)))
486 487
             ENDDO
             DO istr = 1,stars%ng3_fft
488 489
                CALL pwint(stars,atoms,sym, oneD,cell, stars%kv3(1,istr), x)
                qis(nu,ikpt,input%jspins) = qis(nu,ikpt,input%jspins) + REAL(cwk(istr)*x)/cell%omtil/REAL(ifftq3)
490 491 492
             ENDDO
          ENDIF
       ELSE
493 494 495 496 497 498 499 500 501 502 503 504
          IF (l_real) THEN
             DO in=-1,stars%kq3_fft,2
                DO im=0,ifftq2-1
                   ir = ifftq2 * in + im
                   rhon(ir) = rhon(ir) + wtf(nu) * ( psir(ir)**2 + psir(ir+ifftq2)**2 )
                ENDDO
             ENDDO
          ELSE
             DO ir = 0,ifftq3d-1
                rhon(ir)=rhon(ir)+wtf(nu)*(psir(ir)**2+psii(ir)**2)
             ENDDO
          ENDIF
505
       ENDIF
506 507 508 509 510
       !              DO ir = -ifftq2 , ifftq3-1
       !     +                      + wtf(nu)*(psi(ir+ifftq3d) * psi(ir+ifftq3d)
       !     +                               + psi(ir  ) * psi(ir  )
       !     +                                 )
       !              ENDDO
511

512 513 514
    ENDDO
    !
    !<<<<<<<<<<<<<< END OUTER LOOP OVER STATES NU  >>>>>>>>>>>>>>>>>>
515 516
    !
    !
517 518 519 520 521 522 523 524 525 526
    !----> perform back  FFT transform: rho(r) --> chgn(star)
    !        ( do direct FFT)                    = cwk(star)

    !--->  In a collinear calculation pwden is calles once per spin.
    !--->  However in a non-collinear calculation pwden is only called once
    !--->  and all four components of the density matrix (n_11 n_22 n_12
    !--->  n_21) have to be calculated at once.
    ndens = 1
    IF (noco%l_noco) ndens = 4
    DO idens = 1,ndens
527
       IF (noco%l_noco) THEN
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
          psi1r=0.0
          isn = -1
          CALL cfft(rhomat(0,idens),psi1r,ifftq3,stars%kq1_fft,ifftq1,isn)
          CALL cfft(rhomat(0,idens),psi1r,ifftq3,stars%kq2_fft,ifftq2,isn)
          CALL cfft(rhomat(0,idens),psi1r,ifftq3,stars%kq3_fft,ifftq3,isn)
       ELSE
          !--->  psir is used here as work array, charge is real ,but fft complex
          IF (l_real) THEN
             psir(ifftq3d:)=0.0
             IF (input%l_f) kpsir(ifftq3d:)=0.0
          ELSE
             psir=0.0
             psii=0.0
             IF (input%l_f) kpsir=0.0
             IF (input%l_f) kpsii=0.0
          ENDIF

          isn = -1
          IF (l_real) THEN
             CALL rfft(isn,stars%kq1_fft,stars%kq2_fft,stars%kq3_fft+1,stars%kq1_fft,stars%kq2_fft,stars%kq3_fft,&
                  stars%kq1_fft,stars%kq2_fft,stars%kq3_fft,wsave,psir(ifftq3d), rhon(-ifftq2))
             IF (input%l_f) CALL rfft(isn,stars%kq1_fft,stars%kq2_fft,stars%kq3_fft+1,stars%kq1_fft,stars%kq2_fft,stars%kq3_fft,&
                  stars%kq1_fft,stars%kq2_fft,stars%kq3_fft,wsave,kpsir(ifftq3d), ekin(-ifftq2))
551
          ELSE
552 553 554 555 556 557 558 559 560
             CALL cfft(rhon,psir,ifftq3,stars%kq1_fft,ifftq1,isn)
             CALL cfft(rhon,psir,ifftq3,stars%kq2_fft,ifftq2,isn)
             CALL cfft(rhon,psir,ifftq3,stars%kq3_fft,ifftq3,isn)
             !+apw
             IF (input%l_f) THEN 
                CALL cfft(ekin,psii,ifftq3,stars%kq1_fft,ifftq1,isn)
                CALL cfft(ekin,psii,ifftq3,stars%kq2_fft,ifftq2,isn)
                CALL cfft(ekin,psii,ifftq3,stars%kq3_fft,ifftq3,isn)
             ENDIF
561 562
          ENDIF
       ENDIF
563 564 565 566 567 568 569 570 571 572 573 574
       !  ---> collect stars from the fft-grid
       !
       cwk=0.0
       ecwk=0.0
       IF (noco%l_noco) THEN
          DO ik = 0 , stars%kmxq_fft - 1
             cwk(stars%igfft(ik,1))=cwk(stars%igfft(ik,1))+CONJG(stars%pgfft(ik))* CMPLX(rhomat(igq_fft(ik),idens),psi1r(igq_fft(ik)))
          ENDDO
       ELSE
          IF (l_real) THEN
             DO ik = 0 , stars%kmxq_fft - 1
                cwk(stars%igfft(ik,1))=cwk(stars%igfft(ik,1))+CONJG(stars%pgfft(ik))* CMPLX(rhon(igq_fft(ik)),zero)
575
             ENDDO
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
          ELSE
             DO ik = 0 , stars%kmxq_fft - 1
                cwk(stars%igfft(ik,1))=cwk(stars%igfft(ik,1))+CONJG(stars%pgfft(ik))* CMPLX(rhon(igq_fft(ik)),psir(igq_fft(ik)))
             ENDDO
          ENDIF
          !+apw
          IF (input%l_f) THEN 
             IF (l_real) THEN
                DO ik = 0 , stars%kmxq_fft - 1
                   ecwk(stars%igfft(ik,1))=ecwk(stars%igfft(ik,1))+CONJG(stars%pgfft(ik))* CMPLX(ekin(igq_fft(ik)),zero)
                ENDDO
             ELSE
                DO ik = 0 , stars%kmxq_fft - 1
                   ecwk(stars%igfft(ik,1))=ecwk(stars%igfft(ik,1))+CONJG(stars%pgfft(ik))* CMPLX(ekin(igq_fft(ik)),psii(igq_fft(ik)))
                ENDDO
             ENDIF
592
          ENDIF
593
          !-apw
594
       ENDIF
595 596
       !
       scale=1.0/ifftq3
597
       DO istr = 1 , stars%ng3_fft
598
          cwk(istr) = scale * cwk(istr) / REAL( stars%nstr(istr) )
599
       ENDDO
600
       IF (input%l_useapw) THEN
601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
          IF (input%l_f) THEN
             DO istr = 1 , stars%ng3_fft
                ecwk(istr) = scale * ecwk(istr) / REAL( stars%nstr(istr) )
             ENDDO
             CALL force_b8(atoms,ecwk,stars, sym,cell, jspin, forces,f_b8)
          ENDIF
       ENDIF
       !
       !---> check charge neutralilty
       !
       IF ((idens.EQ.1).OR.(idens.EQ.2)) THEN
          IF (noco%l_noco) THEN
             IF (idens.EQ.1) THEN
                q0 = q0_11
             ELSE
                q0 = q0_22
             ENDIF
          ENDIF
          IF ( ABS( q0 ) .GT. 1.0e-9) THEN
             IF ( ABS( q0 - REAL(cwk(1)) )/q0 .GT. tol_3 ) THEN
                WRITE(99,*) "XX:",ne,lapw%nv
                IF (l_real) THEN
624 625
                   DO istr=1,SIZE(zMat%z_r,2)
                      WRITE(99,*) "X:",istr,zMat%z_r(:,istr)
626 627
                   ENDDO
                ELSE
628 629
                   DO istr=1,SIZE(zMat%z_c,2)
                      WRITE(99,*) "X:",istr,zMat%z_c(:,istr)
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
                   ENDDO
                ENDIF
                WRITE ( 6,'(''bad quality of charge density'',2f13.8)')q0, REAL( cwk(1) )
                WRITE (16,'(''bad quality of charge density'',2f13.8)')q0, REAL( cwk(1) )
                CALL juDFT_warn('pwden: bad quality of charge')
             ENDIF
          ENDIF
       ENDIF
       !
       !---> add charge density to existing one
       !
       IF(idens.LE.2) THEN
          !--->       add to spin-up or -down density (collinear & non-collinear)
          ispin = jspin
          IF (noco%l_noco) ispin = idens
          DO istr = 1 , stars%ng3_fft
             qpw(istr,ispin) = qpw(istr,ispin) + cwk(istr)
          ENDDO
       ELSE IF (idens.EQ.3) THEN
          !--->       add to off-diag. part of density matrix (only non-collinear)
          DO istr = 1 , stars%ng3_fft
             cdom(istr) = cdom(istr) + cwk(istr)
          ENDDO
       ELSE
          !--->       add to off-diag. part of density matrix (only non-collinear)
          DO istr = 1 , stars%ng3_fft
             cdom(istr) = cdom(istr) + CMPLX(0.0,1.0)*cwk(istr)
          ENDDO
       ENDIF

    ENDDO
661

662
    DEALLOCATE(cwk,ecwk)
663

664 665 666 667 668 669
    IF (noco%l_noco) THEN
       DEALLOCATE ( psi1r,psi1i,psi2r,psi2i,rhomat )
    ELSE
       DEALLOCATE ( psir,psii,rhon )
       IF (input%l_f) DEALLOCATE ( kpsir,kpsii,ekin)
    ENDIF
670

671
  END SUBROUTINE pwden
672
END MODULE m_pwden