cdnval.F90 43.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
MODULE m_cdnval
  use m_juDFT
CONTAINS
  SUBROUTINE cdnval(eig_id, mpi,kpts,jspin,sliceplot,noco, input,banddos,cell,atoms,enpara,stars,&
       vacuum,dimension, sphhar, sym,obsolete, igq_fft,vr, vz, oneD, n_mmp,results, qpw,rhtxy,&
       rho,rht,cdom,cdomvz,cdomvxy,qa21, chmom,clmom)
    !
    !     ***********************************************************
    !         this subroutin is a modified version of cdnval.F.
    !         it calculates a layer charge distribution and an orbital
    !         composition for each state in a film.
    !         this information is written in the  'ek_orbcomp'  file
    !                                    Yu.Koroteev  01.12.2003
    !     ***********************************************************
    !     flapw7 valence density generator
    !                                         c.l.fu
    !     zelec used to calculate ne - 6.12.95 r.pentcheva
    !
    !     changed subroutine to allow parallel writing of vacdos&dosinp
    !     used temporary direct access file 84,tmp_dos to store data used
    !     in cdninf
    !     call of cdninf changed, sympsi is called from cdnval now
    !     look for 'ifdef CPP_MPI' -blocks!               d.wortmann 6.5.99
    !
    !******** ABBREVIATIONS ************************************************
    !     nbands   : number of bands in the energy window
    !     noccbd   : number of occupied bands
    !     slice    : when set to .true. the charge density of a enery range
    !                (slice) or a single state is calculated
    !     e1s,e2s  : (used if slice) energy range for the slice. if both
    !                are set to 0.0 the charge density of the band nr. nnne
    !                is calculated
    !     pallst   : (used if slice) if set to .true. bands above the
    !                Fermi-Energy are taken into account
    !     nnne     : (used if slice) number of the band of which the charge
    !                density is calculated if e1s and e2s are 0.0
    !     kk       : (used if slice) if set to 0 all k-points are used to
    !                calculate the charge density of the slice, otherwise
    !                only k-points kk is taken into account
    !     nslibd   : number of bands in slice
    !     ener     : band energy averaged over all bands and k-points,
    !                wheighted with the l-like charge of each atom type
    !     sqal     : l-like charge of each atom type. sum over all k-points
    !                and bands
    !***********************************************************************
    !
47
    USE m_eig66_io,ONLY: write_dos
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    USE m_radfun
    USE m_radflo
    USE m_rhomt
    USE m_rhonmt
    USE m_rhomtlo
    USE m_rhonmtlo
    USE m_mcdinit
    USE m_sphpts
    USE m_points
    USE m_sympsi
    USE m_enpara, ONLY : w_enpara,mix_enpara
    USE m_eparas      ! energy parameters and partial charges
    USE m_qal21       ! off-diagonal part of partial charges
    USE m_abcof
    USE m_topulay
    USE m_nmat        ! calculate density matrix for LDA + U
    USE m_vacden
    USE m_nstm3
    USE m_pwden
    USE m_forcea8
    USE m_forcea12
    USE m_forcea21
    USE m_checkdop    ! check continuity of density on MT radius R
    USE m_int21       ! integrate (spin) off-diagonal radial functions
    USE m_int21lo     ! -"- for u_lo
    USE m_rhomt21     ! calculate (spin) off-diagonal MT-density coeff's
    USE m_rhonmt21    ! -"-                       non-MT-density coeff's
75
    USE m_cdnmt       ! calculate the density and orbital moments etc.
76 77 78 79 80 81 82 83 84 85 86 87
    USE m_orbmom      ! coeffd for orbital moments
    USE m_qmtsl       ! These subroutines divide the input%film into vacuum%layers
    USE m_qintsl      ! (slabs) and intergate the DOS in these vacuum%layers
    USE m_slabdim     ! (mt + interstitial)
    USE m_slabgeom    ! (written by Yu.Koroteev, 2003/2004)
    USE m_orbcomp     ! calculate corbital composition (like p_x,p_y,p_z)
    USE m_Ekwritesl   ! and write to file.
    USE m_abcrot2
    USE m_doswrite
    USE m_cylpts
    USE m_cdnread, ONLY : cdn_read0, cdn_read
#ifdef CPP_MPI
88
    USE m_mpi_col_den ! collect density data from parallel nodes
89 90
#endif
    USE m_types
91
    USE m_xmlOutput
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    IMPLICIT NONE
    TYPE(t_results),INTENT(INOUT)   :: results
    TYPE(t_mpi),INTENT(IN)   :: mpi
    TYPE(t_dimension),INTENT(IN)   :: dimension
    TYPE(t_oneD),INTENT(IN)   :: oneD
    TYPE(t_enpara),INTENT(INOUT)   :: enpara
    TYPE(t_obsolete),INTENT(IN)   :: obsolete
    TYPE(t_banddos),INTENT(IN)   :: banddos
    TYPE(t_sliceplot),INTENT(IN)   :: sliceplot
    TYPE(t_input),INTENT(IN)   :: input
    TYPE(t_vacuum),INTENT(IN)   :: vacuum
    TYPE(t_noco),INTENT(IN)   :: noco
    TYPE(t_sym),INTENT(IN)   :: sym
    TYPE(t_stars),INTENT(IN)   :: stars
    TYPE(t_cell),INTENT(IN)   :: cell
    TYPE(t_kpts),INTENT(IN)   :: kpts
    TYPE(t_sphhar),INTENT(IN)   :: sphhar
    TYPE(t_atoms),INTENT(IN)   :: atoms
    !     .. Scalar Arguments ..
    INTEGER, INTENT (IN) :: eig_id,jspin

    !     .. Array Arguments ..
    COMPLEX, INTENT(INOUT) :: qpw(stars%n3d,dimension%jspd)
    COMPLEX, INTENT(INOUT) :: rhtxy(vacuum%nmzxyd,oneD%odi%n2d-1,2,dimension%jspd)
    COMPLEX, INTENT(INOUT) :: cdom(stars%n3d)
    COMPLEX, INTENT(INOUT) :: cdomvz(vacuum%nmzd,2)
    COMPLEX, INTENT(INOUT) :: cdomvxy(vacuum%nmzxyd,oneD%odi%n2d-1,2)
    COMPLEX, INTENT(INOUT) :: qa21(atoms%ntypd)
    INTEGER, INTENT (IN) :: igq_fft(0:stars%kq1d*stars%kq2d*stars%kq3d-1)
    REAL, INTENT    (IN) :: vz(vacuum%nmzd,2)
    REAL, INTENT    (IN) :: vr(atoms%jmtd,0:sphhar%nlhd,atoms%ntypd,dimension%jspd)
    REAL, INTENT   (OUT) :: chmom(atoms%ntypd,dimension%jspd),clmom(3,atoms%ntypd,dimension%jspd)
    REAL, INTENT (INOUT) :: rho(atoms%jmtd,0:sphhar%nlhd,atoms%ntypd,dimension%jspd)
    REAL, INTENT (INOUT) :: rht(vacuum%nmzd,2,dimension%jspd)
    COMPLEX, INTENT(INOUT) :: n_mmp(-3:3,-3:3,atoms%n_u)

#ifdef CPP_MPI
    INCLUDE 'mpif.h'
#endif
    !     .. Local Scalars ..
    TYPE(t_lapw):: lapw
    INTEGER :: llpd
    REAL wk,wronk,sign,emcd_lo,emcd_up
    INTEGER i,ie,iv,ivac,j,k,l,l1,lh ,n,ilo,isp,nat,&
136 137
         nbands,noded,nodeu,noccbd,nslibd,na,&
         ikpt,npd ,jsp_start,jsp_end,ispin
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    INTEGER  skip_t,skip_tt
    INTEGER n_size,i_rec,n_rank ,ncored,n_start,n_end,noccbd_l
    COMPLEX,parameter:: czero=(0.0,0.0)
    LOGICAL l_fmpl,l_mcd,l_evp,l_orbcomprot
    !     ...Local Arrays ..
    INTEGER n_bands(0:dimension%neigd),ncore(atoms%ntypd)
    REAL    cartk(3),bkpt(3),xp(3,dimension%nspd),e_mcd(atoms%ntypd,input%jspins,dimension%nstd)
    REAL    ello(atoms%nlod,atoms%ntypd,dimension%jspd),evac(2,dimension%jspd)
    REAL    epar(0:atoms%lmaxd,atoms%ntypd,dimension%jspd),evdu(2,dimension%jspd)
    REAL    eig(dimension%neigd)
    REAL    vz0(2)
    REAL    uuilon(atoms%nlod,atoms%ntypd),duilon(atoms%nlod,atoms%ntypd)
    REAL    ulouilopn(atoms%nlod,atoms%nlod,atoms%ntypd)

    INTEGER, PARAMETER :: n2max_nstm3=13
153

154 155 156 157 158
    INTEGER nsld,nsl
    !
    INTEGER, ALLOCATABLE :: nmtsl(:,:),nslat(:,:)
    REAL,    ALLOCATABLE :: zsl(:,:),volsl(:)
    REAL,    ALLOCATABLE :: volintsl(:)
159 160
    REAL,    ALLOCATABLE :: qintsl(:,:),qmtsl(:,:)
    REAL,    ALLOCATABLE :: orbcomp(:,:,:),qmtp(:,:)
161
    REAL,    ALLOCATABLE :: qis(:,:,:),qvac(:,:,:,:),qvlay(:,:,:,:,:)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    !-new_sl
    !-dw
    INTEGER, ALLOCATABLE :: gvac1d(:),gvac2d(:) ,kveclo(:)
    INTEGER, ALLOCATABLE :: jsym(:),ksym(:)

    REAL,    ALLOCATABLE :: aclo(:,:,:),acnmt(:,:,:,:,:)
    REAL,    ALLOCATABLE :: bclo(:,:,:),bcnmt(:,:,:,:,:)
    REAL,    ALLOCATABLE :: cclo(:,:,:,:),ccnmt(:,:,:,:,:),we(:)
    REAL,    ALLOCATABLE :: f(:,:,:,:),g(:,:,:,:),flo(:,:,:,:)
    REAL,    ALLOCATABLE :: uloulopn(:,:,:,:),uloulopn21(:,:,:)
    REAL,    ALLOCATABLE :: uu(:,:,:),dd(:,:,:),du(:,:,:)
    REAL,    ALLOCATABLE :: uunmt(:,:,:,:),ddnmt(:,:,:,:)
    REAL,    ALLOCATABLE :: dunmt(:,:,:,:),udnmt(:,:,:,:),sqlo(:,:,:)
    REAL,    ALLOCATABLE :: qal(:,:,:,:),sqal(:,:,:),ener(:,:,:)
    REAL,    ALLOCATABLE :: svac(:,:),pvac(:,:),mcd(:,:,:)
    REAL,    ALLOCATABLE :: enerlo(:,:,:),qmat(:,:,:,:)
    COMPLEX, ALLOCATABLE :: acof(:,:,:,:),bcof(:,:,:,:),ccof(:,:,:,:,:)
    COMPLEX, ALLOCATABLE :: acoflo(:,:,:,:),bcoflo(:,:,:,:)
    COMPLEX, ALLOCATABLE :: cveccof(:,:,:,:,:),f_a12(:,:)
    COMPLEX, ALLOCATABLE :: e1cof(:,:,:),e2cof(:,:,:),f_a21(:,:)
    COMPLEX, ALLOCATABLE :: f_b4(:,:),f_b8(:,:)
    COMPLEX, ALLOCATABLE :: aveccof(:,:,:,:),bveccof(:,:,:,:)
    COMPLEX, ALLOCATABLE :: uloulop21(:,:,:)
    COMPLEX, ALLOCATABLE :: uunmt21(:,:,:),ddnmt21(:,:,:)
    COMPLEX, ALLOCATABLE :: dunmt21(:,:,:),udnmt21(:,:,:)
    COMPLEX, ALLOCATABLE :: qstars(:,:,:,:),m_mcd(:,:,:,:)
    TYPE (t_orb),  ALLOCATABLE :: orb(:,:,:,:)
    TYPE (t_orbl), ALLOCATABLE :: orbl(:,:,:,:)
    TYPE (t_orblo),ALLOCATABLE :: orblo(:,:,:,:,:)
    TYPE (t_mt21), ALLOCATABLE :: mt21(:,:)
    TYPE (t_lo21), ALLOCATABLE :: lo21(:,:)
193 194
    TYPE (t_usdus)             :: usdus
    TYPE (t_zMat)              :: zMat
195 196

    LOGICAL :: l_real
197
    l_real=sym%invs.AND.(.NOT.noco%l_soc).AND.(.NOT.noco%l_noco)
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    !     ..
    !     ..
    llpd=(atoms%lmaxd*(atoms%lmaxd+3))/2
    !---> l_fmpl is meant as a switch to to a plot of the full magnet.
    !---> density without the atomic sphere approximation for the magnet.
    !---> density. It is not completely implemented (lo's missing).
    l_fmpl = .false.
    IF (noco%l_mperp) THEN
       !--->    when the off-diag. part of the desinsity matrix, i.e. m_x and
       !--->    m_y, is calculated inside the muffin-tins (l_mperp = T), cdnval
       !--->    is called only once. therefore, several spin loops have been
       !--->    added. if l_mperp = F, these loops run only from jspin - jspin.
       jsp_start = 1
       jsp_end   = 2
       ALLOCATE ( mt21(0:atoms%lmaxd,atoms%ntypd),lo21(atoms%nlod,atoms%ntypd) )  ! Deallocation at end of subroutine
       ALLOCATE ( uloulopn21(atoms%nlod,atoms%nlod,atoms%ntypd) )
       ALLOCATE ( uloulop21(atoms%nlod,atoms%nlod,atoms%ntypd) )
       ALLOCATE ( qmat(0:3,atoms%ntypd,dimension%neigd,4) )
       IF (l_fmpl) THEN
          ALLOCATE ( uunmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
          ALLOCATE ( ddnmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
          ALLOCATE ( dunmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
          ALLOCATE ( udnmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
       ELSE
          ALLOCATE ( uunmt21(1,1,1),ddnmt21(1,1,1) )
          ALLOCATE ( dunmt21(1,1,1),udnmt21(1,1,1) )
       ENDIF
    ELSE
       jsp_start = jspin
       jsp_end   = jspin
       ALLOCATE ( mt21(1,1),lo21(1,1),uunmt21(1,1,1) )
       ALLOCATE ( ddnmt21(1,1,1),dunmt21(1,1,1),udnmt21(1,1,1) )
       ALLOCATE ( uloulopn21(1,1,1),uloulop21(1,1,1),qmat(1,1,1,1) )
    ENDIF
    !
233
    !---> if l_mperp = F, these variables are only needed for one spin
234 235 236 237 238 239 240 241 242
    !---> at a time, otherwise for both spins:
    !
    ALLOCATE ( f(atoms%jmtd,2,0:atoms%lmaxd,jsp_start:jsp_end) )      ! Deallocation before mpi_col_den
    ALLOCATE ( g(atoms%jmtd,2,0:atoms%lmaxd,jsp_start:jsp_end) )
    ALLOCATE (   usdus%us(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE (  usdus%uds(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE (  usdus%dus(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%duds(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%ddn(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
243
    ALLOCATE ( lapw%k1(dimension%nvd,dimension%jspd),lapw%k2(dimension%nvd,dimension%jspd),lapw%k3(dimension%nvd,dimension%jspd) )
244 245 246 247 248 249
    ALLOCATE ( jsym(dimension%neigd),ksym(dimension%neigd) )
    ALLOCATE ( gvac1d(dimension%nv2d),gvac2d(dimension%nv2d) )
    ALLOCATE (  usdus%ulos(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%dulos(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%uulon(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%dulon(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
250
    ALLOCATE ( usdus%uloulopn(atoms%nlod,atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    ALLOCATE ( uu(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( dd(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( du(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( uunmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( ddnmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( dunmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( udnmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( qal(0:3,atoms%ntypd,dimension%neigd,jsp_start:jsp_end) )
    ALLOCATE ( sqal(0:3,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( ener(0:3,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE (   sqlo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( enerlo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( svac(2,jsp_start:jsp_end) )
    ALLOCATE ( pvac(2,jsp_start:jsp_end) )
    ALLOCATE ( qstars(vacuum%nstars,dimension%neigd,vacuum%layerd,2) )
    !
    ! --> Initializations
    !
    uu(:,:,:) = 0.0 ; dd(:,:,:) = 0.0 ; du(:,:,:) = 0.0
    IF (noco%l_mperp) THEN
271 272
       mt21(:,:)%uu = czero ; mt21(:,:)%ud = czero
       mt21(:,:)%du = czero ; mt21(:,:)%dd = czero
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
       lo21(:,:)%uulo = czero ; lo21(:,:)%ulou = czero
       lo21(:,:)%dulo = czero ; lo21(:,:)%ulod = czero
       uloulop21(:,:,:) = czero
    ENDIF
    uunmt(:,:,:,:) = 0.0 ; ddnmt(:,:,:,:) = 0.0
    udnmt(:,:,:,:) = 0.0 ; dunmt(:,:,:,:) = 0.0
    IF (l_fmpl) THEN
       IF (.not.noco%l_mperp)  CALL juDFT_error("for fmpl set noco%l_mperp = T!" ,calledby ="cdnval")
       uunmt21(:,:,:) = czero ; ddnmt21(:,:,:) = czero
       udnmt21(:,:,:) = czero ; dunmt21(:,:,:) = czero
    ENDIF
    svac(:,:) = 0.0 ; pvac(:,:) = 0.0
    sqal(:,:,:) = 0.0 ; ener(:,:,:) = 0.0
    !+soc
    IF (noco%l_soc) THEN
288
       ALLOCATE ( orb(0:atoms%lmaxd,-atoms%lmaxd:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
       ALLOCATE ( orbl(atoms%nlod,-atoms%llod:atoms%llod,atoms%ntypd,jsp_start:jsp_end)     )
       ALLOCATE ( orblo(atoms%nlod,atoms%nlod,-atoms%llod:atoms%llod,atoms%ntypd,jsp_start:jsp_end))
       orb(:,:,:,:)%uu = 0.0 ; orb(:,:,:,:)%dd = 0.0
       orb(:,:,:,:)%uum = czero ; orb(:,:,:,:)%uup = czero
       orb(:,:,:,:)%ddm = czero ; orb(:,:,:,:)%ddp = czero
       orbl(:,:,:,:)%uulo = 0.0 ; orbl(:,:,:,:)%dulo = 0.0
       orbl(:,:,:,:)%uulom = czero ; orbl(:,:,:,:)%uulop = czero
       orbl(:,:,:,:)%dulom = czero ; orbl(:,:,:,:)%dulop = czero
       orblo(:,:,:,:,:)%z = 0.0
       orblo(:,:,:,:,:)%p = czero ; orblo(:,:,:,:,:)%m = czero
    ELSE
       ALLOCATE ( orb(0:0,-atoms%lmaxd:-atoms%lmaxd,1,jsp_start:jsp_end) )
       ALLOCATE ( orbl(1,-atoms%llod:-atoms%llod,1,jsp_start:jsp_end) )
       ALLOCATE ( orblo(1,1,-atoms%llod:-atoms%llod,1,jsp_start:jsp_end) )
    ENDIF
    !+for
    IF (input%l_f) THEN
306
       ALLOCATE ( f_a12(3,atoms%ntypd),f_a21(3,atoms%ntypd) )
307 308 309 310 311 312 313 314 315 316 317 318
       ALLOCATE ( f_b4(3,atoms%ntypd),f_b8(3,atoms%ntypd) )
       f_b4(:,:) = czero  ; f_a12(:,:) = czero
       f_b8(:,:) = czero  ; f_a21(:,:) = czero
    ELSE
       ALLOCATE ( f_b8(1,1) )
    ENDIF
    !
    INQUIRE (file='mcd_inp',exist=l_mcd)
    IF (l_mcd) THEN
       OPEN (23,file='mcd_inp',STATUS='old',FORM='formatted')
       READ (23,*) emcd_lo,emcd_up
       CLOSE (23)
319
       ALLOCATE ( m_mcd(dimension%nstd,(3+1)**2,3*atoms%ntypd,2) )
320 321 322 323 324
       ALLOCATE ( mcd(3*atoms%ntypd,dimension%nstd,dimension%neigd) )
       IF (.not.banddos%dos) WRITE (*,*) 'For mcd-spectra set banddos%dos=T!'
    ELSE
       ALLOCATE ( m_mcd(1,1,1,1),mcd(1,1,1) )
    ENDIF
325

326 327
    ALLOCATE ( kveclo(atoms%nlotot) )

328 329 330
    IF (mpi%irank==0) THEN
       WRITE (6,FMT=8000) jspin
       WRITE (16,FMT=8000) jspin
331
       CALL openXMLElementPoly('mtCharges',(/'spin'/),(/jspin/))
332
    END IF
333 334 335 336 337 338 339 340 341
8000 FORMAT (/,/,10x,'valence density: spin=',i2)

    CALL cdn_read0(&
         eig_id,&
         mpi%irank,mpi%isize,jspin,dimension%jspd,&
         noco%l_noco,&
         ello,evac,epar,bkpt,wk,n_bands,n_size)!keep

    !+lo
342
    !---> if local orbitals are used, the eigenvector has a higher
343 344 345 346 347 348 349 350 351 352
    !---> dimension then nvd
    ALLOCATE ( aclo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end), &
         bclo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end),&
         cclo(atoms%nlod,atoms%nlod,atoms%ntypd,jsp_start:jsp_end),&
         acnmt(0:atoms%lmaxd,atoms%nlod,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end), &
         bcnmt(0:atoms%lmaxd,atoms%nlod,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end), &
         ccnmt(atoms%nlod,atoms%nlod,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    aclo(:,:,:) = 0.0 ; bclo(:,:,:) = 0.0 ; ccnmt(:,:,:,:,:) = 0.0
    acnmt(:,:,:,:,:)=0.0 ; bcnmt(:,:,:,:,:)=0.0 ; cclo(:,:,:,:)=0.0

353
    ALLOCATE ( qis(dimension%neigd,kpts%nkptd,dimension%jspd), &
354 355
         qvac(dimension%neigd,2,kpts%nkptd,dimension%jspd), &
         qvlay(dimension%neigd,vacuum%layerd,2,kpts%nkptd,dimension%jspd) )
356 357
    qvac(:,:,:,:)=0.0 ;  qvlay(:,:,:,:,:)=0.0

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    skip_tt = dot_product(enpara%skiplo(:atoms%ntype,jspin),atoms%neq(:atoms%ntype))
    IF (noco%l_soc.OR.noco%l_noco)  skip_tt = 2 * skip_tt
    !-lo
    !---> set up l-dependent m.t. wavefunctions
    na = 1
    ncored = 0

    ALLOCATE ( flo(atoms%jmtd,2,atoms%nlod,dimension%jspd) )
    DO  n = 1,atoms%ntype
       IF (input%cdinf.AND.mpi%irank==0) WRITE (6,FMT=8001) n
       DO  l = 0,atoms%lmax(n)
          DO ispin = jsp_start,jsp_end
             CALL radfun(&
                  l,n,ispin,epar(l,n,ispin),vr(1,0,n,ispin),atoms,&
                  f(1,1,l,ispin),g(1,1,l,ispin),usdus,&
                  nodeu,noded,wronk)
             IF (input%cdinf.AND.mpi%irank==0) WRITE (6,FMT=8002) l,&
                  epar(l,n,ispin),usdus%us(l,n,ispin),usdus%dus(l,n,ispin),nodeu,&
                  usdus%uds(l,n,ispin),usdus%duds(l,n,ispin),noded,usdus%ddn(l,n,ispin),&
                  wronk
378
          END DO
379 380 381 382 383 384
          IF (noco%l_mperp) THEN
             CALL int_21(&
                  f,g,atoms,n,l,&
                  mt21(l,n)%uun,mt21(l,n)%udn,&
                  mt21(l,n)%dun,mt21(l,n)%ddn)
          END IF
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
       END DO
       IF (l_mcd) THEN
          CALL mcd_init(&
               atoms,input,dimension,&
               vr(:,0,:,:),g,f,emcd_up,emcd_lo,n,jspin,&
               ncore,e_mcd,m_mcd)
          ncored = max(ncore(n),ncored)
       END IF
       !
       !--->   generate the extra wavefunctions for the local orbitals,
       !--->   if there are any.
       !
       IF ( atoms%nlo(n) > 0 ) THEN
          DO ispin = jsp_start,jsp_end
             CALL radflo(atoms,n,ispin, ello(1,1,ispin),vr(:,0,n,ispin), f(1,1,0,ispin),&
400
                  g(1,1,0,ispin),mpi, usdus, uuilon,duilon,ulouilopn, flo(:,:,:,ispin))
401 402 403 404 405 406
          END DO
       END IF

       DO ilo = 1, atoms%nlo(n)
          IF (noco%l_mperp) THEN
             CALL int_21lo(f,g,atoms,n, flo,ilo,&
407 408 409
                  lo21(ilo,n)%uulon,lo21(ilo,n)%dulon,&
                  lo21(ilo,n)%uloun,lo21(ilo,n)%ulodn,&
                  uloulopn21(1,1,n))
410 411 412 413 414 415 416
          END IF
       END DO

       na = na + atoms%neq(n)
    END DO
    DEALLOCATE (flo)
8001 FORMAT (1x,/,/,' wavefunction parameters for atom type',i3,':',/,&
417 418 419 420
         t32,'radial function',t79,'energy derivative',/,t3,'l',t8,&
         'energy',t26,'value',t39,'derivative',t53,'nodes',t68,&
         'value',t81,'derivative',t95,'nodes',t107,'norm',t119,&
         'wronskian')
421 422 423
8002 FORMAT (i3,f10.5,2 (5x,1p,2e16.7,i5),1p,2e16.7)

    IF (input%film) vz0(:) = vz(vacuum%nmz,:)
424
    nsld=1
425 426 427 428 429 430 431 432
    !+q_sl
    IF ((banddos%ndir.EQ.-3).AND.banddos%dos) THEN
       IF (oneD%odi%d1)  CALL juDFT_error("layer-resolved feature does not work with 1D",calledby ="cdnval")
       CALL slab_dim(atoms, nsld)
       ALLOCATE ( nmtsl(atoms%ntypd,nsld),nslat(atoms%natd,nsld) )
       ALLOCATE ( zsl(2,nsld),volsl(nsld) )
       ALLOCATE ( volintsl(nsld) )
       CALL slabgeom(&
433 434
            atoms,cell,nsld,&
            nsl,zsl,nmtsl,nslat,volsl,volintsl)
435 436 437 438 439 440

       ALLOCATE ( qintsl(nsld,dimension%neigd))
       ALLOCATE ( qmtsl(nsld,dimension%neigd))
       ALLOCATE ( orbcomp(dimension%neigd,23,atoms%natd) )
       ALLOCATE ( qmtp(dimension%neigd,atoms%natd) )
       IF (.NOT.input%film) qvac(:,:,:,jspin) = 0.0
441 442 443
    ELSE
       ALLOCATE(nmtsl(1,1),nslat(1,1),zsl(1,1),volsl(1),volintsl(1))
       ALLOCATE(qintsl(1,1),qmtsl(1,1),orbcomp(1,1,1),qmtp(1,1))
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    END IF
    !-q_sl
    !
    !-->   loop over k-points: each can be a separate task
    !
    IF (kpts%nkpt < mpi%isize) THEN
       l_evp = .true.
       IF (l_mcd) THEN
          mcd(:,:,:) = 0.0
       ENDIF
       ener(:,:,:) = 0.0
       sqal(:,:,:) = 0.0
       qal(:,:,:,:) = 0.0
       enerlo(:,:,:) = 0.0
       sqlo(:,:,:) = 0.0
    ELSE
       l_evp = .false.
    END IF
    ALLOCATE ( we(dimension%neigd) )
    i_rec = 0 ; n_rank = 0
    DO ikpt = 1,kpts%nkpt
       i_rec = i_rec + 1
       IF ((mod(i_rec-1,mpi%isize).EQ.mpi%irank).OR.l_evp) THEN
          !-t3e
          we=0.0
          !--->    determine number of occupied bands and set weights (we)
          noccbd = 0
          DO i = 1,dimension%neigd ! nbands
             we(i) = results%w_iks(n_bands(n_rank)+i,ikpt,jspin)
             IF (noco%l_noco) we(i) = results%w_iks(i,ikpt,1)
             IF ((we(i).GE.1.e-8).OR.input%pallst) THEN
                noccbd = noccbd + 1
             ELSE
                we(i)=0.0
             END IF
          END DO
          ! uncomment this so that cdinf plots works for all states
          ! noccbd = neigd
482 483

          !
484
          ! -> Gu test: distribute ev's among the processors...
485
          !
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
          skip_t = skip_tt
          IF (l_evp.AND.(mpi%isize.GT.1)) THEN
             IF (banddos%dos) THEN
                noccbd_l = CEILING( real(n_bands(1)) / mpi%isize )
                n_start = mpi%irank*noccbd_l + 1
                n_end   = min( (mpi%irank+1)*noccbd_l , n_bands(1) )
             ELSE
                noccbd_l = CEILING( real(noccbd) / mpi%isize )
                n_start = mpi%irank*noccbd_l + 1
                n_end   = min( (mpi%irank+1)*noccbd_l , noccbd )
             END IF
             noccbd = n_end - n_start + 1
             IF (noccbd<1) THEN
                noccbd=0
             ELSE
                we(1:noccbd) = we(n_start:n_end)
             END IF
             IF (n_start > skip_tt) THEN
                skip_t  = 0
             END IF
             IF (n_end <= skip_tt) THEN
                skip_t  = noccbd
             END IF
             IF ((n_start <= skip_tt).AND.(n_end > skip_tt)) THEN
                skip_t  = mod(skip_tt,noccbd)
             END IF
512
          ELSE
513 514 515 516 517 518 519 520 521 522
             n_start = 1
             IF (banddos%dos) THEN
                noccbd_l = n_bands(1)
                n_end    = n_bands(1)
                noccbd   = n_bands(1)
             ELSE
                noccbd_l = noccbd
                n_end    = noccbd
             END IF
          END IF
523
          zMat%l_real = l_real
524
          IF (l_real) THEN
525 526 527 528 529 530
             IF (.NOT.ALLOCATED(zMat%z_r)) THEN
                ALLOCATE (zMat%z_r(dimension%nbasfcn,dimension%neigd))
                zMat%nbasfcn = dimension%nbasfcn
                zMat%nbands = dimension%neigd
             END IF
             zMat%z_r = 0
531 532 533 534 535
             CALL cdn_read(&
               eig_id,dimension%nvd,dimension%jspd,mpi%irank,mpi%isize,&
               ikpt,jspin,dimension%nbasfcn,noco%l_ss,noco%l_noco,&
               noccbd,n_start,n_end,&
               lapw%nmat,lapw%nv,ello,evdu,epar,kveclo,&
536
               lapw%k1,lapw%k2,lapw%k3,bkpt,wk,nbands,eig,zMat%z_r)
537
          ELSE
538 539 540 541 542 543
             IF (.NOT.ALLOCATED(zMat%z_c)) THEN
                ALLOCATE (zMat%z_c(dimension%nbasfcn,dimension%neigd))
                zMat%nbasfcn = dimension%nbasfcn
                zMat%nbands = dimension%neigd
             END IF
             zMat%z_c = 0
544
             CALL cdn_read(&
545 546 547 548
               eig_id,dimension%nvd,dimension%jspd,mpi%irank,mpi%isize,&
               ikpt,jspin,dimension%nbasfcn,noco%l_ss,noco%l_noco,&
               noccbd,n_start,n_end,&
               lapw%nmat,lapw%nv,ello,evdu,epar,kveclo,&
549
               lapw%k1,lapw%k2,lapw%k3,bkpt,wk,nbands,eig,zMat%z_c)
550
          endif
551 552 553 554 555 556
          !IF (l_evp.AND.(isize.GT.1)) THEN
          !  eig(1:noccbd) = eig(n_start:n_end)
          !ENDIF
          !
          IF (vacuum%nstm.EQ.3.AND.input%film) THEN
             CALL nstm3(&
557 558 559 560 561
                  sym,atoms,vacuum,stars,ikpt,lapw%nv(jspin),&
                  input,jspin,kpts,&
                  cell,wk,lapw%k1(:,jspin),lapw%k2(:,jspin),&
                  evac(1,jspin),vz,vz0,&
                  gvac1d,gvac2d)
562
          END IF
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
          IF (noccbd.EQ.0) GO TO 199
          !
          !--->    if slice, only a certain bands are taken into account
          !--->    in order to do this the coresponding eigenvalues, eigenvectors
          !--->    and weights have to be copied to the beginning of the arrays
          !--->    eig, z and we and the number of occupied bands (noccbd) has to
          !--->    changed
          IF (sliceplot%slice) THEN
             IF (mpi%irank==0) WRITE (16,FMT=*) 'NNNE',sliceplot%nnne
             IF (mpi%irank==0) WRITE (16,FMT=*) 'sliceplot%kk',sliceplot%kk
             nslibd = 0
             IF (input%pallst) we(:nbands) = wk
             IF (sliceplot%kk.EQ.0) THEN
                IF (mpi%irank==0) THEN
                   WRITE (16,FMT='(a)') 'ALL K-POINTS ARE TAKEN IN SLICE'
                   WRITE (16,FMT='(a,i2)') ' sliceplot%slice: k-point nr.',ikpt
                END IF
                DO i = 1,nbands
                   IF (eig(i).GE.sliceplot%e1s .AND. eig(i).LE.sliceplot%e2s) THEN
                      nslibd = nslibd + 1
                      eig(nslibd) = eig(i)
                      we(nslibd) = we(i)
586
                      if (l_real) THEN
587
                         zMat%z_r(:,nslibd) = zMat%z_r(:,i)
588
                      else
589
                         zMat%z_c(:,nslibd) = zMat%z_c(:,i)
590
                      endif
591 592 593 594 595 596 597
                   END IF
                END DO
                IF (mpi%irank==0) WRITE (16,'(a,i3)') ' eigenvalues in sliceplot%slice:',nslibd
             ELSE IF (sliceplot%kk.EQ.ikpt) THEN
                IF (mpi%irank==0) WRITE (16,FMT='(a,i2)') ' sliceplot%slice: k-point nr.',ikpt
                IF ((sliceplot%e1s.EQ.0.0) .AND. (sliceplot%e2s.EQ.0.0)) THEN
                   IF (mpi%irank==0) WRITE (16,FMT='(a,i5,f10.5)') 'slice: eigenvalue nr.',&
598
                        sliceplot%nnne,eig(sliceplot%nnne)
599 600 601
                   nslibd = nslibd + 1
                   eig(nslibd) = eig(sliceplot%nnne)
                   we(nslibd) = we(sliceplot%nnne)
602
                   if (l_real) Then
603
                      zMat%z_r(:,nslibd) = zMat%z_r(:,sliceplot%nnne)
604
                   else
605
                      zMat%z_c(:,nslibd) = zMat%z_c(:,sliceplot%nnne)
606
                   endif
607 608 609
                ELSE
                   DO i = 1,nbands
                      IF (eig(i).GE.sliceplot%e1s .AND. eig(i).LE.sliceplot%e2s) THEN
610
                         nslibd = nslibd + 1
611 612
                         eig(nslibd) = eig(i)
                         we(nslibd) = we(i)
613
                         if (l_real) THEN
614
                            zMat%z_r(:,nslibd) = zMat%z_r(:,i)
615
                         else
616
                            zMat%z_c(:,nslibd) = zMat%z_c(:,i)
617
                         endif
618
                      END IF
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
                   END DO
                   IF (mpi%irank==0) WRITE (16,FMT='(a,i3)')' eigenvalues in sliceplot%slice:',nslibd
                END IF
             END IF
             noccbd = nslibd
             IF (nslibd.EQ.0) GO TO 199 !200
          END IF ! sliceplot%slice

          !--->    in normal iterations the charge density of the unoccupied
          !--->    does not need to be calculated (in pwden, vacden and abcof)
          IF (banddos%dos.AND. .NOT.(l_evp.AND.(mpi%isize.GT.1)) ) THEN
             noccbd=nbands
          END IF
          !     ----> add in spin-doubling factor
          we(:noccbd) = 2.*we(:noccbd)/input%jspins

          !---> pk non-collinear
          !--->    valence density in the interstitial and vacuum region
          !--->    has to be called only once (if jspin=1) in the non-collinear
          !--->    case
          !     ----> valence density in the interstitial region
          IF (.NOT.((jspin.EQ.2) .AND. noco%l_noco)) THEN
             CALL timestart("cdnval: pwden")
642
             CALL pwden(stars,kpts,banddos,oneD, input,mpi,noco,cell,atoms,sym,ikpt,&
643
                  jspin,lapw,noccbd,igq_fft,we, eig,bkpt,qpw,cdom,qis,results%force,f_b8,zMat,l_real)
644 645 646 647 648 649
             CALL timestop("cdnval: pwden")
          END IF
          !+new
          !--->    charge of each valence state in this k-point of the SBZ
          !--->    in the layer interstitial region of the film
          !
650
          IF (banddos%dos.AND.(banddos%ndir.EQ.-3)) THEN
651
             IF (.NOT.((jspin.EQ.2) .AND. noco%l_noco)) THEN
652
                CALL q_int_sl(jspin,stars,atoms,sym, volsl,volintsl,&
653
                     cell,noccbd,lapw, nsl,zsl,nmtsl,oneD, qintsl(:,:),zMat,l_real)
654 655
               
      !
656 657 658 659 660 661 662
             END IF
          END IF
          !-new c
          !--->    valence density in the vacuum region
          IF (input%film) THEN
             IF (.NOT.((jspin.EQ.2) .AND. noco%l_noco)) THEN
                CALL timestart("cdnval: vacden")
663 664
                CALL vacden(vacuum,dimension,stars,oneD, kpts,input, cell,atoms,noco,banddos,&
                        gvac1d,gvac2d, we,ikpt,jspin,vz,vz0, noccbd,bkpt,lapw, evac,eig,&
665
                        rhtxy,rht,qvac,qvlay, qstars,cdomvz,cdomvxy,zMat,l_real)
666 667 668 669 670 671 672 673 674 675 676
                CALL timestop("cdnval: vacden")
             END IF
             !--->       perform Brillouin zone integration and summation over the
             !--->       bands in order to determine the vacuum energy parameters.
             DO ispin = jsp_start,jsp_end
                DO ivac = 1,vacuum%nvac
                   pvac(ivac,ispin)=pvac(ivac,ispin)+dot_product(eig(:noccbd)*qvac(:noccbd,ivac,ikpt,ispin),we(:noccbd))
                   svac(ivac,ispin)=svac(ivac,ispin)+dot_product(qvac(:noccbd,ivac,ikpt,ispin),we(:noccbd))
                END DO
             END DO
          END IF
677

678 679 680 681
          !--->    valence density in the atomic spheres
          !--->    construct a(tilta) and b(tilta)
          IF (noco%l_mperp) THEN
             ALLOCATE ( acof(noccbd,0:dimension%lmd,atoms%natd,dimension%jspd),&
682 683 684
                                ! Deallocated before call to sympsi
                  bcof(noccbd,0:dimension%lmd,atoms%natd,dimension%jspd),                &
                  ccof(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd,dimension%jspd) )
685 686
          ELSE
             ALLOCATE ( acof(noccbd,0:dimension%lmd,atoms%natd,jspin:jspin),&
687 688
                  bcof(noccbd,0:dimension%lmd,atoms%natd,jspin:jspin),&
                  ccof(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd,jspin:jspin) )
689 690 691 692 693 694
          END IF

          DO ispin = jsp_start,jsp_end
             IF (input%l_f) THEN
                CALL timestart("cdnval: to_pulay")
                ALLOCATE (e1cof(noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
695 696 697 698 699 700 701
                                ! Deallocated after call to force_a21
                     e2cof(noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
                     acoflo(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd),&
                     bcoflo(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd),&
                     aveccof(3,noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
                     bveccof(3,noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
                     cveccof(3,-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd) )
702 703
                CALL to_pulay(input,atoms,noccbd,sym, lapw, noco,cell,bkpt,noccbd,eig,usdus,&
                        kveclo,ispin,oneD, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
704
                        e1cof,e2cof,aveccof,bveccof, ccof(-atoms%llod,1,1,1,ispin),acoflo,bcoflo,cveccof,zMat,l_real)
705 706 707 708
                CALL timestop("cdnval: to_pulay")

             ELSE
                CALL timestart("cdnval: abcof")
709
                CALL abcof(input,atoms,noccbd,sym, cell, bkpt,lapw,noccbd,usdus, noco,ispin,kveclo,oneD,&
710
                     acof(:,0:,:,ispin),bcof(:,0:,:,ispin),ccof(-atoms%llod:,:,:,:,ispin),zMat,l_real)
711
                CALL timestop("cdnval: abcof")
712

713
             END IF
714

715 716
             IF (atoms%n_u.GT.0) THEN
                CALL n_mat(atoms,sym,noccbd,usdus,ispin,we, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
717
                     ccof(-atoms%llod:,:,:,:,ispin), n_mmp)
718 719 720 721 722 723 724 725
             END IF
             !
             !--->       perform Brillouin zone integration and summation over the
             !--->       bands in order to determine the energy parameters for each
             !--->       atom and angular momentum
             !
             IF (.not.sliceplot%slice) THEN
                CALL eparas(ispin,atoms,noccbd,mpi,ikpt,noccbd,we,eig,ccof,&
726 727 728 729 730
                     skip_t,l_evp,acof(:,0:,:,ispin),bcof(:,0:,:,ispin),usdus,&
                     ncore,l_mcd,m_mcd,&
                     enerlo(1,1,ispin),sqlo(1,1,ispin),&
                     ener(0,1,ispin),sqal(0,1,ispin),&
                     qal(0:,:,:,ispin),mcd)
731 732 733

                IF (noco%l_mperp.AND.(ispin == jsp_end)) THEN
                   CALL qal_21(atoms, input,noccbd,we,ccof,&
734 735
                        noco,acof,bcof,mt21,lo21,uloulopn21,&
                        qal,qmat)
736 737 738 739 740 741 742 743 744
                END IF
             END IF
             !
             !+new
             !--->    layer charge of each valence state in this k-point of the SBZ
             !--->    from the mt-sphere region of the film
             !
             IF (banddos%dos.AND.(banddos%ndir.EQ.-3))  THEN
                CALL q_mt_sl(ispin, atoms,noccbd,nsld, ikpt,noccbd,ccof(-atoms%llod,1,1,1,ispin),&
745 746
                     skip_t,noccbd, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),usdus,&
                     nmtsl,nsl, qmtsl(:,:))
747 748 749 750

                INQUIRE (file='orbcomprot',exist=l_orbcomprot)
                IF (l_orbcomprot) THEN                           ! rotate ab-coeffs
                   CALL abcrot2(atoms, noccbd,&
751 752
                        acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                        ccof(-atoms%llod:,:,:,:,ispin))
753 754 755 756 757 758 759 760 761
                END IF

                CALL orb_comp(ispin,noccbd,atoms,noccbd,usdus,acof(1:,0:,1:,ispin),bcof(1:,0:,1:,ispin),&
                     ccof(-atoms%llod:,1:,1:,1:,ispin), orbcomp, qmtp)
             END IF
             !-new
             !--->          set up coefficients for the spherical and
             CALL timestart("cdnval: rhomt")
             CALL rhomt(atoms,we,noccbd, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
762
                  uu(0:,:,ispin),dd(0:,:,ispin),du(0:,:,ispin))
763 764 765 766
             CALL timestop("cdnval: rhomt")
             !+soc
             IF (noco%l_soc) THEN
                CALL orbmom(atoms,noccbd, we,acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
767 768
                     ccof(-atoms%llod:,:,:,:,ispin), orb(0:,-atoms%lmaxd:,:,ispin),orbl(:,-atoms%llod:,:,ispin),&
                     orblo(:,:,-atoms%llod:,:,ispin) )
769 770 771 772 773
             END IF
             !     -soc
             !--->          non-spherical m.t. density
             CALL timestart("cdnval: rhonmt")
             CALL rhonmt(atoms,sphhar, we,noccbd,sym, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
774
                  uunmt(0:,:,:,ispin),ddnmt(0:,:,:,ispin), udnmt(0:,:,:,ispin),dunmt(0:,:,:,ispin))
775 776 777 778 779 780 781
             CALL timestop("cdnval: rhonmt")

             !--->          set up coefficients of the local orbitals and the
             !--->          flapw - lo cross terms for the spherical and
             !--->          non-spherical mt density
             CALL timestart("cdnval: rho(n)mtlo")
             CALL rhomtlo(atoms,&
782 783 784 785
                  noccbd,we,acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                  ccof(-atoms%llod:,:,:,:,ispin),&
                  aclo(:,:,ispin),bclo(:,:,ispin),cclo(:,:,:,ispin))
             !
786
             CALL rhonmtlo(&
787 788 789 790 791
                  atoms,sphhar,&
                  noccbd,we,acof(:,0:,:,ispin),&
                  bcof(:,0:,:,ispin),ccof(-atoms%llod:,:,:,:,ispin),&
                  acnmt(0:,:,:,:,ispin),bcnmt(0:,:,:,:,ispin),&
                  ccnmt(:,:,:,:,ispin))
792 793 794 795
             CALL timestop("cdnval: rho(n)mtlo")

             IF (input%l_f) THEN
                CALL timestart("cdnval: force_a12/21")
796 797 798 799 800 801 802 803 804
                IF (.not.input%l_useapw) THEN
                   CALL force_a12(atoms,noccbd,sym, dimension,cell,oneD,&
                        we,ispin,noccbd,usdus,acof(:,0:,:,ispin),&
                        bcof(:,0:,:,ispin),e1cof,e2cof, acoflo,bcoflo, results,f_a12)
                ENDIF
                CALL force_a21(input,atoms,dimension,noccbd,sym,&
                     oneD,cell,we,ispin,epar(0:,:,ispin),noccbd,eig,usdus,acof(:,0:,:,ispin),&
                     bcof(:,0:,:,ispin),ccof(-atoms%llod:,:,:,:,ispin), aveccof,bveccof,cveccof,&
                     results,f_a21,f_b4)
805 806 807 808 809 810 811 812 813

                DEALLOCATE (e1cof,e2cof,aveccof,bveccof)
                DEALLOCATE (acoflo,bcoflo,cveccof)
                CALL timestop("cdnval: force_a12/21")
             END IF
          END DO !--->    end loop over ispin

          IF (noco%l_mperp) THEN
             CALL rhomt21(atoms, we,noccbd,acof,bcof, ccof,&
814
                  mt21,lo21,uloulop21)
815 816
             IF (l_fmpl) THEN
                CALL rhonmt21(atoms,llpd,sphhar, we,noccbd,sym, acof,bcof,&
817
                     uunmt21,ddnmt21,udnmt21,dunmt21)
818 819 820 821
             END IF
          END IF

          DEALLOCATE (acof,bcof,ccof)
822
          !
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
199       CONTINUE
          IF ((banddos%dos .OR. banddos%vacdos .OR. input%cdinf)  ) THEN
             CALL timestart("cdnval: write_info")
             !
             !--->    calculate charge distribution of each state (l-character ...)
             !--->    and write the information to the files dosinp and vacdos
             !--->    for dos and bandstructure plots
             !

             !--dw    parallel writing of vacdos,dosinp....
             !        write data to direct access file first, write to formated file later by PE 0 only!
             !--dw    since z is no longer an argument of cdninf sympsi has to be called here!
             !
             cartk=matmul(bkpt,cell%bmat)
             IF (banddos%ndir.GT.0) THEN
                CALL sympsi(bkpt,lapw%nv(jspin),lapw%k1(:,jspin),lapw%k2(:,jspin),&
839
                     lapw%k3(:,jspin),sym,dimension,nbands,cell,eig,noco, ksym,jsym,zMat,l_real)
840 841 842 843 844
             END IF
             !
             !--dw   now write k-point data to tmp_dos
             !
             CALL write_dos(eig_id,ikpt,jspin,qal(:,:,:,jspin),qvac(:,:,ikpt,jspin),qis(:,ikpt,jspin),&
845 846 847
                  qvlay(:,:,:,ikpt,jspin),qstars,ksym,jsym,mcd,qintsl,&
                  qmtsl(:,:),qmtp(:,:),orbcomp)

848 849 850 851 852
             CALL timestop("cdnval: write_info")
             !-new_sl
          END IF

          !--->  end of loop over PE's
853
          IF (l_real) THEN
854 855 856 857
             DEALLOCATE (zMat%z_r)
          ELSE
             DEALLOCATE (zMat%z_c)
          END IF
858 859 860 861
       END IF ! --> end "IF ((mod(i_rec-1,mpi%isize).EQ.mpi%irank).OR.l_evp) THEN"
    END DO !---> end of k-point loop
    DEALLOCATE (we,f,g,usdus%us,usdus%dus,usdus%duds,usdus%uds,usdus%ddn)
    !+t3e
862
#ifdef CPP_MPI
863 864 865
    CALL timestart("cdnval: mpi_col_den")
    DO ispin = jsp_start,jsp_end
       CALL mpi_col_den(mpi,sphhar,atoms,oneD,stars,vacuum,&
866 867 868 869 870 871 872 873 874 875 876
            input,noco,l_fmpl,ispin,llpd, rhtxy(1,1,1,ispin),&
            rht(1,1,ispin),qpw(1,ispin), ener(0,1,ispin),sqal(0,1,ispin),&
            results,svac(1,ispin),pvac(1,ispin),uu(0,1,ispin),&
            dd(0,1,ispin),du(0,1,ispin),uunmt(0,1,1,ispin),ddnmt(0,1,1,ispin),&
            udnmt(0,1,1,ispin),dunmt(0,1,1,ispin),sqlo(1,1,ispin),&
            aclo(1,1,ispin),bclo(1,1,ispin),cclo(1,1,1,ispin),&
            acnmt(0,1,1,1,ispin),bcnmt(0,1,1,1,ispin),&
            ccnmt(1,1,1,1,ispin),enerlo(1,1,ispin),&
            orb(0,-atoms%lmaxd,1,ispin),orbl(1,-atoms%llod,1,ispin),&
            orblo(1,1,-atoms%llod,1,ispin),mt21,lo21,uloulop21,&
            uunmt21,ddnmt21,udnmt21,dunmt21,cdom,cdomvz,cdomvxy,n_mmp)
877 878
    END DO
    CALL timestop("cdnval: mpi_col_den")
879
#endif
880 881 882 883
    IF (((jspin.eq.input%jspins).OR.noco%l_mperp) .AND. (banddos%dos.or.banddos%vacdos.or.input%cdinf) ) THEN
       CALL timestart("cdnval: dos")
       IF (mpi%irank==0) THEN
          CALL doswrite(&
884 885 886 887 888 889
               eig_id,dimension,kpts,atoms,vacuum,&
               input,banddos,&
               sliceplot,noco,sym,&
               cell,&
               l_mcd,ncored,ncore,e_mcd,&
               results%ef,nsld,oneD)
890 891
          IF (banddos%dos.AND.(banddos%ndir.EQ.-3)) THEN
             CALL Ek_write_sl(&
892 893 894 895
                  eig_id,dimension,kpts,atoms,vacuum,&
                  nsld,input,jspin,&
                  sym,cell,&
                  nsl,nslat)
896 897
          END IF
       END IF
898
#ifdef CPP_MPI                
899
       CALL MPI_BARRIER(mpi%mpi_comm,ie)
900
#endif
901 902 903 904 905
       CALL timestop("cdnval: dos")
    END IF

    IF (mpi%irank==0) THEN
       CALL cdnmt(&
906 907 908 909 910 911 912 913
            dimension%jspd,atoms,sphhar,llpd,&
            noco,l_fmpl,jsp_start,jsp_end,&
            epar,ello,vr(:,0,:,:),uu,du,dd,uunmt,udnmt,dunmt,ddnmt,&
            usdus,usdus%uloulopn,aclo,bclo,cclo,acnmt,bcnmt,ccnmt,&
            orb,orbl,orblo,mt21,lo21,uloulopn21,uloulop21,&
            uunmt21,ddnmt21,udnmt21,dunmt21,&
            chmom,clmom,&
            qa21,rho)
914 915 916 917 918

       DO ispin = jsp_start,jsp_end
          WRITE (6,*) 'Energy Parameters for spin:',ispin
          IF (.not.sliceplot%slice) THEN
             CALL mix_enpara(&
919 920 921 922 923 924 925
                  ispin,atoms,vacuum,obsolete,input,&
                  enpara,&
                  vr(:,0,:,:),vz,pvac(1,ispin),&
                  svac(1,ispin),&
                  ener(0,1,ispin),sqal(0,1,ispin),&
                  enerlo(1,1,ispin),&
                  sqlo(1,1,ispin))
926
             CALL w_enpara(&
927 928
                  atoms,jspin,input%film,&
                  enpara,16)
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
          END IF

          !--->      check continuity of charge density
          IF (input%cdinf) THEN
             CALL timestart("cdnval: cdninf-stuff")

             WRITE (6,FMT=8210) ispin
8210         FORMAT (/,5x,'check continuity of cdn for spin=',i2)
             IF (input%film .AND. .NOT.oneD%odi%d1) THEN
                !--->             vacuum boundaries
                npd = min(dimension%nspd,25)
                CALL points(xp,npd)
                DO ivac = 1,vacuum%nvac
                   sign = 3. - 2.*ivac
                   DO j = 1,npd
                      xp(3,j) = sign*cell%z1/cell%amat(3,3)
                   END DO
                   CALL checkdop(&
947 948 949 950
                        xp,npd,0,0,ivac,1,ispin,.true.,dimension,atoms,&
                        sphhar,stars,sym,&
                        vacuum,cell,oneD,&
                        qpw,rho,rhtxy,rht)
951 952 953 954 955 956
                END DO
             ELSE IF (oneD%odi%d1) THEN
                !-odim
                npd = min(dimension%nspd,25)
                CALL cylpts(xp,npd,cell%z1)
                CALL checkdop(&
957 958 959 960
                     xp,npd,0,0,ivac,1,ispin,.true.,dimension,atoms,&
                     sphhar,stars,sym,&
                     vacuum,cell,oneD,&
                     qpw,rho,rhtxy,rht)
961 962 963 964 965 966 967
                !+odim
             END IF
             !--->          m.t. boundaries
             nat = 1
             DO n = 1, atoms%ntype
                CALL sphpts(xp,dimension%nspd,atoms%rmt(n),atoms%pos(1,atoms%nat))
                CALL checkdop(&
968 969 970 971
                     xp,dimension%nspd,n,nat,0,-1,ispin,.true.,&
                     dimension,atoms,sphhar,stars,sym,&
                     vacuum,cell,oneD,&
                     qpw,rho,rhtxy,rht)
972 973 974 975 976 977 978 979 980
                nat = nat + atoms%neq(n)
             END DO
             CALL timestop("cdnval: cdninf-stuff")

          END IF
          !+for
          !--->      forces of equ. A8 of Yu et al.
          IF ((input%l_f)) THEN
             CALL timestart("cdnval: force_a8")
981 982
             CALL force_a8(input,atoms,sphhar, ispin, vr,rho,&
                  f_a12,f_a21,f_b4,f_b8,results%force)
983 984
             CALL timestop("cdnval: force_a8")
          END IF
985
          !-for
986
       END DO ! end of loop ispin = jsp_start,jsp_end
987
       CALL closeXMLElement('mtCharges')
988 989 990
    END IF ! end of (mpi%irank==0)
    !+t3e
    !Note: no deallocation anymore, we rely on Fortran08 :-)
991

992 993 994 995 996 997
    IF ((jsp_end.EQ.input%jspins)) THEN
       IF ((banddos%dos.OR.banddos%vacdos).AND.(banddos%ndir/=-2))  CALL juDFT_end("DOS OK",mpi%irank)
       IF (vacuum%nstm.EQ.3)  CALL juDFT_end("VACWAVE OK",mpi%irank)
    END IF
  END SUBROUTINE cdnval
END MODULE m_cdnval