IffGit has a new shared runner for building Docker images in GitLab CI. Visit https://iffgit.fz-juelich.de/examples/ci-docker-in-docker for more details.

orb_comp2.f90 20.1 KB
Newer Older
1
2
MODULE m_orbcomp
CONTAINS
3
  SUBROUTINE orb_comp(jspin,ikpt,nobd,atoms,ne,usdus,eigVecCoeffs,orbcomp)
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
    !***********************************************************************
    !     Calculates an orbital composition of eigen states
    !     
    !                                   Yury  Koroteev  2003-12-24 
    !***********************************************************************
    !                     ABBREVIATIONS
    !          dimentions
    ! nobd                  : in, number of considered bands   
    ! lmd                   : in, (lmaxd + 1)**2
    ! natd                  : in, number of atoms in a film
    ! lmaxd                 : in, max of l    
    ! ntypd                 : in, number of mt-sphere types
    ! nlod                  : in, number of local orbitals in mt-sphere types
    ! llod                  : in, l max for local orbitals in mt-sphere types
    ! ---------------------------------------------------------------------- 
    ! neq(ntypd)            : in, number of mt-spheres of the same type
    ! acof(nobd,0:lmd,natd) : in, a,b  coefficients of linearized 
    ! bcof(nobd,0:lmd,natd) : in, mt-wavefunctions for each band and atom
    ! ccof(-llod:llod,nobd, :
    !     :      nobd,natd) : in, c coefficients for local orbitals
    ! ddn(16,ntypd)         : in,   
    ! uulon(16,ntypd)       : in,   
    ! dulon(16,ntypd)       : in,  
    ! uloulopn(16,ntypd)    : in,   
    ! nlo(ntypd)            : in, 
    ! llo(nlod,ntypd)       : in,
    !-----------------------------------------------------------------------
31
    ! comp(nobd,16,natd)    : out, an orbital composition of  states
32
33
34
35
    ! qmtp(nobd,natd)       : out, the portion of the state in mt-sphere
    !-----------------------------------------------------------------------
    USE m_types
    IMPLICIT NONE
36
37
38
    TYPE(t_atoms),INTENT(IN)        :: atoms
    TYPE(t_usdus),INTENT(IN)        :: usdus
    TYPE(t_eigVecCoeffs),INTENT(IN) :: eigVecCoeffs
39
40
    TYPE(t_orbcomp),INTENT(INOUT)   :: orbcomp

41
    !	..Scalar Argument
42
    INTEGER, INTENT  (IN) :: nobd,ne,jspin,ikpt
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    !	..Local Scalars 
    INTEGER  n,mt,ityp,imt,lm,lo
    INTEGER  l,lme,nate,lmaxe,jspe,nobc,nei
    REAL     sum,cf
    REAL     ddn0,ddn1,ddn2,ddn3,ddn12,ddn22,ddn32
    COMPLEX  ca00,ca01,ca02,ca03,ca04,ca05,ca06,ca07,ca08,ca09
    COMPLEX  ca10,ca11,ca12,ca13,ca14,ca15,ca16,ca17,ca18,ca19
    COMPLEX  ca20,ca21,ca22
    COMPLEX  cb00,cb01,cb02,cb03,cb04,cb05,cb06,cb07,cb08,cb09
    COMPLEX  cb10,cb11,cb12,cb13,cb14,cb15,cb16,cb17,cb18,cb19
    COMPLEX  cb20,cb21,cb22
    COMPLEX  cc00,cc01,cc02,cc03,cc04,cc05,cc06,cc07,cc08,cc09
    COMPLEX  cc10,cc11,cc12,cc13,cc14,cc15,cc16,cc17,cc18,cc19
    COMPLEX  cc20,cc21,cc22
    COMPLEX  ck00,ck01,ck02,ck03,ck04,ck05,ck06,ck07,ck08,ck09
    COMPLEX  ck10,ck11,ck12,ck13,ck14,ck15,ck16,ck17,ck18,ck19
    COMPLEX  ck20,ck21,ck22
    !	..
    !	..Local Arrays 
    REAL     comp(23)
    !	..
    !
    REAL,PARAMETER :: h=0.50, g=0.0625
    !**************************************************** 
    !
    mt=0
    DO   ityp = 1,atoms%ntype
       ddn0 = usdus%ddn(0,ityp,jspin)
       ddn1 = usdus%ddn(1,ityp,jspin) 	 
       ddn2 = usdus%ddn(2,ityp,jspin) 	 
       ddn3 = usdus%ddn(3,ityp,jspin) 
       DO  imt=1,atoms%neq(ityp)
          mt=mt+1
          DO  n=1,ne
             !
79
             ! eigVecCoeffs%acof
80
             !   s-states
81
             ca00 = eigVecCoeffs%acof(n,0,mt,jspin)
82
             !   p-states
83
84
85
             ca01 = eigVecCoeffs%acof(n,1,mt,jspin) - eigVecCoeffs%acof(n,3,mt,jspin)
             ca02 = eigVecCoeffs%acof(n,1,mt,jspin) + eigVecCoeffs%acof(n,3,mt,jspin)
             ca03 = eigVecCoeffs%acof(n,2,mt,jspin)
86
             !   d-states
87
88
89
90
91
             ca04 = eigVecCoeffs%acof(n,4,mt,jspin) - eigVecCoeffs%acof(n,8,mt,jspin)
             ca05 = eigVecCoeffs%acof(n,5,mt,jspin) + eigVecCoeffs%acof(n,7,mt,jspin)
             ca06 = eigVecCoeffs%acof(n,5,mt,jspin) - eigVecCoeffs%acof(n,7,mt,jspin)
             ca07 = eigVecCoeffs%acof(n,4,mt,jspin) + eigVecCoeffs%acof(n,8,mt,jspin)
             ca08 = eigVecCoeffs%acof(n,6,mt,jspin)
92
93
94
             !
             !   f-states: a cubic set (cub) 
             ! 
95
96
97
98
99
100
101
102
103
104
105
             ca09 = ( eigVecCoeffs%acof(n,9,mt,jspin)  - eigVecCoeffs%acof(n,15,mt,jspin) )*SQRT(5.0) -&
                    ( eigVecCoeffs%acof(n,11,mt,jspin) - eigVecCoeffs%acof(n,13,mt,jspin) )*SQRT(3.0)
             ca10 = ( eigVecCoeffs%acof(n,9,mt,jspin)  + eigVecCoeffs%acof(n,15,mt,jspin) )*SQRT(5.0) +&
                    ( eigVecCoeffs%acof(n,11,mt,jspin) + eigVecCoeffs%acof(n,13,mt,jspin) )*SQRT(3.0) 
             ca11 =   eigVecCoeffs%acof(n,12,mt,jspin)
             ca12 = ( eigVecCoeffs%acof(n,9,mt,jspin)  + eigVecCoeffs%acof(n,15,mt,jspin) )*SQRT(3.0) -&
                    ( eigVecCoeffs%acof(n,11,mt,jspin) + eigVecCoeffs%acof(n,13,mt,jspin) )*SQRT(5.0) 
             ca13 =   eigVecCoeffs%acof(n,10,mt,jspin) + eigVecCoeffs%acof(n,14,mt,jspin)
             ca14 = ( eigVecCoeffs%acof(n,9,mt,jspin)  - eigVecCoeffs%acof(n,15,mt,jspin) )*SQRT(3.0) +&
                    ( eigVecCoeffs%acof(n,11,mt,jspin) - eigVecCoeffs%acof(n,13,mt,jspin) )*SQRT(5.0) 
             ca15 =   eigVecCoeffs%acof(n,10,mt,jspin) - eigVecCoeffs%acof(n,14,mt,jspin) 
106
107
108
             !
             !   f-states:	a low symmetry set (lss)
             !
109
110
111
112
113
114
115
             ca16 =  eigVecCoeffs%acof(n,11,mt,jspin) - eigVecCoeffs%acof(n,13,mt,jspin)
             ca17 =  eigVecCoeffs%acof(n,11,mt,jspin) + eigVecCoeffs%acof(n,13,mt,jspin)
             ca18 =  eigVecCoeffs%acof(n,12,mt,jspin)
             ca19 =  eigVecCoeffs%acof(n,10,mt,jspin) - eigVecCoeffs%acof(n,14,mt,jspin)
             ca20 =  eigVecCoeffs%acof(n,10,mt,jspin) + eigVecCoeffs%acof(n,14,mt,jspin)
             ca21 =  eigVecCoeffs%acof(n,9,mt,jspin)  - eigVecCoeffs%acof(n,15,mt,jspin)
             ca22 =  eigVecCoeffs%acof(n,9,mt,jspin)  + eigVecCoeffs%acof(n,15,mt,jspin)
116
             !
117
             ! eigVecCoeffs%bcof
118
             !   s-states
119
             cb00 =  eigVecCoeffs%bcof(n,0,mt,jspin)
120
             !   p-states
121
122
123
             cb01 =  eigVecCoeffs%bcof(n,1,mt,jspin) - eigVecCoeffs%bcof(n,3,mt,jspin) 
             cb02 =  eigVecCoeffs%bcof(n,1,mt,jspin) + eigVecCoeffs%bcof(n,3,mt,jspin) 
             cb03 =  eigVecCoeffs%bcof(n,2,mt,jspin)
124
             !   d-states
125
126
127
128
129
             cb04 =  eigVecCoeffs%bcof(n,4,mt,jspin) - eigVecCoeffs%bcof(n,8,mt,jspin) 
             cb05 =  eigVecCoeffs%bcof(n,5,mt,jspin) + eigVecCoeffs%bcof(n,7,mt,jspin) 
             cb06 =  eigVecCoeffs%bcof(n,5,mt,jspin) - eigVecCoeffs%bcof(n,7,mt,jspin) 
             cb07 =  eigVecCoeffs%bcof(n,4,mt,jspin) + eigVecCoeffs%bcof(n,8,mt,jspin) 
             cb08 =  eigVecCoeffs%bcof(n,6,mt,jspin)
130
131
132
             !
             !   f-states: a cubic set (cub)
             !
133
134
135
136
137
138
139
140
141
142
143
             cb09 = ( eigVecCoeffs%bcof(n,9,mt,jspin)  - eigVecCoeffs%bcof(n,15,mt,jspin) )*SQRT(5.0) -&
                    ( eigVecCoeffs%bcof(n,11,mt,jspin) - eigVecCoeffs%bcof(n,13,mt,jspin) )*SQRT(3.0)
             cb10 = ( eigVecCoeffs%bcof(n,9,mt,jspin)  + eigVecCoeffs%bcof(n,15,mt,jspin) )*SQRT(5.0) +&
                    ( eigVecCoeffs%bcof(n,11,mt,jspin) + eigVecCoeffs%bcof(n,13,mt,jspin) )*SQRT(3.0) 
             cb11 =   eigVecCoeffs%bcof(n,12,mt,jspin)
             cb12 = ( eigVecCoeffs%bcof(n,9,mt,jspin)  + eigVecCoeffs%bcof(n,15,mt,jspin) )*SQRT(3.0) -&
                    ( eigVecCoeffs%bcof(n,11,mt,jspin) + eigVecCoeffs%bcof(n,13,mt,jspin) )*SQRT(5.0) 
             cb13 =   eigVecCoeffs%bcof(n,10,mt,jspin) + eigVecCoeffs%bcof(n,14,mt,jspin)
             cb14 = ( eigVecCoeffs%bcof(n,9,mt,jspin)  - eigVecCoeffs%bcof(n,15,mt,jspin) )*SQRT(3.0) +&
                    ( eigVecCoeffs%bcof(n,11,mt,jspin) - eigVecCoeffs%bcof(n,13,mt,jspin) )*SQRT(5.0)
             cb15 =   eigVecCoeffs%bcof(n,10,mt,jspin) - eigVecCoeffs%bcof(n,14,mt,jspin) 
144
145
146
             !
             !   f-states:	a low symmetry set (lss)
             !
147
148
149
150
151
152
153
             cb16 =  eigVecCoeffs%bcof(n,11,mt,jspin) - eigVecCoeffs%bcof(n,13,mt,jspin)
             cb17 =  eigVecCoeffs%bcof(n,11,mt,jspin) + eigVecCoeffs%bcof(n,13,mt,jspin)
             cb18 =  eigVecCoeffs%bcof(n,12,mt,jspin)
             cb19 =  eigVecCoeffs%bcof(n,10,mt,jspin) - eigVecCoeffs%bcof(n,14,mt,jspin)
             cb20 =  eigVecCoeffs%bcof(n,10,mt,jspin) + eigVecCoeffs%bcof(n,14,mt,jspin)
             cb21 =  eigVecCoeffs%bcof(n,9,mt,jspin)  - eigVecCoeffs%bcof(n,15,mt,jspin)
             cb22 =  eigVecCoeffs%bcof(n,9,mt,jspin)  + eigVecCoeffs%bcof(n,15,mt,jspin)
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
             !------------------------------------------------------------------
             !  s
             comp(1)  =   ca00*CONJG(ca00) + cb00*CONJG(cb00)*ddn0 
             !  p
             comp(2)  = ( ca01*CONJG(ca01) + cb01*CONJG(cb01)*ddn1 )*h
             comp(3)  = ( ca02*CONJG(ca02) + cb02*CONJG(cb02)*ddn1 )*h
             comp(4)  =   ca03*CONJG(ca03) + cb03*CONJG(cb03)*ddn1 
             !  d
             comp(5)  = ( ca04*CONJG(ca04) + cb04*CONJG(cb04)*ddn2 )*h
             comp(6)  = ( ca05*CONJG(ca05) + cb05*CONJG(cb05)*ddn2 )*h
             comp(7)  = ( ca06*CONJG(ca06) + cb06*CONJG(cb06)*ddn2 )*h
             comp(8)  = ( ca07*CONJG(ca07) + cb07*CONJG(cb07)*ddn2 )*h
             comp(9)  =   ca08*CONJG(ca08) + cb08*CONJG(cb08)*ddn2 
             !  f: a cubic set
             comp(10) = ( ca09*CONJG(ca09) + cb09*CONJG(cb09)*ddn3 )*g       
             comp(11) = ( ca10*CONJG(ca10) + cb10*CONJG(cb10)*ddn3 )*g
             comp(12) =   ca11*CONJG(ca11) + cb11*CONJG(cb11)*ddn3 
             comp(13) = ( ca12*CONJG(ca12) + cb12*CONJG(cb12)*ddn3 )*g
             comp(14) = ( ca13*CONJG(ca13) + cb13*CONJG(cb13)*ddn3 )*h
             comp(15) = ( ca14*CONJG(ca14) + cb14*CONJG(cb14)*ddn3 )*g
             comp(16) = ( ca15*CONJG(ca15) + cb15*CONJG(cb15)*ddn3 )*h
             !  f: a low symmetry set
             comp(17) = ( ca16*CONJG(ca16) + cb16*CONJG(cb16)*ddn3 )*h    
             comp(18) = ( ca17*CONJG(ca17) + cb17*CONJG(cb17)*ddn3 )*h
             comp(19) =   ca18*CONJG(ca18) + cb18*CONJG(cb18)*ddn3 
             comp(20) = ( ca19*CONJG(ca19) + cb19*CONJG(cb19)*ddn3 )*h
             comp(21) = ( ca20*CONJG(ca20) + cb20*CONJG(cb20)*ddn3 )*h
             comp(22) = ( ca21*CONJG(ca21) + cb21*CONJG(cb21)*ddn3 )*h
             comp(23) = ( ca22*CONJG(ca22) + cb22*CONJG(cb22)*ddn3 )*h
             !--------------------------------------------------------------------
             ! ccof   ( contributions from local orbitals )
             !
             DO  lo = 1,atoms%nlo(ityp)
                l = atoms%llo(lo,ityp)
                ! lo-s
                IF ( l.EQ.0 )  THEN
190
	           cc00 = eigVecCoeffs%ccof(0,n,lo,mt,jspin)
191
192
193
194
195
196
197
198
199
                   ck00 = CONJG(cc00)

                   comp(1)  =  comp(1)  +&
                        ( ca00*ck00 + cc00*CONJG(ca00) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb00*ck00 + cc00*CONJG(cb00) )*usdus%dulon(lo,ityp,jspin) + cc00*ck00*usdus%uloulopn(lo,lo,ityp,jspin) 
	           CYCLE
                ENDIF
                ! lo-p
                IF ( l.EQ.1 )  THEN
200
201
202
	           cc01 = eigVecCoeffs%ccof(-1,n,lo,mt,jspin) - eigVecCoeffs%ccof(1,n,lo,mt,jspin)
	           cc02 = eigVecCoeffs%ccof(-1,n,lo,mt,jspin) + eigVecCoeffs%ccof(1,n,lo,mt,jspin)
	           cc03 = eigVecCoeffs%ccof( 0,n,lo,mt,jspin)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

                   ck01 = CONJG(cc01) 
                   ck02 = CONJG(cc02) 
                   ck03 = CONJG(cc03)
                   !
                   comp(2) = comp(2)  + (( ca01*ck01 + cc01*CONJG(ca01) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb01*ck01 + cc01*CONJG(cb01) )*usdus%dulon(lo,ityp,jspin) + cc01*ck01*usdus%uloulopn(lo,lo,ityp,jspin) )*h 	
	           comp(3) = comp(3)  + (( ca02*ck02 + cc02*CONJG(ca02) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb02*ck02 + cc02*CONJG(cb02) )*usdus%dulon(lo,ityp,jspin) + cc02*ck02*usdus%uloulopn(lo,lo,ityp,jspin) )*h 
                   comp(4) = comp(4)  + ( ca03*ck03 + cc03*CONJG(ca03) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb03*ck03 + cc03*CONJG(cb03) )*usdus%dulon(lo,ityp,jspin) + cc03*ck03*usdus%uloulopn(lo,lo,ityp,jspin) 
	           CYCLE
                ENDIF
                ! lo-d
                IF ( l.EQ.2 )  THEN
218
219
220
221
222
	           cc04 = eigVecCoeffs%ccof(-2,n,lo,mt,jspin) - eigVecCoeffs%ccof(2,n,lo,mt,jspin)
	           cc05 = eigVecCoeffs%ccof(-1,n,lo,mt,jspin) + eigVecCoeffs%ccof(1,n,lo,mt,jspin)
	           cc06 = eigVecCoeffs%ccof(-1,n,lo,mt,jspin) - eigVecCoeffs%ccof(1,n,lo,mt,jspin)
	           cc07 = eigVecCoeffs%ccof(-2,n,lo,mt,jspin) + eigVecCoeffs%ccof(2,n,lo,mt,jspin)
	           cc08 = eigVecCoeffs%ccof( 0,n,lo,mt,jspin)
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

                   ck04 = CONJG(cc04)
                   ck05 = CONJG(cc05)
                   ck06 = CONJG(cc06)
                   ck07 = CONJG(cc07)
                   ck08 = CONJG(cc08)

                   comp(5) = comp(5)  + (( ca04*ck04 + cc04*CONJG(ca04) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb04*ck04 + cc04*CONJG(cb04) )*usdus%dulon(lo,ityp,jspin) + cc04*ck04*usdus%uloulopn(lo,lo,ityp,jspin) )*h 	
	           comp(6) = comp(6)  + (( ca05*ck05 + cc05*CONJG(ca05) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb05*ck05 + cc05*CONJG(cb05) )*usdus%dulon(lo,ityp,jspin) + cc05*ck05*usdus%uloulopn(lo,lo,ityp,jspin) )*h 
	           comp(7) = comp(7)  + (( ca06*ck06 + cc06*CONJG(ca06) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb06*ck06 + cc06*CONJG(cb06) )*usdus%dulon(lo,ityp,jspin) + cc06*ck06*usdus%uloulopn(lo,lo,ityp,jspin) )*h
     		   comp(8) = comp(8)  + (( ca07*ck07 + cc07*CONJG(ca07) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb07*ck07 + cc07*CONJG(cb07) )*usdus%dulon(lo,ityp,jspin) + cc07*ck07*usdus%uloulopn(lo,lo,ityp,jspin) )*h 	
	           comp(9) = comp(9)  + ( ca08*ck08 + cc08*CONJG(ca08) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb08*ck08 + cc08*CONJG(cb08) )*usdus%dulon(lo,ityp,jspin) + cc08*ck08*usdus%uloulopn(lo,lo,ityp,jspin)  
                   CYCLE				
                ENDIF
                ! lo-f
                IF ( l.EQ.3 )  THEN
                   !
                   !  a cubic set (cub)
                   !
247
248
249
250
251
252
253
254
255
256
257
	           cc09 = ( eigVecCoeffs%ccof(-3,n,lo,mt,jspin) - eigVecCoeffs%ccof(3,n,lo,mt,jspin) )*SQRT(5.0) -&
                          ( eigVecCoeffs%ccof(-1,n,lo,mt,jspin) - eigVecCoeffs%ccof(1,n,lo,mt,jspin) )*SQRT(3.0) 
	           cc10 = ( eigVecCoeffs%ccof(-3,n,lo,mt,jspin) + eigVecCoeffs%ccof(3,n,lo,mt,jspin) )*SQRT(5.0) +&
                          ( eigVecCoeffs%ccof(-1,n,lo,mt,jspin) + eigVecCoeffs%ccof(1,n,lo,mt,jspin) )*SQRT(3.0) 
	           cc11 =   eigVecCoeffs%ccof( 0,n,lo,mt,jspin)
	           cc12 = ( eigVecCoeffs%ccof(-3,n,lo,mt,jspin) + eigVecCoeffs%ccof(3,n,lo,mt,jspin) )*SQRT(3.0) -&
                          ( eigVecCoeffs%ccof(-1,n,lo,mt,jspin) + eigVecCoeffs%ccof(1,n,lo,mt,jspin) )*SQRT(5.0) 
	           cc13 =   eigVecCoeffs%ccof(-2,n,lo,mt,jspin) + eigVecCoeffs%ccof(2,n,lo,mt,jspin) 
	           cc14 = ( eigVecCoeffs%ccof(-3,n,lo,mt,jspin) - eigVecCoeffs%ccof(3,n,lo,mt,jspin) )*SQRT(3.0) +&
                          ( eigVecCoeffs%ccof(-1,n,lo,mt,jspin) - eigVecCoeffs%ccof(1,n,lo,mt,jspin) )*SQRT(5.0)
	           cc15 =   eigVecCoeffs%ccof(-2,n,lo,mt,jspin) - eigVecCoeffs%ccof(2,n,lo,mt,jspin)
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
            !
                   ck09 = CONJG(cc09)
                   ck10 = CONJG(cc10)
                   ck11 = CONJG(cc11)
                   ck12 = CONJG(cc12)
                   ck13 = CONJG(cc13)
                   ck14 = CONJG(cc14)
                   ck15 = CONJG(cc15)
                   !
                   comp(10) = comp(10)  + (( ca09*ck09 + cc09*CONJG(ca09) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb09*ck09 + cc09*CONJG(cb09) )*usdus%dulon(lo,ityp,jspin) + cc09*ck09*usdus%uloulopn(lo,lo,ityp,jspin) )*g 	
	           comp(11) = comp(11)  + (( ca10*ck10 + cc10*CONJG(ca10) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb10*ck10 + cc10*CONJG(cb10) )*usdus%dulon(lo,ityp,jspin) + cc10*ck10*usdus%uloulopn(lo,lo,ityp,jspin) )*g 
	           comp(12) = comp(12)  + ( ca11*ck11 + cc11*CONJG(ca11) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb11*ck11 + cc11*CONJG(cb11) )*usdus%dulon(lo,ityp,jspin) + cc11*ck11*usdus%uloulopn(lo,lo,ityp,jspin) 
	           comp(13) = comp(13)  + (( ca12*ck12 + cc12*CONJG(ca12) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb12*ck12 + cc12*CONJG(cb12) )*usdus%dulon(lo,ityp,jspin) + cc12*ck12*usdus%uloulopn(lo,lo,ityp,jspin) )*g
	           comp(14) = comp(14)  + (( ca13*ck13 + cc13*CONJG(ca13) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb13*ck13 + cc13*CONJG(cb13) )*usdus%dulon(lo,ityp,jspin) + cc13*ck13*usdus%uloulopn(lo,lo,ityp,jspin) )*h 
	           comp(15) = comp(15)  + (( ca14*ck14 + cc14*CONJG(ca14) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb14*ck14 + cc14*CONJG(cb14) )*usdus%dulon(lo,ityp,jspin) + cc14*ck14*usdus%uloulopn(lo,lo,ityp,jspin) )*g
     		   comp(16) = comp(16)  + (( ca15*ck15 + cc15*CONJG(ca15) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb15*ck15 + cc15*CONJG(cb15) )*usdus%dulon(lo,ityp,jspin) + cc15*ck15*usdus%uloulopn(lo,lo,ityp,jspin) )*h
          !
          !  a low symmetry set (lss)
          !
284
285
286
287
288
289
290
	           cc16 = eigVecCoeffs%ccof(-1,n,lo,mt,jspin) - eigVecCoeffs%ccof(1,n,lo,mt,jspin)
	           cc17 = eigVecCoeffs%ccof(-1,n,lo,mt,jspin) + eigVecCoeffs%ccof(1,n,lo,mt,jspin)
	           cc18 = eigVecCoeffs%ccof( 0,n,lo,mt,jspin)
	           cc19 = eigVecCoeffs%ccof(-2,n,lo,mt,jspin) - eigVecCoeffs%ccof(2,n,lo,mt,jspin)
	           cc20 = eigVecCoeffs%ccof(-2,n,lo,mt,jspin) + eigVecCoeffs%ccof(2,n,lo,mt,jspin)
	           cc21 = eigVecCoeffs%ccof(-3,n,lo,mt,jspin) - eigVecCoeffs%ccof(3,n,lo,mt,jspin)
	           cc22 = eigVecCoeffs%ccof(-3,n,lo,mt,jspin) + eigVecCoeffs%ccof(3,n,lo,mt,jspin)
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
            !
                   ck16 = CONJG(cc16)
                   ck17 = CONJG(cc17)
                   ck18 = CONJG(cc18)
                   ck19 = CONJG(cc19)
                   ck20 = CONJG(cc20)
                   ck21 = CONJG(cc21)
                   ck22 = CONJG(cc22)
                   !
	           comp(17) = comp(17)  + (( ca16*ck16 + cc16*CONJG(ca16) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb16*ck16 + cc16*CONJG(cb16) )*usdus%dulon(lo,ityp,jspin) + cc16*ck16*usdus%uloulopn(lo,lo,ityp,jspin) )*h 
	           comp(18) = comp(18)  + (( ca17*ck17 + cc17*CONJG(ca17) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb17*ck17 + cc17*CONJG(cb17) )*usdus%dulon(lo,ityp,jspin) + cc17*ck17*usdus%uloulopn(lo,lo,ityp,jspin) )*h
	           comp(19) = comp(19)  + ( ca18*ck18 + cc18*CONJG(ca18) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb18*ck18 + cc18*CONJG(cb18) )*usdus%dulon(lo,ityp,jspin) + cc18*ck18*usdus%uloulopn(lo,lo,ityp,jspin)
	           comp(20) = comp(20)  + (( ca19*ck19 + cc19*CONJG(ca19) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb19*ck19 + cc19*CONJG(cb19) )*usdus%dulon(lo,ityp,jspin) + cc19*ck19*usdus%uloulopn(lo,lo,ityp,jspin) )*h
     		   comp(21) = comp(21)  + (( ca20*ck20 + cc20*CONJG(ca20) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb20*ck20 + cc20*CONJG(cb20) )*usdus%dulon(lo,ityp,jspin) + cc20*ck20*usdus%uloulopn(lo,lo,ityp,jspin) )*h 
	           comp(22) = comp(22)  + (( ca21*ck21 + cc21*CONJG(ca21) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb21*ck21 + cc21*CONJG(cb21) )*usdus%dulon(lo,ityp,jspin) + cc21*ck21*usdus%uloulopn(lo,lo,ityp,jspin) )*h
	           comp(23) = comp(23)  + (( ca22*ck22 + cc22*CONJG(ca22) )*usdus%uulon(lo,ityp,jspin) +&
                        ( cb22*ck22 + cc22*CONJG(cb22) )*usdus%dulon(lo,ityp,jspin) + cc22*ck22*usdus%uloulopn(lo,lo,ityp,jspin) )*h
                ENDIF
             ENDDO
             !-------------------------------------------------------------------
             !    calculate an orbital cnomposition in percets
             !
             sum = 0.0
             DO   lm=1,16
                sum = sum + comp(lm)
             ENDDO
             cf = 100.0/sum 
324
325
             orbcomp%qmtp(n,mt,ikpt,jspin) = sum*100.0         
             orbcomp%comp(n,:,mt,ikpt,jspin) = comp(:)*cf
326
327
328
329
330
331
332
             !----------------------------------------------------
          ENDDO ! bands (n)
       ENDDO    ! atoms (imt) -> mt (=atoms%nat)
    ENDDO       ! types (ityp)
    !
  END SUBROUTINE orb_comp
END MODULE m_orbcomp