outcdn.f90 6.75 KB
Newer Older
1 2 3 4 5 6 7
      MODULE m_outcdn
      use m_constants
      USE m_types
!     ********************************************************
!     calculates the charge density at given point p(i=1,3)
!     ********************************************************
      CONTAINS
8 9 10 11 12 13 14
      !SUBROUTINE outcdn(&
     !&                  p,n,na,iv,iflag,jsp,l_potential,stars,&
     !&                  vacuum,sphhar,atoms,sym,cell,oneD,&
     !&                  qpw,rhtxy,rho,rht,&
     !&                  xdnout)
 SUBROUTINE outcdn(&
     &                  p,n,na,iv,iflag,jsp,l_potential,stars,&
15
     &                  vacuum,sphhar,atoms,sym,cell,oneD,&
16
     &                  potDen,&
17
     &                  xdnout)
18
!
19
      use m_constants
20 21 22 23 24 25 26 27 28 29 30 31
      USE m_angle
      USE m_starf, ONLY : starf2,starf3
      USE m_ylm
      IMPLICIT NONE
!
      TYPE(t_stars),INTENT(IN)     :: stars
      TYPE(t_vacuum),INTENT(IN)    :: vacuum
      TYPE(t_sphhar),INTENT(IN)    :: sphhar
      TYPE(t_atoms),INTENT(IN)     :: atoms
      TYPE(t_sym),INTENT(IN)       :: sym
      TYPE(t_cell),INTENT(IN)      :: cell
      TYPE(t_oneD),INTENT(IN)      :: oneD
32
      TYPE(t_potden),INTENT(IN)    :: potDen
33
  
34 35 36 37 38 39 40 41

!     .. Scalar Arguments ..
      INTEGER, INTENT (IN) :: iflag,jsp,n,na,iv
      REAL,    INTENT (OUT) :: xdnout
!-odim
!+odim
!     ..
!     .. Array Arguments ..
42

43 44 45 46 47
      REAL,    INTENT (INOUT) :: p(3)
!     ..
!     .. Local Scalars ..
      REAL delta,s,sx,xd1,xd2,xx1,xx2,rrr,phi
      INTEGER i,j,jp3,jr,k,lh,mem,nd,nopa,ivac,ll1,lm ,gzi,m
48

49
!     .. Logical Argument  ..
50 51
      LOGICAL, INTENT (IN) :: l_potential 
      
52 53
!     ..
!     .. Local Arrays ..
54
      COMPLEX sf2(stars%ng2),sf3(stars%ng3),ylm((atoms%lmaxd+1)**2)
55
      REAL rcc(3),x(3)
56 57
      
      !Temp. Variable Assignment TODO: Can be removed as soon as the potDen datatype has been implemented in the whole file.
58 59 60 61
      !qpw=potDen%pw
      !rhtxz=potDen%vacxy
      !rho=potDen%mt
      !rht=potDen%vacz
62
       
63

64 65 66 67 68 69 70 71 72 73 74
      ivac=iv
     
      if (iflag.ne.1) THEN
      if (iflag.ne.0) THEN
!     ---> interstitial part
      !CALL cotra1(p(1),rcc,cell%bmat)
      rcc=matmul(cell%bmat,p)/tpi_const
      CALL starf3(&
     &            sym%nop,stars%ng3,sym%symor,stars%kv3,sym%mrot,sym%tau,rcc,sym%invtab,&
     &            sf3)
!
75
      xdnout=dot_product(real(potDen%pw(:,jsp)*sf3(:)),stars%nstr)
76 77 78 79 80 81 82 83 84 85 86 87 88
      RETURN
!     ---> vacuum part
      ENDIF
      xdnout = 0.
!-odim
      IF (oneD%odi%d1) THEN
         rrr = sqrt( p(1)**2 + p(2)**2 )
         phi = angle(p(1),p(2))
         jp3 = (rrr-cell%z1)/vacuum%delz
         delta = (rrr-cell%z1)/vacuum%delz - jp3
!*     we count 0 as point 1
         jp3 = jp3 + 1
         IF (jp3.LT.vacuum%nmz) THEN
89 90
            xdnout = potDen%vacz(jp3,ivac,jsp) + delta*&
     &           (potDen%vacz(jp3+1,ivac,jsp)-potDen%vacz(jp3,ivac,jsp))
91 92 93 94 95 96
            IF (jp3.LT.vacuum%nmzxy) THEN
               xx1 = 0.
               xx2 = 0.
               DO  k = 2,oneD%odi%nq2
                  m = oneD%odi%kv(2,k)
                  gzi = oneD%odi%kv(1,k)
97
                  xx1 = xx1 + real(potDen%vacxy(jp3,k-1,ivac,jsp)*&
98
     &                 exp(ImagUnit*m*phi)*exp(ImagUnit*gzi*cell%bmat(3,3)*p(3)))*&
99
     &                 oneD%odi%nst2(k)
100
                  xx2 = xx2 + real(potDen%vacxy(jp3+1,k-1,ivac,jsp)*&
101
     &                 exp(ImagUnit*m*phi)*exp(ImagUnit*gzi*cell%bmat(3,3)*p(3)))*&
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
     &                 oneD%odi%nst2(k)
            ENDDO
               xdnout = xdnout + xx1 + delta* (xx2-xx1)
            END IF
         ELSE
            xdnout = 0.0
         END IF

      ELSE
!+odim      
         IF (p(3).LT.0.0) THEN
            ivac = vacuum%nvac
            IF (sym%invs) THEN
               p(1:2) = -p(1:2)
            END IF
            p(3) = abs(p(3))
         END IF
         !CALL cotra1(p,rcc,cell%bmat)
         rcc=matmul(cell%bmat,p)/tpi_const
         CALL starf2(&
     &            sym%nop2,stars%ng2,stars%kv3,sym%mrot,sym%symor,sym%tau,rcc,sym%invtab,&
     &            sf2)
!
         jp3 = (p(3)-cell%z1)/vacuum%delz
         delta = (p(3)-cell%z1)/vacuum%delz - jp3
!*     we count 0 as point 1
         jp3 = jp3 + 1
         IF (jp3.LT.vacuum%nmz) THEN
130 131
             xdnout = potDen%vacz(jp3,ivac,jsp) + delta*&
     &               (potDen%vacz(jp3+1,ivac,jsp)-potDen%vacz(jp3,ivac,jsp))
132 133 134 135
            IF (jp3.LT.vacuum%nmzxy) THEN
               xx1 = 0.
               xx2 = 0.
              DO  k = 2,stars%ng2
136 137
               xx1 = xx1 + real(potDen%vacxy(jp3,k-1,ivac,jsp)*sf2(k))*stars%nstr2(k)
               xx2 = xx2 + real(potDen%vacxy(jp3+1,k-1,ivac,jsp)*sf2(k))*&
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
     &               stars%nstr2(k)
   enddo
              xdnout = xdnout + xx1 + delta* (xx2-xx1)
            END IF
         ELSE
            xdnout = 0.0
         END IF
!----> vacuum finishes
      ENDIF

      RETURN
      ENDIF
!     ----> m.t. part
      
      nd = atoms%ntypsy(na)
      nopa = atoms%ngopr(na)
      IF (oneD%odi%d1) nopa = oneD%ods%ngopr(na)
      sx = 0.0
      DO  i = 1,3
         x(i) = p(i) - atoms%pos(i,na)
         sx = sx + x(i)*x(i)
   enddo
      sx = sqrt(sx)
      IF (nopa.NE.1) THEN
!... switch to internal units
         !CALL cotra1(x,rcc,cell%bmat)
         rcc=matmul(cell%bmat,x)/tpi_const
!... rotate into representative
         DO  i = 1,3
            p(i) = 0.
            DO  j = 1,3
              IF (.NOT.oneD%odi%d1) THEN
               p(i) = p(i) + sym%mrot(i,j,nopa)*rcc(j)
              ELSE
               p(i) = p(i) + oneD%ods%mrot(i,j,nopa)*rcc(j)
              END IF
   enddo
   enddo
!... switch back to cartesian units
         !CALL cotra0(p,x,cell%amat)
         x=matmul(cell%amat,p)
      END IF
      DO j = atoms%jri(n),2,-1
         IF (sx.GE.atoms%rmsh(j,n)) EXIT
      ENDDO
      jr = j
      CALL ylm4(&
     &          atoms%lmax(n),x,&
     &          ylm)
      xd1 = 0.0
      xd2 = 0.0
      DO  lh = 0, sphhar%nlh(nd)
         ll1 = sphhar%llh(lh,nd) * ( sphhar%llh(lh,nd) + 1 ) + 1
         s = 0.0
         DO mem = 1,sphhar%nmem(lh,nd)
           lm = ll1 + sphhar%mlh(mem,lh,nd)
           s = s + real( sphhar%clnu(mem,lh,nd)*ylm(lm) )
         ENDDO
196
         IF (l_potential) THEN
197
            xd1 = xd1 + potDen%mt(jr,lh,n,jsp)*s
198
         ELSE
199
            xd1 = xd1 + potDen%mt(jr,lh,n,jsp)*s/ (atoms%rmsh(jr,n)*atoms%rmsh(jr,n))
200 201
         END IF
         IF (jr.EQ.atoms%jri(n)) CYCLE
202
         IF (l_potential) THEN
203
            xd2 = xd2 + potDen%mt(jr+1,lh,n,jsp)*s
204
         ELSE
205
            xd2 = xd2 + potDen%mt(jr+1,lh,n,jsp)*s/&
206 207 208 209 210 211 212 213 214 215 216 217 218 219
     &            (atoms%rmsh(jr+1,n)*atoms%rmsh(jr+1,n))
         END IF
   ENDDO
      IF (jr.EQ.atoms%jri(n)) THEN
         xdnout = xd1
      ELSE
         xdnout = xd1 + (xd2-xd1) *&
     &                  (sx-atoms%rmsh(jr,n)) / (atoms%rmsh(jr+1,n)-atoms%rmsh(jr,n))
      END IF
 8000 FORMAT (2f10.6)
!
      RETURN
      END SUBROUTINE outcdn
      END MODULE m_outcdn