hsmt_spinor.F90 3.81 KB
Newer Older
1 2 3 4 5 6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7 8 9 10 11 12
MODULE m_hsmt_spinor
  IMPLICIT NONE
CONTAINS

  !The spinors are calculated both in hssphn_sph & hssphn_nonsph, hence this is a
  !common subroutine
Daniel Wortmann's avatar
Daniel Wortmann committed
13
  SUBROUTINE hsmt_spinor(isp,n,noco,chi_mat)
14 15 16
    USE m_types
    IMPLICIT NONE

Daniel Wortmann's avatar
Daniel Wortmann committed
17 18 19 20 21 22 23
    TYPE(t_noco),INTENT(IN)      :: noco
    INTEGER,INTENT(IN)           :: isp, n
    COMPLEX,INTENT(OUT)          :: chi_mat(2,2)
   
    INTEGER           :: isp1,isp2
    COMPLEX,PARAMETER :: ci=CMPLX(0.0,1.0)
    COMPLEX           :: chi(2,2)
24 25 26 27 28 29 30 31 32

    !--->       set up the spinors of this atom within global
    !--->       spin-coordinateframe
    chi(1,1) =  exp(-ci*noco%alph(n)/2)*cos(noco%beta(n)/2)
    chi(1,2) = -exp(-ci*noco%alph(n)/2)*sin(noco%beta(n)/2)
    chi(2,1) =  exp(ci*noco%alph(n)/2)*sin(noco%beta(n)/2)
    chi(2,2) =  exp(ci*noco%alph(n)/2)*cos(noco%beta(n)/2)
    !--->       and determine the prefactors for the Hamitonian- and
    !--->       overlapp-matrix elements
Daniel Wortmann's avatar
Daniel Wortmann committed
33 34 35 36 37 38 39 40
    chi_mat(1,1) = chi(1,isp)*CONJG(chi(1,isp))
    chi_mat(2,1) = chi(2,isp)*CONJG(chi(1,isp))
    chi_mat(2,2) = chi(2,isp)*CONJG(chi(2,isp))
    chi_mat(1,2) = chi(1,isp)*CONJG(chi(2,isp))

    
    
  END SUBROUTINE hsmt_spinor
41

Daniel Wortmann's avatar
Daniel Wortmann committed
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  SUBROUTINE hsmt_spinor_soc(n,ki,noco,lapw,chi_so,angso)
    USE m_types
    IMPLICIT NONE
    TYPE(t_noco),INTENT(IN)      :: noco
    TYPE(t_lapw),INTENT(IN)      :: lapw
    INTEGER,INTENT(IN)           :: n,ki
    COMPLEX,INTENT(out)          :: chi_so(:,:,:,:)
    COMPLEX,INTENT(out),OPTIONAL :: angso(:,:,:)

    REAL     :: cross_k(3)
    INTEGER  :: j1,j2,kj
    COMPLEX  :: isigma(2,2,3)
    COMPLEX  :: chi(2,2)
    COMPLEX  :: isigma_x(2,2),isigma_y(2,2),isigma_z(2,2)
    COMPLEX,PARAMETER :: ci=CMPLX(0.0,1.0)
    
    !     isigma= -i * sigma, where sigma is Pauli matrix
    isigma=CMPLX(0.0,0.0)
    isigma(1,2,1)=CMPLX(0.0,-1.0)
    isigma(2,1,1)=CMPLX(0.0,-1.0)
    isigma(1,2,2)=CMPLX(-1.0,0.0)
    isigma(2,1,2)=CMPLX(1.0,0.0)
    isigma(1,1,3)=CMPLX(0.0,-1.0)
    isigma(2,2,3)=CMPLX(0.0,1.0)
    
    !--->       set up the spinors of this atom within global
    !--->       spin-coordinateframe
    chi(1,1) =  exp(-ci*noco%alph(n)/2)*cos(noco%beta(n)/2)
    chi(1,2) = -exp(-ci*noco%alph(n)/2)*sin(noco%beta(n)/2)
    chi(2,1) =  exp(ci*noco%alph(n)/2)*sin(noco%beta(n)/2)
    chi(2,2) =  EXP(ci*noco%alph(n)/2)*COS(noco%beta(n)/2)

    isigma_x=MATMUL(CONJG(TRANSPOSE(chi)), MATMUL(isigma(:,:,1),chi))
    isigma_y=MATMUL(CONJG(TRANSPOSE(chi)), MATMUL(isigma(:,:,2),chi))
    isigma_z=MATMUL(CONJG(TRANSPOSE(chi)), MATMUL(isigma(:,:,3),chi))
    DO j1=1,2
       DO j2=1,2
          chi_so(1,1,j1,j2)=chi(1,j1)*CONJG(chi(1,j2))
          chi_so(2,1,j1,j2)=chi(2,j1)*CONJG(chi(1,j2))
          chi_so(2,2,j1,j2)=chi(2,j1)*CONJG(chi(2,j2))
          chi_so(1,2,j1,j2)=chi(1,j1)*CONJG(chi(2,j2))
       ENDDO
    ENDDO
    IF (.not.present(angso)) RETURN !only chis are needed 
  !In the first variation SOC case the off-diagonal spinors are needed
       DO kj = 1,ki
          cross_k(1)=lapw%gk(2,ki,1)*lapw%gk(3,kj,1)- lapw%gk(3,ki,1)*lapw%gk(2,kj,1)
          cross_k(2)=lapw%gk(3,ki,1)*lapw%gk(1,kj,1)- lapw%gk(1,ki,1)*lapw%gk(3,kj,1)
          cross_k(3)=lapw%gk(1,ki,1)*lapw%gk(2,kj,1)- lapw%gk(2,ki,1)*lapw%gk(1,kj,1)
          DO j1=1,2
             DO j2=1,2
                angso(kj,j1,j2)= isigma_x(j1,j2)*cross_k(1)+&
                     isigma_y(j1,j2)*cross_k(2)+ isigma_z(j1,j2)*cross_k(3)
95 96 97
             ENDDO
          ENDDO
       ENDDO
Daniel Wortmann's avatar
Daniel Wortmann committed
98
     END SUBROUTINE hsmt_spinor_soc
99

Daniel Wortmann's avatar
Daniel Wortmann committed
100
  
101
END MODULE m_hsmt_spinor