abcof_small.F 12.8 KB
Newer Older
1
2
3
      MODULE m_abcof_small
      CONTAINS
      SUBROUTINE abcof_small(
4
     >                 sym,atoms,usdus,lapw,noco,zMat,
5
6
7
8
9
10
11
12
13
14
15
16
17
18
     >                 lmaxd,ntypd,neigd,nobd,natd,nop,nvd,jspd,
     >                 lmd,nbasfcn,llod,nlod,nlotot,invtab,
     >                 ntype,mrot,ngopr,taual,neq,lmax,rmt,omtil,
     >                 bmat,bbmat,bkpt,k1,k2,k3,nv,nmat,ne,z,
     >                 us,dus,uds,duds,ddn,invsat,invsatnr,
     >                 ulos,uulon,dulon,dulos,llo,nlo,l_dulo,lapw_l,
     >                 l_noco,l_ss,jspin,alph,beta,qss,kveclo,odi,ods,
     <                 acof,bcof,ccof,nig)
c     ************************************************************
c     subroutine constructs the a,b coefficients of the linearized
c     m.t. wavefunctions for each band and atom.       c.l. fu
c     ************************************************************
#include "cpp_double.h"

19
      USE m_constants
20
21
22
23
24
      USE m_setabc1locdn
      USE m_sphbes
      USE m_dsphbs
      USE m_abclocdn
      USE m_ylm
25
      USE m_types
26
27

      IMPLICIT NONE
28
29
30
31
32
33
34
35

      TYPE(t_sym),INTENT(IN)     :: sym
      TYPE(t_atoms),INTENT(IN)   :: atoms
      TYPE(t_usdus),INTENT(IN)   :: usdus
      TYPE(t_lapw),INTENT(IN)    :: lapw
      TYPE(t_noco),INTENT(IN)    :: noco
      TYPE(t_zMat),INTENT(IN)    :: zMat

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
C     ..
C     .. Scalar Arguments ..
      INTEGER, INTENT (IN) :: lmaxd,ntypd,neigd,nobd,natd,nop,nvd,jspd
      INTEGER, INTENT (IN) :: ne,ntype,nmat,nbasfcn,llod,nlod,lmd
      REAL,    INTENT (IN) :: omtil
      INTEGER, INTENT (IN) :: jspin,nlotot,nig
      LOGICAL, INTENT (IN) :: l_noco,l_ss
C     ..
C     .. Array Arguments ..
      INTEGER, INTENT (IN) :: mrot(3,3,nop),ngopr(natd),lmax(ntypd)
      INTEGER, INTENT (IN) :: k1(nvd,jspd),k2(nvd,jspd),k3(nvd,jspd)
      INTEGER, INTENT (IN) :: nv(jspd),lapw_l(ntypd),invtab(nop)
      INTEGER, INTENT (IN) :: neq(ntypd),invsat(natd),invsatnr(natd)
      INTEGER, INTENT (IN) :: nlo(ntypd),llo(nlod,ntypd),kveclo(nlotot)
      REAL,    INTENT (IN) :: bmat(3,3),bbmat(3,3),bkpt(3)
      REAL,    INTENT (IN) :: taual(3,natd),rmt(ntypd)
      REAL,    INTENT (IN) :: dus(0:lmaxd,ntypd),duds(0:lmaxd,ntypd)
      REAL,    INTENT (IN) ::  us(0:lmaxd,ntypd), uds(0:lmaxd,ntypd)
      REAL,    INTENT (IN) :: ulos(nlod,ntypd),uulon(nlod,ntypd)
      REAL,    INTENT (IN) :: dulon(nlod,ntypd),dulos(nlod,ntypd)
      REAL,    INTENT (IN) :: ddn(0:lmaxd,ntypd)
      REAL,    INTENT (IN) :: alph(ntypd),beta(ntypd),qss(3)
#if ( !defined(CPP_INVERSION) || defined(CPP_SOC) )
      COMPLEX, INTENT (IN) :: z(nbasfcn,neigd)
#else
      REAL,    INTENT (IN) :: z(nbasfcn,neigd)
#endif
      LOGICAL, INTENT (IN) :: l_dulo(nlod,ntypd)
      COMPLEX, INTENT (OUT):: acof(nobd,0:lmd,natd)
      COMPLEX, INTENT (OUT):: bcof(nobd,0:lmd,natd)
      COMPLEX, INTENT (OUT):: ccof(-llod:llod,nobd,nlod,natd)
c-odim
      TYPE (od_inp), INTENT (IN) :: odi
      TYPE (od_sym), INTENT (IN) :: ods
c+odim
C     ..
C     .. Local Scalars ..
      COMPLEX phase,cexp,c_0,c_1,c_2,ci
      REAL const,df,r1,s,tmk,wronk,tpi,qss1,qss2,qss3
      INTEGER i,j,k,l,ll1,lm,m,n,nap,natom,nn,iatom,jatom,lmp
      INTEGER inv_f,ie,ilo,kspin,iintsp,nintsp,nvmax,lo,inap
C     ..
C     .. Local Arrays ..
      INTEGER kvec(2*(2*llod+1),nlod,natd)
      INTEGER nbasf0(nlod,natd),nkvec(nlod,natd)
      REAL dfj(0:lmaxd),fj(0:lmaxd),fk(3),fkp(3),fkr(3)
      REAL alo1(nlod,ntypd),blo1(nlod,ntypd),clo1(nlod,ntypd)
      COMPLEX ylm( (lmaxd+1)**2 )
      COMPLEX ccchi(2,2)
      LOGICAL enough(natd),apw(0:lmaxd,ntypd)
#if ( !defined(CPP_INVERSION) || defined(CPP_SOC) )
      COMPLEX, ALLOCATABLE :: work(:)
#else
      REAL,    ALLOCATABLE :: work(:)
#endif
C     ..
      ci = cmplx(0.0,1.0)
      tpi = 2 * pimach()
      const = 2 * tpi/sqrt(omtil)
c
      acof(:,:,:) = cmplx(0.0,0.0)
      bcof(:,:,:) = cmplx(0.0,0.0)
      ALLOCATE ( work(nobd) )
C     ..
c+APW_LO
      DO n = 1, ntype
         DO l = 0,lmax(n)
           apw(l,n) = .false.
           DO lo = 1,nlo(n)
             IF (l_dulo(lo,n)) apw(l,n) = .true.
           ENDDO
#ifdef CPP_APW
           IF (lapw_l(n).GE.l) apw(l,n) = .false.
#endif
         ENDDO
         DO lo = 1,nlo(n)
           IF (l_dulo(lo,n)) apw(llo(lo,n),n) = .true.
         ENDDO
      ENDDO
c+APW_LO
c
      nintsp = 1
      IF (l_ss) nintsp = 2
c---> loop over the interstitial spin
      DO iintsp = 1,nintsp
      nvmax = nv(jspin)
      IF (l_ss) nvmax = nv(iintsp)
c
      CALL setabc1locdn(
125
126
     >                  jspin,atoms,lapw,ne,noco,iintsp,sym,usdus,
     >                  kveclo,
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
     <                  enough,nkvec,kvec,nbasf0,ccof,
     <                  alo1,blo1,clo1)
c
      IF (iintsp .EQ. 1) THEN
         qss1= - qss(1)/2
         qss2= - qss(2)/2
         qss3= - qss(3)/2
      ELSE
         qss1= + qss(1)/2
         qss2= + qss(2)/2
         qss3= + qss(3)/2
      ENDIF

      k = nig

c---> loop over atom types
      natom = 0
      DO n = 1,ntype
c  ----> loop over equivalent atoms
         DO nn = 1,neq(n)
            natom = natom + 1
           IF ((invsat(natom).EQ.0) .OR. (invsat(natom).EQ.1)) THEN
c--->        loop over lapws
             !DO k = 1,nvmax
               IF (.NOT.l_noco) THEN
                 DO i = 1,ne
                   work(i) = z(k,i)
                 ENDDO
               ENDIF

               IF (l_noco) THEN
c--->            generate the complex conjgates of the spinors (chi)
                 ccchi(1,1) = conjg( exp(-ci*alph(n)/2)*cos(beta(n)/2))
                 ccchi(1,2) = conjg(-exp(-ci*alph(n)/2)*sin(beta(n)/2))
                 ccchi(2,1) = conjg( exp( ci*alph(n)/2)*sin(beta(n)/2))
                 ccchi(2,2) = conjg( exp( ci*alph(n)/2)*cos(beta(n)/2))
                 IF (l_ss) THEN
c--->              the coefficients of the spin-down basis functions are
c--->              stored in the second half of the eigenvector
                   kspin = (iintsp-1)*(nv(1)+nlotot)
                   DO i = 1,ne
                      work(i) = ccchi(iintsp,jspin)*z(kspin+k,i)
                   ENDDO
                 ELSE
c--->              perform sum over the two interstitial spin directions
c--->              and take into account the spin boundary conditions
c--->              (jspin counts the local spin directions inside each MT)
                   kspin = nv(1)+nlotot
                   DO i = 1,ne
                      work(i) = ccchi(1,jspin)*z(k,i)
     +                        + ccchi(2,jspin)*z(kspin+k,i)
                   ENDDO
                 ENDIF
               ENDIF ! (l_noco)
               IF (l_ss) THEN
                 fk(1) = bkpt(1) + k1(k,iintsp) + qss1
                 fk(2) = bkpt(2) + k2(k,iintsp) + qss2
                 fk(3) = bkpt(3) + k3(k,iintsp) + qss3
               ELSE
                 fk(1) = bkpt(1) + k1(k,jspin) + qss1
                 fk(2) = bkpt(2) + k2(k,jspin) + qss2
                 fk(3) = bkpt(3) + k3(k,jspin) + qss3
               ENDIF ! (l_ss)
190
191
               s = dot_product(fk,matmul(bbmat,fk))
!               s = dotirp(fk,fk,bbmat)
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
               s = sqrt(s)
               r1 = rmt(n)*s
               CALL sphbes(
     >                     lmax(n),r1,
     <                     fj)
               CALL dsphbs(
     >                     lmax(n),r1,fj,
     <                     dfj)
c  ----> construct a and b coefficients
               DO l = 0,lmax(n)
                 df = s*dfj(l)
                 wronk = uds(l,n)*dus(l,n) - us(l,n)*duds(l,n)
                 IF (apw(l,n)) THEN
                   fj(l) = 1.0*const * fj(l)/us(l,n)
                   dfj(l) = 0.0d0
                 ELSE
                   dfj(l) = const* (dus(l,n)*fj(l)-df*us(l,n))/wronk
                   fj(l) = const* (df*uds(l,n)-fj(l)*duds(l,n))/wronk
                 ENDIF
               ENDDO ! loop over l
               tmk = tpi* (fk(1)*taual(1,natom)+
     +                     fk(2)*taual(2,natom)+
     +                     fk(3)*taual(3,natom))
               phase = cmplx(cos(tmk),sin(tmk))
               IF (odi%d1) THEN
                  inap = ods%ngopr(natom)
               ELSE
                  nap = ngopr(natom)
                  inap = invtab(nap)
               END IF
               DO j = 1,3
                 fkr(j) = 0.
                 DO i = 1,3
                   IF (odi%d1) THEN
                     fkr(j) = fkr(j) + fk(i)*ods%mrot(i,j,inap)
                   ELSE
                     fkr(j) = fkr(j) + fk(i)*mrot(i,j,inap)
                   END IF
                 ENDDO
               ENDDO
232
233
               fkp=MATMUL(fkr,bmat)
!               CALL cotra3(fkr,fkp,bmat)
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
c     ----> generate spherical harmonics
               CALL ylm4(
     >                   lmax(n),fkp,
     <                   ylm)
c     ----> loop over l
               DO l = 0,lmax(n)
                 ll1 = l* (l+1)
c     ----> loop over m
                 DO m = -l,l
                   lm = ll1 + m
                   c_0 = conjg(ylm(lm+1))*phase
                   c_1 = c_0 *  fj(l)
                   c_2 = c_0 * dfj(l)
c     ----> loop over bands
                   DO i = 1,ne
                     acof(i,lm,natom) = acof(i,lm,natom) + 
     +                                  c_1 * work(i)
                   ENDDO
                   DO i = 1,ne
                     bcof(i,lm,natom) = bcof(i,lm,natom) +
     +                                  c_2 * work(i)
                   ENDDO
#if ( defined(CPP_SOC) && defined(CPP_INVERSION) )
                   IF (invsat(natom).EQ.1) THEN
                     jatom = invsatnr(natom)
                     lmp = ll1 - m
                     inv_f = (-1)**(l-m)
                     c_1 =  conjg(c_1) * inv_f
                     c_2 =  conjg(c_2) * inv_f
                     CALL CPP_BLAS_caxpy(ne,c_1,work,1,
     X                                   acof(1,lmp,jatom),1)
                     CALL CPP_BLAS_caxpy(ne,c_2,work,1,
     X                                   bcof(1,lmp,jatom),1)
                   ENDIF
#endif
                 ENDDO ! loop over m
               ENDDO ! loop over l
               IF (.NOT.enough(natom)) THEN
                 write(*,*)'.not.enough(natom)'
                 CALL abclocdn(
274
275
276
277
     >                 atoms,sym,noco,ccchi(1,jspin),kspin,iintsp,
     >                 const,phase,ylm,n,natom,k,s,nvmax,
     >                 ne,nbasf0,alo1,blo1,clo1,kvec(1,1,natom),
     <                 nkvec,enough(natom),acof,bcof,ccof,zMat)
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
               ENDIF
             !ENDDO ! loop over LAPWs
           ENDIF  ! invsatom == ( 0 v 1 )
         ENDDO    ! loop over equivalent atoms
      ENDDO       ! loop over atom types
      ENDDO       ! loop over interstitial spin

#if ( defined(CPP_SOC) && defined(CPP_INVERSION) )
!
!                           -p,n       (l+m)   p,n  *
! Usually, we exploit that A     = (-1)      (A    )  if p and -p are the positions
!                           l,m                l,-m  
! of two atoms related by inversion symmetry and the coefficients are considered to
! be in the local frame of the representative atom. This is possible, if z is real.
! After SOC, however, the eigenvectors z are complex and this is no longer possible
! so the z has to enter, not z*. This is done within the k-loop.
!                                    -p,n       m   p,n  *
! When called from hsohelp, we need A     = (-1)  (A    ) because we don't have to
!                                     l,m           l,-m                    l 
! rotate, but in the sums in hsoham only products A*  A   enter and the (-1) cancels.
!                                                  lm  lm
#else
      iatom = 0
      DO n = 1,ntype
         DO nn = 1,neq(n)
            iatom = iatom + 1
            IF (invsat(iatom).EQ.1) THEN
              jatom = invsatnr(iatom)
              cexp = exp(tpi*ci*dot_product(taual(:,jatom)
     +             + taual(:,iatom),(/bkpt(1),bkpt(2),bkpt(3)/)))
               DO ilo = 1,nlo(n)
                  l = llo(ilo,n)
                  DO m = -l,l
                     inv_f = (-1.0)**(m+l)
                     DO ie = 1,ne
                        ccof(m,ie,ilo,jatom) = inv_f * cexp *
     +                               conjg(  ccof(-m,ie,ilo,iatom))
                     ENDDO
                  ENDDO
               ENDDO
               DO l = 0,lmax(n)
                  ll1 = l* (l+1)
                  DO m =-l,l
                     lm  = ll1 + m
                     lmp = ll1 - m
                     inv_f = (-1.0)**(m+l)
                     DO ie = 1,ne
                        acof(ie,lm,jatom) = inv_f * cexp * 
     *                                      conjg(acof(ie,lmp,iatom))
                     ENDDO
                     DO ie = 1,ne
                        bcof(ie,lm,jatom) = inv_f * cexp * 
     *                                      conjg(bcof(ie,lmp,iatom))
                     ENDDO
                  ENDDO
               ENDDO
            ENDIF
         ENDDO
      ENDDO
#endif
      DEALLOCATE ( work )
c
      END SUBROUTINE abcof_small
      END MODULE m_abcof_small