hsmt_spinor.F90 3.97 KB
Newer Older
1 2 3 4 5 6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7 8 9 10 11 12
MODULE m_hsmt_spinor
  IMPLICIT NONE
CONTAINS

  !The spinors are calculated both in hssphn_sph & hssphn_nonsph, hence this is a
  !common subroutine
Daniel Wortmann's avatar
Daniel Wortmann committed
13
  SUBROUTINE hsmt_spinor(isp,n,noco,chi_mat)
14
    USE m_types
15
    use m_constants
16 17
    IMPLICIT NONE

Daniel Wortmann's avatar
Daniel Wortmann committed
18 19 20 21 22 23
    TYPE(t_noco),INTENT(IN)      :: noco
    INTEGER,INTENT(IN)           :: isp, n
    COMPLEX,INTENT(OUT)          :: chi_mat(2,2)
   
    INTEGER           :: isp1,isp2
    COMPLEX           :: chi(2,2)
24 25 26

    !--->       set up the spinors of this atom within global
    !--->       spin-coordinateframe
27 28 29 30
    chi(1,1) =  exp(-ImagUnit*noco%alph(n)/2)*cos(noco%beta(n)/2)
    chi(1,2) = -exp(-ImagUnit*noco%alph(n)/2)*sin(noco%beta(n)/2)
    chi(2,1) =  exp(ImagUnit*noco%alph(n)/2)*sin(noco%beta(n)/2)
    chi(2,2) =  exp(ImagUnit*noco%alph(n)/2)*cos(noco%beta(n)/2)
31 32
    !--->       and determine the prefactors for the Hamitonian- and
    !--->       overlapp-matrix elements
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    IF (isp<3) THEN
       isp1=isp
       isp2=isp
    ELSEIF(isp==3) THEN
       isp1=1
       isp2=2
    ELSE
       isp1=2
       isp2=1
    ENDIF
    
    chi_mat(1,1) = chi(1,isp1)*CONJG(chi(1,isp2))
    chi_mat(2,1) = chi(2,isp1)*CONJG(chi(1,isp2))
    chi_mat(2,2) = chi(2,isp1)*CONJG(chi(2,isp2))
    chi_mat(1,2) = chi(1,isp1)*CONJG(chi(2,isp2))
Daniel Wortmann's avatar
Daniel Wortmann committed
48 49 50 51

    
    
  END SUBROUTINE hsmt_spinor
52

Daniel Wortmann's avatar
Daniel Wortmann committed
53 54
  SUBROUTINE hsmt_spinor_soc(n,ki,noco,lapw,chi_so,angso)
    USE m_types
55
    use m_constants
Daniel Wortmann's avatar
Daniel Wortmann committed
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    IMPLICIT NONE
    TYPE(t_noco),INTENT(IN)      :: noco
    TYPE(t_lapw),INTENT(IN)      :: lapw
    INTEGER,INTENT(IN)           :: n,ki
    COMPLEX,INTENT(out)          :: chi_so(:,:,:,:)
    COMPLEX,INTENT(out),OPTIONAL :: angso(:,:,:)

    REAL     :: cross_k(3)
    INTEGER  :: j1,j2,kj
    COMPLEX  :: isigma(2,2,3)
    COMPLEX  :: chi(2,2)
    COMPLEX  :: isigma_x(2,2),isigma_y(2,2),isigma_z(2,2)
    
    !     isigma= -i * sigma, where sigma is Pauli matrix
    isigma=CMPLX(0.0,0.0)
    isigma(1,2,1)=CMPLX(0.0,-1.0)
    isigma(2,1,1)=CMPLX(0.0,-1.0)
    isigma(1,2,2)=CMPLX(-1.0,0.0)
    isigma(2,1,2)=CMPLX(1.0,0.0)
    isigma(1,1,3)=CMPLX(0.0,-1.0)
    isigma(2,2,3)=CMPLX(0.0,1.0)
    
    !--->       set up the spinors of this atom within global
    !--->       spin-coordinateframe
80 81 82 83
    chi(1,1) =  exp(-ImagUnit*noco%alph(n)/2)*cos(noco%beta(n)/2)
    chi(1,2) = -exp(-ImagUnit*noco%alph(n)/2)*sin(noco%beta(n)/2)
    chi(2,1) =  exp(ImagUnit*noco%alph(n)/2)*sin(noco%beta(n)/2)
    chi(2,2) =  EXP(ImagUnit*noco%alph(n)/2)*COS(noco%beta(n)/2)
Daniel Wortmann's avatar
Daniel Wortmann committed
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

    isigma_x=MATMUL(CONJG(TRANSPOSE(chi)), MATMUL(isigma(:,:,1),chi))
    isigma_y=MATMUL(CONJG(TRANSPOSE(chi)), MATMUL(isigma(:,:,2),chi))
    isigma_z=MATMUL(CONJG(TRANSPOSE(chi)), MATMUL(isigma(:,:,3),chi))
    DO j1=1,2
       DO j2=1,2
          chi_so(1,1,j1,j2)=chi(1,j1)*CONJG(chi(1,j2))
          chi_so(2,1,j1,j2)=chi(2,j1)*CONJG(chi(1,j2))
          chi_so(2,2,j1,j2)=chi(2,j1)*CONJG(chi(2,j2))
          chi_so(1,2,j1,j2)=chi(1,j1)*CONJG(chi(2,j2))
       ENDDO
    ENDDO
    IF (.not.present(angso)) RETURN !only chis are needed 
  !In the first variation SOC case the off-diagonal spinors are needed
       DO kj = 1,ki
          cross_k(1)=lapw%gk(2,ki,1)*lapw%gk(3,kj,1)- lapw%gk(3,ki,1)*lapw%gk(2,kj,1)
          cross_k(2)=lapw%gk(3,ki,1)*lapw%gk(1,kj,1)- lapw%gk(1,ki,1)*lapw%gk(3,kj,1)
          cross_k(3)=lapw%gk(1,ki,1)*lapw%gk(2,kj,1)- lapw%gk(2,ki,1)*lapw%gk(1,kj,1)
          DO j1=1,2
             DO j2=1,2
                angso(kj,j1,j2)= isigma_x(j1,j2)*cross_k(1)+&
                     isigma_y(j1,j2)*cross_k(2)+ isigma_z(j1,j2)*cross_k(3)
106 107 108
             ENDDO
          ENDDO
       ENDDO
Daniel Wortmann's avatar
Daniel Wortmann committed
109
     END SUBROUTINE hsmt_spinor_soc
110

Daniel Wortmann's avatar
Daniel Wortmann committed
111
  
112
END MODULE m_hsmt_spinor