eigen.F90 26.1 KB
Newer Older
1
2
3
4
MODULE m_eigen
  use m_juDFT
CONTAINS
  SUBROUTINE eigen(mpi,stars,sphhar,atoms,obsolete,xcpot,&
5
       sym,kpts,dimension, vacuum, input, cell, enpara_in,banddos, noco,jij, oneD,hybrid,&
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
       it,eig_id,results)
    !*********************************************************************
    !     sets up and solves the eigenvalue problem for a basis of lapws.
    !
    ! nv,   nvd     ... actual length & dimension of EV without LO's
    ! nmat, nbasfcn                                   including LO's
    !        g. bihlmayer '96
    !**********************************************************************
    USE m_constants, ONLY : pi_const,sfp_const
    USE m_types
    USE m_lodpot
    USE m_tlmplm
    USE m_tlmplm_store
    USE m_apws
    USE m_hsmt
    USE m_hsint
    USE m_hsvac
    USE m_od_hsvac
    USE m_usetup
    USE m_loddop
    USE m_eigen_diag
#ifdef CPP_NOTIMPLEMENTED
    USE m_symm_hf,  ONLY : symm_hf_nkpt_EIBZ
    USE m_gen_bz
    USE m_gen_wavf
    USE m_hsfock
    USE m_read_core
    USE m_subvxc
    USE m_gweig
    USE m_gw_qsgw
    USE m_checkolap
#endif
    USE m_hsefunctional
    USE m_hybridmix    , ONLY: amix_pbe0,amix_hf
    USE m_util
41
    USE m_icorrkeys
42
43
44
45
    USE m_eig66_io, ONLY : open_eig, write_eig, close_eig,read_eig
#ifdef CPP_MPI
    USE m_mpimakegroups
#endif
46
    USE m_xmlOutput
47
48
49
50
51
52
53
54
55
56
57
58
59

    IMPLICIT NONE
    TYPE(t_results),INTENT(INOUT):: results
    TYPE(t_xcpot),INTENT(IN)     :: xcpot
    TYPE(t_mpi),INTENT(IN)       :: mpi
    TYPE(t_dimension),INTENT(IN) :: dimension
    TYPE(t_oneD),INTENT(IN)      :: oneD
    TYPE(t_hybrid),INTENT(IN)    :: hybrid
    TYPE(t_enpara),INTENT(INOUT) :: enpara_in
    TYPE(t_obsolete),INTENT(IN)  :: obsolete
    TYPE(t_input),INTENT(IN)     :: input
    TYPE(t_vacuum),INTENT(IN)    :: vacuum
    TYPE(t_noco),INTENT(IN)      :: noco
60
    TYPE(t_banddos),INTENT(IN)   :: banddos
61
    TYPE(t_jij),INTENT(IN)       :: jij
62
    TYPE(t_sym),INTENT(INOUT)    :: sym  !l_zref will be modified in EVP
63
64
65
66
67
68
69
70
71
72
73
    TYPE(t_stars),INTENT(IN)     :: stars
    TYPE(t_cell),INTENT(IN)      :: cell
    TYPE(t_kpts),INTENT(IN)      :: kpts
    TYPE(t_sphhar),INTENT(IN)    :: sphhar
    TYPE(t_atoms),INTENT(INOUT)  :: atoms !in u_setup n_u might be modified

#ifdef CPP_MPI
    INCLUDE 'mpif.h'
#endif
    !     ..
    !     .. Scalar Arguments ..
74
    INTEGER,INTENT(IN) :: it
75
76
77
78
79
80
    INTEGER,INTENT(INOUT):: eig_id
    !     ..
    !-odim
    !+odim
    !     ..
    !     .. Local Scalars ..
81
    INTEGER jsp,nk,nred,ne_all,n_u_in,ne_found
82
83
84
85
86
87
88
89
90
91
92
    INTEGER iter,ne,matsize  ,nrec,lh0
    INTEGER nspins,isp,l,i,j,err,gwc
    INTEGER mlotot,mlolotot,mlot_d,mlolot_d,nlot_d
    LOGICAL l_wu,lcal_qsgw,l_file
    REAL evac_sv(dimension%jspd)
    INTEGER ::eig_id_hf=-1
    INTEGER :: nu=8
    !     ..
    !     .. Local Arrays ..
    INTEGER, PARAMETER :: lmaxb=3
    INTEGER, ALLOCATABLE :: matind(:,:),kveclo(:)
93
    INTEGER, ALLOCATABLE :: nv2(:)
94
    REAL,    ALLOCATABLE :: bkpt(:)
95
    REAL,    ALLOCATABLE :: eig(:)
96
97
98
99
100
101
102
#ifdef CPP_INVERSION
    REAL,    ALLOCATABLE :: z(:,:),a(:),b(:)
#else
    COMPLEX, ALLOCATABLE :: z(:,:),a(:),b(:)
#endif
    COMPLEX, ALLOCATABLE :: vpw(:,:),vzxy(:,:,:,:)
    COMPLEX, ALLOCATABLE :: vpwtot(:,:)
103
    REAL,    ALLOCATABLE :: vz(:,:,:),vr(:,:,:,:)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    REAL,    ALLOCATABLE :: vrtot(:,:,:,:)

    COMPLEX, ALLOCATABLE :: vs_mmp(:,:,:,:)
    TYPE(t_tlmplm) :: td
    TYPE(t_usdus)  :: ud
    TYPE(t_lapw)   :: lapw
    Type(t_enpara) :: enpara
    !
    INTEGER n_start,n_groups,n_rank,n_size,n,n_stride
    INTEGER SUB_COMM,fh
    INTEGER ierr(3)

    !
    !     .. variables for HF or hybrid functional calculation ..
    !
    !      - scalar -
#ifdef CPP_NEVER
    INTEGER, INTENT(IN)     ::  maxlcutm,maxindxm,maxbasm
122
123
    INTEGER, INTENT(IN)     ::  maxindxp
    INTEGER, INTENT(IN)     ::  bands
124
125
    !     - arrays -
    INTEGER, INTENT(IN)     ::  nindxm(0:maxlcutm,atoms%ntypd)
126
    INTEGER, INTENT(IN)     ::  lcutm(atoms%ntypd)
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    REAL   , INTENT(IN)     ::  basm(atoms%jmtd,maxindxm,0:maxlcutm,atoms%ntypd)
#endif
    !     - local scalar -
    INTEGER                 ::  itype,ispin,isym,iisym
    INTEGER                 ::  indx,ic
    INTEGER                 ::  ll,lm,l1,l2
    INTEGER                 ::  lmaxcd
    INTEGER                 ::  maxindxc,mnobd
    INTEGER                 ::  maxfac
    INTEGER                 ::  maxbands
    LOGICAL                 ::  l_hybrid
    !     - local arrays -
#ifdef CPP_NEVER
    INTEGER                 ::  nobd(kpts%nkptf)
    INTEGER                 ::  lmaxc(atoms%ntypd)
142
    INTEGER                 ::  g(3)
143
    INTEGER                 ::  nindxp(0:maxlcutm,atoms%ntypd)
144
    INTEGER , ALLOCATABLE   ::  nkpt_EIBZ(:)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    INTEGER , ALLOCATABLE   ::  nindxc(:,:)
    INTEGER , ALLOCATABLE   ::  kveclo_eig(:,:)
    INTEGER , ALLOCATABLE   ::  nbasm(:)
    INTEGER                 ::  comm(kpts%nkpt),irank2(kpts%nkpt),isize2(kpts%nkpt)
    REAL                    ::  el_eig(0:atoms%lmaxd,atoms%ntypd), ello_eig(atoms%nlod,atoms%ntypd),rarr(3)
    REAL                    ::  bas1_MT(hybrid%maxindx,0:atoms%lmaxd,atoms%ntypd)
    REAL                    ::  drbas1_MT(hybrid%maxindx,0:atoms%lmaxd,atoms%ntypd)
    REAL,    ALLOCATABLE    ::  eig_c(:,:,:)
    REAL,    ALLOCATABLE    ::  core1(:,:,:,:),core2(:,:,:,:)
    REAL,    ALLOCATABLE    ::  gauntarr(:,:,:,:,:,:)
    REAL,    ALLOCATABLE    ::  sfac(:),fac(:)
    REAL,    ALLOCATABLE    ::  prodm(:,:,:,:)
    TYPE(PRODTYPE),ALLOCATABLE :: prod(:,:,:)
#endif
    INTEGER                 ::  ne_eig(kpts%nkptd),nbands(kpts%nkptd)
    REAL,    ALLOCATABLE    ::  eig_irr(:,:),vr0(:,:,:)
    REAL                    ::  bas1(atoms%jmtd,hybrid%maxindx,0:atoms%lmaxd,atoms%ntypd)
    REAL                    ::  bas2(atoms%jmtd,hybrid%maxindx,0:atoms%lmaxd,atoms%ntypd)

#ifdef CPP_MPI
    INTEGER   :: sndreqd,sndreq(mpi%isize*kpts%nkptd)
#endif
    !
    !
169
    ! --> Allocate
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    !
    ALLOCATE ( ud%uloulopn(atoms%nlod,atoms%nlod,atoms%ntypd,dimension%jspd),nv2(dimension%jspd) )
    ALLOCATE ( ud%ddn(0:atoms%lmaxd,atoms%ntypd,dimension%jspd),eig(dimension%neigd),bkpt(3) )
    ALLOCATE ( ud%us(0:atoms%lmaxd,atoms%ntypd,dimension%jspd),ud%uds(0:atoms%lmaxd,atoms%ntypd,dimension%jspd) )
    ALLOCATE ( ud%dus(0:atoms%lmaxd,atoms%ntypd,dimension%jspd),ud%duds(0:atoms%lmaxd,atoms%ntypd,dimension%jspd))
    ALLOCATE ( ud%ulos(atoms%nlod,atoms%ntypd,dimension%jspd),ud%dulos(atoms%nlod,atoms%ntypd,dimension%jspd) )
    ALLOCATE ( ud%uulon(atoms%nlod,atoms%ntypd,dimension%jspd),ud%dulon(atoms%nlod,atoms%ntypd,dimension%jspd) )
   ! ALLOCATE ( enpara%ello(atoms%nlod,atoms%ntypd,dimension%jspd) )
   ! ALLOCATE ( enpara%el(0:atoms%lmaxd,atoms%ntypd,dimension%jspd),enpara%evac(2,dimension%jspd) )
    ALLOCATE ( lapw%k1(dimension%nvd,dimension%jspd),lapw%k2(dimension%nvd,dimension%jspd),lapw%k3(dimension%nvd,dimension%jspd),lapw%rk(dimension%nvd,dimension%jspd) )
    !
    ! --> some parameters first
    !
    !     determine the total number of lo's : nlotot
    !
    mlotot = 0 ; mlolotot = 0
    DO n = 1, atoms%ntype
       mlotot = mlotot + atoms%nlo(n)
       mlolotot = mlolotot + atoms%nlo(n)*(atoms%nlo(n)+1)/2
    ENDDO
    nlot_d = atoms%nlotot !max(atoms%nlotot,1)
    ALLOCATE ( kveclo(nlot_d) )
    !     ..
    nbands     = 0
    bas1 = 0 ; bas2 = 0
    l_hybrid   = (&
         xcpot%icorr == icorr_pbe0 .OR.&
         xcpot%icorr == icorr_hse  .OR.&
         xcpot%icorr == icorr_vhse .OR.&
         xcpot%icorr == icorr_hf   .OR.&
         xcpot%icorr == icorr_exx)
#if (defined(CPP_SOC) && defined(CPP_INVERSION) )
    IF ( l_hybrid ) THEN
       CALL juDFT_error('hybrid functional + SOC + inv.symmetry is not tested', calledby='eigen', hint='recompile without CPP_INVERSION')
    END IF
#endif

    !
    !  if gw = 1 or 2, we are in the first or second run of a GW  calculation
    !  if gw = 1 we just proceed as normal (one round),
    !  if gw = 2 it's the second run: write out the eigenfunctions and
    !  the matrix elements with the xc-potential (needs two rounds)
    !  if gw = 3 energy-independet hermitian self-energy is read in from file
    !            spex.qsgw, transformed to the APW basis, and SCF is performed
    !
    gwc = 1
    fh = 0
    !
    ! look, if WU diagonalisation
    !
    IF (it.LT.input%isec1) THEN
       IF (mpi%irank.eq.0) WRITE (6,FMT=8110) it,input%isec1
8110   FORMAT (' IT=',i4,'  ISEC1=',i4,' standard diagonalization')
       l_wu = .false.
    ELSE
       IF (mpi%irank.eq.0) WRITE (6,FMT=8120) it,input%isec1
8120   FORMAT (' IT=',i4,'  ISEC1=',i4,' reduced diagonalization')
       l_wu = .true.
    END IF
    !
    ! load potential from file pottot (=unit 8)
    !
    ALLOCATE ( vpw(stars%n3d,dimension%jspd),vzxy(vacuum%nmzxyd,oneD%odi%n2d-1,2,dimension%jspd) )
    ALLOCATE ( vz(vacuum%nmzd,2,4), vr(atoms%jmtd,0:sphhar%nlhd,atoms%ntypd,dimension%jspd) )
    ALLOCATE ( vr0(atoms%jmtd,atoms%ntypd,dimension%jspd) ) ; vr0 = 0
    OPEN (nu,file='pottot',form='unformatted',status='old')
    IF (input%gw.eq.2) THEN
       ALLOCATE ( vpwtot(stars%n3d,dimension%jspd), vrtot(atoms%jmtd,0:sphhar%nlhd,atoms%ntypd,dimension%jspd) )
       IF ( mpi%irank == 0 ) WRITE(6,'(A/A/A/A)')&
            &  'Info: vxc matrix elements for GW will be calculated in gw_vxc',&
            &  'Info: and stored in "vxc", the values obtained from the',&
            &  'Info: original implementation are saved to "vxc.old".'
    ENDIF
999 CONTINUE
    CALL loddop(stars,vacuum,atoms,sphhar, input,sym, nu, iter,vr,vpw,vz,vzxy)
    CLOSE(nu)
246
247
    IF (mpi%irank.EQ.0) CALL openXMLElementFormPoly('iteration',(/'numberForCurrentRun','overallNumber      '/),(/it,iter/),&
                                                    reshape((/19,13,5,5/),(/2,2/)))
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

    !
    ! some modifications for gw-calculations
    !
    IF (input%gw.eq.2.and.gwc.eq.1) THEN
       vrtot(:,:,:,:)  = vr  ! store potential for subroutine gw_vxc
       vpwtot(:,:) = vpw !
    ENDIF

    IF (gwc==1) THEN
       vr0(:,:,:) = vr(:,0,:,:)
       lh0 = 1
    ELSE IF (gwc==2) THEN
       lh0 = 0                         ! for a input%gw-calculation, we
                                       ! now evaluate matrix elements
       DO jsp = 1,input%jspins               ! with the coulomb potential
          DO n = 1,atoms%ntype                ! but with explicit kinetic energy
             DO j = 1,atoms%jri(n)
                vr(j,0,n,jsp) = vr(j,0,n,jsp)-vr0(j,n,jsp)*sfp_const/atoms%rmsh(j,n)
             ENDDO
          ENDDO
       ENDDO
    ENDIF

    INQUIRE(file='fleur.qsgw',EXIST=lcal_qsgw)
    lcal_qsgw = .not. lcal_qsgw

    !
    ! set energy parameters (normally to that, what we read in)
    !
    IF (gwc /= 2) THEN
       CALL lodpot(mpi,atoms,sphhar,obsolete,vacuum,&
            input, vr,vz, enpara_in, enpara)
    ENDIF
    !
283
   
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330


    !---> set up and solve the eigenvalue problem
    !---> loop over energy windows


#if ( defined(CPP_MPI))
    !#if ( defined(CPP_MPI) && defined(CPP_EVP) )
    !
    IF ( hybrid%l_calhf ) THEN
       n_start  = 1
       n_stride = 1
    ELSE
       CALL mpi_make_groups(mpi,dimension,kpts, input,atoms,noco, mlotot,mlolotot,&
            n_start,n_groups,n,matsize,ne, n_rank,n_size,SUB_COMM)
       n_stride = kpts%nkpt/n_groups
       IF (n_size > 1) sym%l_zref = .false.
    END IF
    !
#else
    n_rank = 0
    n_size = 1

#ifdef CPP_MPI
    IF ( mpi%isize > kpts%nkpt ) THEN
       CALL juDFT_error("no. processors must be <= no. kpts")
    END IF
    IF ( hybrid%l_calhf ) THEN
       n_start  = 1
       n_stride = 1
    ELSE
       n_start  = mpi%irank + 1
       n_stride = mpi%isize
    END IF
#else
    n_start  = 1
    n_stride = 1
#endif
    n = dimension%nbasfcn/n_size
    matsize = dimension%nbasfcn * (dimension%nbasfcn+1)/2
    ne = dimension%neigd
#endif
    if (l_hybrid.or.hybrid%l_calhf) THEN
       eig_id_hf=eig_id
    endif
    eig_id=open_eig(&
         mpi%mpi_comm,dimension%nbasfcn,dimension%neigd,kpts%nkpt,dimension%jspd,atoms%lmaxd,&
Daniel Wortmann's avatar
Daniel Wortmann committed
331
         atoms%nlod,atoms%ntypd,atoms%nlotot,noco%l_noco,.true.,.false.,n_size,layers=vacuum%layers,nstars=vacuum%nstars,ncored=dimension%nstd,nsld=atoms%natd,nat=atoms%natd,l_dos=banddos%dos.or.input%cdinf,l_mcd=banddos%l_mcd,l_orb=banddos%l_orb)
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    ALLOCATE ( a(matsize), stat = err )
    IF (err.NE.0) THEN
       WRITE (*,*) 'eigen: an error occured during allocation of'
       WRITE (*,*) 'the Hamilton Matrix: ',err,'  size: ',matsize
       CALL juDFT_error("eigen: Error during allocation of Hamilton" //"matrix",calledby ="eigen")
    ENDIF
    ALLOCATE ( b(matsize), stat = err )
    IF (err.NE.0) THEN
       WRITE (*,*) 'eigen: an error occured during allocation of'
       WRITE (*,*) 'the overlap Matrix: ',err,'  size: ',matsize
       CALL juDFT_error("eigen: Error during allocation of overlap " //"matrix",calledby ="eigen")
    ENDIF
    ALLOCATE (  matind(dimension%nbasfcn,2) )
    !
    !--->    loop over spins
    nspins = input%jspins
    IF (noco%l_noco) nspins = 1
    !
    !        Append information about file eig to gwa
    IF(input%gw.eq.2.and.gwc.eq.1) THEN
       IF ( mpi%irank == 0 ) THEN
          OPEN(15,file='gwa',status='old',form='unformatted')
          READ(15)
          READ(15)
          READ(15)
          WRITE(15) n_start,n_stride,n_rank,n_size,dimension%nvd,&
               &                 dimension%nbasfcn,atoms%nlotot
          CLOSE(15)
       END IF
    ENDIF
    !  ..
    !  LDA+U
364
    n_u_in=atoms%n_u
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    IF ((atoms%n_u.GT.0)) THEN
       ALLOCATE( vs_mmp(-lmaxb:lmaxb,-lmaxb:lmaxb,atoms%n_u,input%jspins) )
       CALL u_setup(atoms,lmaxb,sphhar,input, enpara%el0(0:,:,:),vr,mpi, vs_mmp,results)
    ELSE
       ALLOCATE( vs_mmp(-lmaxb:-lmaxb,-lmaxb:-lmaxb,1,2) )
    ENDIF
    !
    !--->    loop over k-points: each can be a separate task

    DO jsp = 1,nspins
       !+do

       !-do

       !
       !--->       set up k-point independent t(l'm',lm) matrices
       !
       CALL timestart("tlmplm")
       err=0
       j = 1 ; IF (noco%l_noco) j = 2
       ALLOCATE(td%tuu(0:dimension%lmplmd,atoms%ntypd,j),stat=err)
       ALLOCATE(td%tud(0:dimension%lmplmd,atoms%ntypd,j),stat=err)
       ALLOCATE(td%tdd(0:dimension%lmplmd,atoms%ntypd,j),stat=err)
       ALLOCATE(td%tdu(0:dimension%lmplmd,atoms%ntypd,j),stat=err)
       mlot_d = max(mlotot,1) ; mlolot_d = max(mlolotot,1)
       ALLOCATE(td%tdulo(0:dimension%lmd,-atoms%llod:atoms%llod,mlot_d,j),stat=err)
       ALLOCATE(td%tuulo(0:dimension%lmd,-atoms%llod:atoms%llod,mlot_d,j),stat=err)
       ALLOCATE(td%tuloulo(-atoms%llod:atoms%llod,-atoms%llod:atoms%llod,mlolot_d,j), stat=err)
       ALLOCATE(td%ind(0:dimension%lmd,0:dimension%lmd,atoms%ntypd,j),stat=err )
       IF (err.NE.0) THEN
          WRITE (*,*) 'eigen: an error occured during allocation of'
          WRITE (*,*) 'the tlmplm%tuu, tlmplm%tdd etc.: ',err,'  size: ',mlotot
          CALL juDFT_error("eigen: Error during allocation of tlmplm, tdd  etc.",calledby ="eigen")
       ENDIF
       CALL tlmplm(sphhar,atoms,dimension,enpara, jsp,1,mpi, vr(1,0,1,jsp),gwc,lh0,input, td,ud)
       IF (input%l_f) call write_tlmplm(td,vs_mmp,atoms%n_u>0,1,jsp,input%jspins)
       CALL timestop("tlmplm")

       !---> pk non-collinear
       !--->       call tlmplm again for the second spin direction in
       !--->       each MT, because the t-matrices are needed for both
       !--->       spins at once in hsmt
       IF (noco%l_noco) THEN
          isp = 2
          CALL timestart("tlmplm")
          CALL tlmplm(sphhar,atoms,dimension,enpara,isp,isp,mpi, vr(1,0,1,isp),gwc,lh0,input, td,ud)
          IF (input%l_f) call write_tlmplm(td,vs_mmp,atoms%n_u>0,2,2,input%jspins)
          CALL timestop("tlmplm")
       ENDIF
       !

416
#ifdef CPP_MPI
417
418
       ! check that all sending operations are completed
       IF ( hybrid%l_calhf ) CALL MPI_WAITALL(sndreqd,sndreq,MPI_STATUSES_IGNORE,ierr)
419
#endif
420
421

       k_loop:DO nk = n_start,kpts%nkpt,n_stride
422
#if defined(CPP_MPI)&&defined(CPP_NEVER)
423
424
425
426
427
428
          IF ( hybrid%l_calhf ) THEN
             ! jump to next k-point if this process is not present in communicator
             IF ( comm(nk) == MPI_COMM_NULL ) CYCLE
             ! allocate buffer for communication of the results
             IF ( irank2(nk) /= 0 ) CALL work_dist_reserve_buffer( nbands(nk) )
          END IF
429
#endif
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

          nrec =  kpts%nkpt*(jsp-1) + nk
          nrec = n_size*(nrec-1) + n_rank + 1
          !
          !--->         set up lapw list
          !
          call timestart("Setup of LAPW")
          lapw%rk = 0 ; lapw%k1 = 0 ; lapw%k2 = 0 ; lapw%k3 = 0
          CALL apws(dimension,input,noco, kpts,nk,cell,sym, n_size,jsp, bkpt,lapw,matind,nred)

          call timestop("Setup of LAPW")
          IF (noco%l_noco) THEN
             !--->         the file potmat contains the 2x2 matrix-potential in
             !--->         the interstitial region and the vacuum
             OPEN (25,FILE='potmat',FORM='unformatted', STATUS='old')
          ENDIF
          !
          !--->         set up interstitial hamiltonian and overlap matrices
          !
          call timestart("Interstitial Hamiltonian&Overlap")
          CALL hsint(noco,jij,stars, vpw(:,jsp),lapw,jsp, n_size,n_rank,kpts%bk(:,nk),cell,atoms, a,b)
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
          call timestop("Interstitial Hamiltonian&Overlap")
          !
          !--->         update with sphere terms
          !
          IF (.not.l_wu) THEN
             call timestart("MT Hamiltonian&Overlap")
             CALL hsmt(dimension,atoms,sphhar,sym,enpara, SUB_COMM,n_size,n_rank,jsp,input, matsize,mpi,&
                  lmaxb,gwc, noco,cell, lapw, bkpt,vr, vs_mmp, oneD,ud, kveclo,a,b,td)
             call timestop("MT Hamiltonian&Overlap")
          ENDIF
          !
#ifdef CPP_NOTIMPLEMENTED
          IF( l_hybrid ) THEN

             CALL hsfock(nk,atoms,lcutm,obsolete,lapw, dimension,kpts,jsp,input,hybrid,maxbasm,&
                  maxindxp,maxlcutm,maxindxm,nindxm, basm,bas1,bas2,bas1_MT,drbas1_MT,ne_eig,eig_irr,&
                  n_size,sym,cell, noco,noco,oneD, nbasp,nbasm, results,results,it,nbands(nk),maxbands,nobd,&
                  mnobd,xcpot, core1,core2,nindxc,maxindxc,lmaxc, lmaxcd, kveclo_eig,maxfac,fac,sfac,gauntarr,&
                  nindxp,prod,prodm,gwc, mpi,irank2(nk),isize2(nk),comm(nk), a)

             IF ( irank2(nk) /= 0 ) CYCLE

             IF( hybrid%l_subvxc ) THEN
                CALL subvxc(lapw,kpts(:,nk),obsolete,dimension, input,jsp,atoms, hybrid,matsize,enpara%el0,enpara%ello0,&
                     sym, nlot_d,kveclo, cell,sphhar, stars,stars, xcpot,mpi, irank2(nk),vacuum,&
                     oneD, vr(:,:,:,jsp),vpw(:,jsp), a)
             END IF

          END IF ! l_hybrid
#endif
          !
          !--->         update with vacuum terms
          !
          call timestart("Vacuum Hamiltonian&Overlap")
          IF (input%film .AND. .NOT.oneD%odi%d1) THEN
             CALL hsvac(vacuum,stars,dimension, atoms, jsp,input,vzxy(1,1,1,jsp),vz,enpara%evac0,cell, &
                  bkpt,lapw,sym, noco,jij, n_size,n_rank, a,b, nv2)
          ELSEIF (oneD%odi%d1) THEN
             CALL od_hsvac(vacuum,stars,dimension, oneD,atoms, jsp,input,vzxy(1,1,1,jsp),vz, &
                  enpara%evac0,cell, bkpt,lapw, oneD%odi%M,oneD%odi%mb,oneD%odi%m_cyl,oneD%odi%n2d, &
                  n_size,n_rank,sym,noco,jij, a,b, nv2)
          END IF
          call timestop("Vacuum Hamiltonian&Overlap")

#ifdef CPP_NOTIMPLEMENTED
          IF ( input%gw.eq.3.or.(input%gw.eq.2.and.gwc.eq.1.and..not.lcal_qsgw)) THEN

             CALL gw_qsgw ( lcal_qsgw, b,cell,sym,atoms,&
                  jsp,dimension,lapw, nk,kpts, matsize,oneD%tau,noco, a )


          END IF

          IF (gwc==2) THEN
             CALL gw_eig(eig_id,nk,kpts,atoms,dimension,neigd,sym,&
                  kveclo,cell, ud%us(0,1,jsp),ud%dus(0,1,jsp),ud%uds(0,1,jsp),&
                  ud%duds(0,1,jsp),ud%ddn(0,1,jsp),ud%ulos(1,1,jsp),ud%uulon(1,1,jsp),ud%dulon(1,1,jsp),&
                  ud%dulos(1,1,jsp),nrec,noco,jsp,matsize,a,sphhar,stars,stars,&
                  vrtot(1,0,1,jsp),vpwtot,vr,vpw,vs_mmp(-lmaxb,-lmaxb,1,jsp),lmaxb,oneD)
             CYCLE k_loop
          ENDIF
#endif
          IF (noco%l_noco) CLOSE (25)

          !write overlap matrix b to direct access file olap
          inquire(file='olap',exist=l_file)
          if (l_file) THEN
#ifdef CPP_INVERSION
             OPEN(88,file='olap',form='unformatted',access='direct', recl=matsize*8)
#else
             OPEN(88,file='olap',form='unformatted',access='direct', recl=matsize*16)
#endif
             print *,"Olap write:",nrec
             WRITE(88,rec=nrec) b
             CLOSE(88)
          endif

529
       
530
531
          CALL eigen_diag(jsp,eig_id,it,atoms,dimension,matsize,mpi, n_rank,n_size,ne,nk,lapw,input,&
               nred,sub_comm, sym,matind,kveclo, noco,cell,bkpt,enpara%el0,jij,l_wu,&
532
               oneD,td,ud, eig,a,b,z,ne_found)
533
          
534
535
536
537
          !
          !--->         output results
          !
          CALL timestart("EV output")
538
          ne_all=ne_found
539
540
#if defined(CPP_MPI)
          !Collect number of all eigenvalues
541
          CALL MPI_ALLREDUCE(ne_found,ne_all,1,MPI_INTEGER,MPI_SUM, sub_comm,ierr)
542
543
544
545
#endif
          !jij%eig_l = 0.0 ! need not be used, if hdf-file is present
#if ( !defined( CPP_INVERSION) )
          IF (.not.jij%l_J) THEN
546
             z(:lapw%nmat,:ne_found) = conjg(z(:lapw%nmat,:ne_found))
547
          ELSE
548
             z(:lapw%nmat,:ne_found) = cmplx(0.0,0.0)
549
550
          ENDIF
#endif
551
          CALL write_eig(eig_id, nk,jsp,ne_found,ne_all,lapw%nv(jsp),lapw%nmat,&
552
               lapw%k1(:lapw%nv(jsp),jsp),lapw%k2 (:lapw%nv(jsp),jsp),lapw%k3(:lapw%nv(jsp),jsp),&
553
554
               bkpt, kpts%wtkpt(nk),eig(:ne_found),enpara%el0(0:,:,jsp), enpara%ello0(:,:,jsp),enpara%evac0(:,jsp),&
               atoms%nlotot,kveclo,n_size,n_rank,z=z(:,:ne_found))
555
          IF (noco%l_noco) THEN
556
             CALL write_eig(eig_id, nk,2,ne_found,ne_all,lapw%nv(2),lapw%nmat,&
557
                  lapw%k1(:lapw%nv(2),2),lapw%k2 (:lapw%nv(2),2),lapw%k3(:lapw%nv(2),2),&
558
                  bkpt, kpts%wtkpt(nk),eig(:ne_found),enpara%el0(0:,:,2), enpara%ello0(:,:,2),enpara%evac0(:,2),&
559
560
561
                  atoms%nlotot,kveclo)
          ENDIF

562
#if defined(CPP_MPI)&&defined(CPP_NEVER)
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
          IF ( hybrid%l_calhf ) THEN
             IF ( isize2(nk) == 1 ) THEN
                WRITE(*,'(a,i6,a,i6,a)') 'HF: kpt ', nk, ' was done by rank ', mpi%irank, '.'
             ELSE
                WRITE(*,'(a,i6,a,i6,a,i6,a)')&
                     'HF: kpt ', nk, ' was done by rank ', mpi%irank, ' and ', isize2(nk)-1, ' more.'
             END IF
             !                ELSE
             !                  WRITE(*,'(a,i6,a,i6,a)')        '    kpt ', nk, ' was done by rank ', irank, '.'
          END IF
          !#             else
          !                WRITE (*,*) 'pe: ',irank,' wrote ',nrec
#             endif
          CALL timestop("EV output")
          !#ifdef CPP_MPI
          DEALLOCATE ( z )
          !
       END DO  k_loop

       DEALLOCATE (td%tuu,td%tud,td%tdu,td%tdd)
       DEALLOCATE (td%ind,td%tuulo,td%tdulo)
       DEALLOCATE (td%tuloulo)
#ifdef CPP_NEVER
       IF ( hybrid%l_calhf ) THEN
          DEALLOCATE ( eig_irr,kveclo_eig )
       END IF
#endif
    END DO ! spin loop ends
    DEALLOCATE( vs_mmp )
    DEALLOCATE (a,b,matind)
#ifdef CPP_NEVER
    IF( hybrid%l_calhf ) THEN
       DEALLOCATE( fac,sfac,gauntarr )
       DEALLOCATE( nindxc,core1,core2,nbasm,eig_c )
    END IF
#endif
599
#if defined(CPP_MPI)&&defined(CPP_NEVER)
600
    IF ( hybrid%l_calhf ) DEALLOCATE (nkpt_EIBZ)
601
#endif
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

    IF ( input%gw.eq.2.AND.(gwc==1) )  THEN        ! go for another round
       OPEN (nu,file='potcoul',form='unformatted',status='old')
       !
       !       Generate input file abcoeff for subsequent GW calculation
       !       28.10.2003 Arno Schindlmayr
       !
       IF ( mpi%irank == 0 ) THEN
          WRITE(6,'(A)') 'Info: Write out vxc for GW and vxc.old.'
          WRITE(6,'(A)') 'Info: Write out abcoeff for GW.'
          WRITE(6,'(A)') 'Info: Write out radfun for gw_vxc and GW.'
       END IF
       OPEN (12,file='vxc.old',form='formatted',status='unknown') ! contains vxc from gw_eig
       OPEN (13,file='vxc',form='formatted',status='unknown')     ! contains vxc from gw_vxc
       OPEN (1013,file='vxcfull',form='unformatted',status='unknown')
       INQUIRE(file='fleur.qsgw',exist=l_file)
       IF(l_file) THEN
          WRITE(6,'(A)') 'Info: Write file qsgw for GW.'
          OPEN(1014,file='qsgw',form='unformatted')
       ENDIF
       OPEN (15,file='abcoeff',form='unformatted',status='unknown', action='write')
       OPEN (14,file='radfun',form='unformatted',status='unknown')
       WRITE(14) atoms%jri(1:atoms%ntype)
       OPEN (16,file='latharm',form='unformatted',status='unknown')
       WRITE(16) sphhar%nlhd,sphhar%memd
       l = 0
       DO i = 1,atoms%ntype
          j = atoms%ntypsy(sum(atoms%neq(:i-1))+1)
          WRITE(16) sphhar%nlh(j),sphhar%llh(:sphhar%nlh(j),j),sphhar%nmem(:sphhar%nlh(j),j),&
               sphhar%mlh(:sphhar%memd,:sphhar%nlh(j),j),sphhar%clnu(:sphhar%memd,:sphhar%nlh(j),j)
          DO j = 1,atoms%neq(i)
             l = l + 1
             IF(atoms%invsat(l).EQ.2) THEN
                WRITE(16) -atoms%ngopr(sym%invsatnr(l))
             ELSE
                WRITE(16)  atoms%ngopr(l)
             ENDIF
          ENDDO
       ENDDO
       CLOSE (16)
       gwc=2
       GOTO 999
    ELSE IF ( input%gw.eq.2.AND.(gwc==2) )  THEN
       CLOSE (12)
       CLOSE (13)
       CLOSE (1013)
       CLOSE (14)
       CLOSE (15)
       IF(.NOT.noco%l_soc)  THEN
          INQUIRE(1014,opened=l_file)
          IF(l_file) CLOSE(1014)
          INQUIRE(667,opened=l_file)
          IF(l_file) CLOSE(667)
655
          CALL juDFT_end("GW finished",mpi%irank)
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
       ENDIF
    ENDIF

    !     hf: write out radial potential vr0
    IF (l_hybrid.or.hybrid%l_calhf) THEN
       open(unit=120,file='vr0',form='unformatted')
       DO isp=1,dimension%jspd
          DO n=1,atoms%ntypd
             DO i=1,atoms%jmtd
                WRITE(120) vr0(i,n,isp)
             END DO
          END DO
       END DO
       CLOSE(120)
    ENDIF

    DEALLOCATE ( vpw,vzxy,vz,vr,vr0 )

#ifdef CPP_MPI
675
    CALL MPI_BARRIER(mpi%MPI_COMM,ierr)
676
677
#endif
    if (l_hybrid.or.hybrid%l_calhf) CALL close_eig(eig_id_hf)
678
    atoms%n_u=n_u_in
679
680
681
682
683
684


    IF( input%jspins .EQ. 1 .AND. l_hybrid ) THEN
       results%te_hfex%valence = 2*results%te_hfex%valence
       results%te_hfex%core    = 2*results%te_hfex%core
    END IF
685
686
687
    enpara_in%epara_min = minval(enpara%el0)
    enpara_in%epara_min = min(minval(enpara%ello0),enpara_in%epara_min)
!    enpara_in=enpara
688
689
  END SUBROUTINE eigen
END MODULE m_eigen