outcdn.f90 6.54 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
      MODULE m_outcdn
      use m_constants
      USE m_types
!     ********************************************************
!     calculates the charge density at given point p(i=1,3)
!     ********************************************************
      CONTAINS
      SUBROUTINE outcdn(&
     &                  p,n,na,iv,iflag,jsp,sliceplot,stars,&
     &                  vacuum,sphhar,atoms,sym,cell,oneD,&
     &                  qpw,rhtxy,rho,rht,&
     &                  xdnout)
!
      USE m_angle
      USE m_starf, ONLY : starf2,starf3
      USE m_ylm
      IMPLICIT NONE
!
      TYPE(t_sliceplot),INTENT(IN) :: sliceplot
      TYPE(t_stars),INTENT(IN)     :: stars
      TYPE(t_vacuum),INTENT(IN)    :: vacuum
      TYPE(t_sphhar),INTENT(IN)    :: sphhar
      TYPE(t_atoms),INTENT(IN)     :: atoms
      TYPE(t_sym),INTENT(IN)       :: sym
      TYPE(t_cell),INTENT(IN)      :: cell
      TYPE(t_oneD),INTENT(IN)      :: oneD


!     .. Scalar Arguments ..
      INTEGER, INTENT (IN) :: iflag,jsp,n,na,iv
      REAL,    INTENT (OUT) :: xdnout
!-odim
!+odim
!     ..
!     .. Array Arguments ..
36
      COMPLEX, INTENT (IN) :: qpw(:,:) !(stars%ng3,dimension%jspd)
37
      COMPLEX, INTENT (IN) :: rhtxy(:,:,:,:) !(vacuum%nmzxyd,oneD%odi%n2d-1,2,dimension%jspd)
Daniel Wortmann's avatar
Daniel Wortmann committed
38
      REAL,    INTENT (IN) :: rho(:,0:,:,:) !(atoms%jmtd,0:sphhar%nlhd,atoms%ntype,dimension%jspd)
39
40
41
42
43
44
45
46
47
      REAL,    INTENT (IN) :: rht(:,:,:) !(vacuum%nmzd,2,dimension%jspd)
      REAL,    INTENT (INOUT) :: p(3)
!     ..
!     .. Local Scalars ..
      REAL delta,s,sx,xd1,xd2,xx1,xx2,rrr,phi
      INTEGER i,j,jp3,jr,k,lh,mem,nd,nopa,ivac,ll1,lm ,gzi,m
      COMPLEX ci
!     ..
!     .. Local Arrays ..
48
      COMPLEX sf2(stars%ng2),sf3(stars%ng3),ylm((atoms%lmaxd+1)**2)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
      REAL rcc(3),x(3)
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC abs,real,sqrt
!     ..
      ci = cmplx(0.,1.)
      ivac=iv
     
      if (iflag.ne.1) THEN
      if (iflag.ne.0) THEN
!     ---> interstitial part
      !CALL cotra1(p(1),rcc,cell%bmat)
      rcc=matmul(cell%bmat,p)/tpi_const
      CALL starf3(&
     &            sym%nop,stars%ng3,sym%symor,stars%kv3,sym%mrot,sym%tau,rcc,sym%invtab,&
     &            sf3)
!
      xdnout=dot_product(real(qpw(:,jsp)*sf3(:)),stars%nstr)
      RETURN
!     ---> vacuum part
      ENDIF
      xdnout = 0.
!-odim
      IF (oneD%odi%d1) THEN
         rrr = sqrt( p(1)**2 + p(2)**2 )
         phi = angle(p(1),p(2))
         jp3 = (rrr-cell%z1)/vacuum%delz
         delta = (rrr-cell%z1)/vacuum%delz - jp3
!*     we count 0 as point 1
         jp3 = jp3 + 1
         IF (jp3.LT.vacuum%nmz) THEN
            xdnout = rht(jp3,ivac,jsp) + delta*&
     &           (rht(jp3+1,ivac,jsp)-rht(jp3,ivac,jsp))
            IF (jp3.LT.vacuum%nmzxy) THEN
               xx1 = 0.
               xx2 = 0.
               DO  k = 2,oneD%odi%nq2
                  m = oneD%odi%kv(2,k)
                  gzi = oneD%odi%kv(1,k)
                  xx1 = xx1 + real(rhtxy(jp3,k-1,ivac,jsp)*&
     &                 exp(ci*m*phi)*exp(ci*gzi*cell%bmat(3,3)*p(3)))*&
     &                 oneD%odi%nst2(k)
                  xx2 = xx2 + real(rhtxy(jp3+1,k-1,ivac,jsp)*&
     &                 exp(ci*m*phi)*exp(ci*gzi*cell%bmat(3,3)*p(3)))*&
     &                 oneD%odi%nst2(k)
            ENDDO
               xdnout = xdnout + xx1 + delta* (xx2-xx1)
            END IF
         ELSE
            xdnout = 0.0
         END IF

      ELSE
!+odim      
         IF (p(3).LT.0.0) THEN
            ivac = vacuum%nvac
            IF (sym%invs) THEN
               p(1:2) = -p(1:2)
            END IF
            p(3) = abs(p(3))
         END IF
         !CALL cotra1(p,rcc,cell%bmat)
         rcc=matmul(cell%bmat,p)/tpi_const
         CALL starf2(&
     &            sym%nop2,stars%ng2,stars%kv3,sym%mrot,sym%symor,sym%tau,rcc,sym%invtab,&
     &            sf2)
!
         jp3 = (p(3)-cell%z1)/vacuum%delz
         delta = (p(3)-cell%z1)/vacuum%delz - jp3
!*     we count 0 as point 1
         jp3 = jp3 + 1
         IF (jp3.LT.vacuum%nmz) THEN
             xdnout = rht(jp3,ivac,jsp) + delta*&
     &               (rht(jp3+1,ivac,jsp)-rht(jp3,ivac,jsp))
            IF (jp3.LT.vacuum%nmzxy) THEN
               xx1 = 0.
               xx2 = 0.
              DO  k = 2,stars%ng2
               xx1 = xx1 + real(rhtxy(jp3,k-1,ivac,jsp)*sf2(k))*stars%nstr2(k)
               xx2 = xx2 + real(rhtxy(jp3+1,k-1,ivac,jsp)*sf2(k))*&
     &               stars%nstr2(k)
   enddo
              xdnout = xdnout + xx1 + delta* (xx2-xx1)
            END IF
         ELSE
            xdnout = 0.0
         END IF
!----> vacuum finishes
      ENDIF

      RETURN
      ENDIF
!     ----> m.t. part
      
      nd = atoms%ntypsy(na)
      nopa = atoms%ngopr(na)
      IF (oneD%odi%d1) nopa = oneD%ods%ngopr(na)
      sx = 0.0
      DO  i = 1,3
         x(i) = p(i) - atoms%pos(i,na)
         sx = sx + x(i)*x(i)
   enddo
      sx = sqrt(sx)
      IF (nopa.NE.1) THEN
!... switch to internal units
         !CALL cotra1(x,rcc,cell%bmat)
         rcc=matmul(cell%bmat,x)/tpi_const
!... rotate into representative
         DO  i = 1,3
            p(i) = 0.
            DO  j = 1,3
              IF (.NOT.oneD%odi%d1) THEN
               p(i) = p(i) + sym%mrot(i,j,nopa)*rcc(j)
              ELSE
               p(i) = p(i) + oneD%ods%mrot(i,j,nopa)*rcc(j)
              END IF
   enddo
   enddo
!... switch back to cartesian units
         !CALL cotra0(p,x,cell%amat)
         x=matmul(cell%amat,p)
      END IF
      DO j = atoms%jri(n),2,-1
         IF (sx.GE.atoms%rmsh(j,n)) EXIT
      ENDDO
      jr = j
      CALL ylm4(&
     &          atoms%lmax(n),x,&
     &          ylm)
      xd1 = 0.0
      xd2 = 0.0
      DO  lh = 0, sphhar%nlh(nd)
         ll1 = sphhar%llh(lh,nd) * ( sphhar%llh(lh,nd) + 1 ) + 1
         s = 0.0
         DO mem = 1,sphhar%nmem(lh,nd)
           lm = ll1 + sphhar%mlh(mem,lh,nd)
           s = s + real( sphhar%clnu(mem,lh,nd)*ylm(lm) )
         ENDDO
         IF (sliceplot%plpot) THEN
            xd1 = xd1 + rho(jr,lh,n,jsp)*s
         ELSE
            xd1 = xd1 + rho(jr,lh,n,jsp)*s/ (atoms%rmsh(jr,n)*atoms%rmsh(jr,n))
         END IF
         IF (jr.EQ.atoms%jri(n)) CYCLE
         IF (sliceplot%plpot) THEN
            xd2 = xd2 + rho(jr+1,lh,n,jsp)*s
         ELSE
            xd2 = xd2 + rho(jr+1,lh,n,jsp)*s/&
     &            (atoms%rmsh(jr+1,n)*atoms%rmsh(jr+1,n))
         END IF
   ENDDO
      IF (jr.EQ.atoms%jri(n)) THEN
         xdnout = xd1
      ELSE
         xdnout = xd1 + (xd2-xd1) *&
     &                  (sx-atoms%rmsh(jr,n)) / (atoms%rmsh(jr+1,n)-atoms%rmsh(jr,n))
      END IF
 8000 FORMAT (2f10.6)
!
      RETURN
      END SUBROUTINE outcdn
      END MODULE m_outcdn