wann_2dvacabcof.F 5.02 KB
Newer Older
1 2 3 4 5 6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
      MODULE m_wann_2dvacabcof
      use m_juDFT
c********************************************************
c     calculate a-, and b-coefficients of 2d-vacuum
c     Frank Freimuth, November 2006
c********************************************************
      CONTAINS
      SUBROUTINE wann_2dvacabcof(
     >nv2d,nslibd,nvac,nmzd,nmz,omtil,vz,nv,bkpt,z1,
     >nvd,k1,k2,k3,evac,bbmat,delz,bmat,nbasfcn,neigd,z,
     <ac,bc,u,ue)
      
      use m_dotir
      implicit none
      integer,intent(in)::nv2d
      integer,intent(in)::nslibd
      integer,intent(in)::nvac
      integer,intent(in)::nmzd
      integer,intent(in)::nmz
      integer,intent(in)::nbasfcn,neigd
      real,intent(in)::omtil
      real,intent(in)::vz(nmzd,2)
      real,intent(in)::evac(2)
      real,intent(in)::bbmat(3,3)
      real,intent(in)::delz
      real,intent(in)::bmat(3,3)
      real,intent(in)::z1
      integer,intent(in)::nv
      integer,intent(in)::nvd
      integer,intent(in)::k1(nvd)
      integer,intent(in)::k2(nvd)
      integer,intent(in)::k3(nvd)
      real,intent(in)::bkpt(3)
      complex,intent(out)::ac(nv2d,nslibd,2)
      complex,intent(out)::bc(nv2d,nslibd,2)
      real,intent(out)::u(nmzd,nv2d,nvac)
      real,intent(out)::ue(nmzd,nv2d,nvac)
#if ( !defined(CPP_INVERSION) || defined(CPP_SOC) )
      COMPLEX, INTENT (IN) :: z(nbasfcn,neigd)
#else
      REAL, INTENT (IN) :: z(nbasfcn,neigd)
#endif
      real wronk,const
      complex c_1,av,bv
      real,    allocatable :: dt(:),dte(:)
      real,    allocatable :: t(:),te(:),tei(:)
      integer ivac,n2,k,nv2,ik,jvac,symvac,symvacvac,n,l
      real vz0(2),evacp,sign,v(3),ev,scale,zks,arg
      integer kvac1(nv2d),kvac2(nv2d),map2(nvd),i,j

         wronk = 2.0
         const = 1.0 / ( sqrt(omtil)*wronk )
         allocate (dt(nv2d),dte(nv2d),t(nv2d),te(nv2d),tei(nv2d))

         do ivac = 1,2
            vz0(ivac) = vz(nmz,ivac)
         enddo


         n2 = 0 

         do 40 k = 1,nv
            do 30 j = 1,n2
               if ( k1(k).eq.kvac1(j) .and.
     +          k2(k).eq.kvac2(j) ) then
                map2(k) = j
                goto 40
               endif 
 30         continue
            n2 = n2 + 1
            IF (n2>nv2d)  CALL juDFT_error("wann_plot: vac",calledby
     +           ="wann_2dvacabcof")
            kvac1(n2) = k1(k)
            kvac2(n2) = k2(k)
            map2(k) = n2
 40      continue
         nv2=n2
         do ivac=1,nvac  
            evacp=evac(ivac)
            sign=3-2*ivac
            do ik = 1,nv2
               v(1) = bkpt(1) + kvac1(ik)
               v(2) = bkpt(2) + kvac2(ik)
               v(3) = 0.
               ev = evacp - 0.5*dotirp(v,v,bbmat)
               call vacuz(ev,vz(1,ivac),vz0(ivac),nmz,delz,t(ik),
     +        dt(ik),
     +        u(1,ik,ivac))
               call vacudz(ev,vz(1,ivac),vz0(ivac),nmz,delz,te(ik),
     +        dte(ik),tei(ik),ue(1,ik,ivac),dt(ik),
     +        u(1,ik,ivac))
               scale = wronk/ (te(ik)*dt(ik)-
     -                dte(ik)*t(ik))
               te(ik) = scale*te(ik)
               dte(ik) = scale*dte(ik)
               tei(ik) = scale*tei(ik)
               do j = 1,nmz
                  ue(j,ik,ivac) = scale*ue(j,ik,ivac)
               enddo
            enddo

c            do l=1,nv2
c               do j=1,nmz
c                  if (abs(ue(j,l,ivac)).gt.10)then
c                     print*,"l=",l
c                     print*,"j=",j
c                     print*,"ue(j,l,ivac)=",ue(j,l,ivac)
c                  endif   
c               enddo   
c            enddo   
      
            jvac=ivac
            symvacvac=1
            if (nvac==1) symvacvac=2
            do symvac=1,symvacvac
               if(symvac==2) then
                  sign=-1.0
                  jvac=2
               endif   

               do i = 1,nv2d
                  do n = 1,nslibd
                     ac(i,n,jvac) = cmplx(0.0,0.0)
                     bc(i,n,jvac) = cmplx(0.0,0.0)
                  enddo   
               enddo   

               do k = 1,nv
                  l = map2(k)
                  zks = k3(k)*bmat(3,3)*sign
                  arg = zks*z1
                  c_1 = cmplx(cos(arg),sin(arg)) * const
                  av = -c_1 * cmplx( dte(l),zks*te(l) )
                  bv =  c_1 * cmplx(  dt(l),zks* t(l) )
c-----> loop over basis functions
                  do n = 1,nslibd
                     ac(l,n,jvac) = ac(l,n,jvac) + z(k,n)*av
                     bc(l,n,jvac) = bc(l,n,jvac) + z(k,n)*bv
                  enddo
           
               enddo
            enddo !symvac    
         enddo               !loop over ivac
      deallocate (dt,dte,t,te,tei)
      END SUBROUTINE
      END MODULE m_wann_2dvacabcof