vmatgen.f90 12.6 KB
Newer Older
1
2
3
4
5
6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
MODULE m_vmatgen
  USE m_juDFT
  !**********************************************************************
  !     This subroutine prepares the spin dependent 2x2 matrix potential
  !     for the Hamiltonian setup. This is done in 4 steps.
  !
  !    i) The spin up and down potential and the direction of the
  !     magentic field, theta and phi, are reloaded from files nrp,
  !     dirofmag.
  !    ii) The spin up and down potential is Fouriertransformed to real
  !     space (theta and phi are stored in real space).
  !    iii) The four components of the matrix potential are calculated on
  !     the real space mesh.
  !    iv) The matrix potential is Fouriertransformed, stored in terms of
  !     stars and written to file potmat.
  !
  !     Philipp Kurz 99/11/01
  !**********************************************************************
CONTAINS
  SUBROUTINE vmatgen(&
       &                   stars,&
       &                   atoms,sphhar,vacuum,&
       &                   sym,input,oneD,&
       &                   nu,ndomfile,npotmatfile)

    !******** ABBREVIATIONS ***********************************************
    !     ifft3    : size of the 3d real space mesh
    !     ifft2    : size of the 2d real space mesh
    !     vpw      : first interstitial spin up and down potential
    !                later four components of matrix potential
    !                all stored in terms of 3d-stars
    !     vis      : first interstitial spin up and down potential and
    !                direction of magnetic field (theta and phi)
    !                later four components of matrix potential
    !                all stored on real space mesh
    !**********************************************************************

    USE m_loddop
    USE m_fft2d
    USE m_fft3d
    USE m_types
    IMPLICIT NONE
    TYPE(t_oneD),INTENT(IN)   :: oneD
    TYPE(t_input),INTENT(IN)  :: input
    TYPE(t_vacuum),INTENT(IN) :: vacuum
    TYPE(t_sym),INTENT(IN)    :: sym
    TYPE(t_stars),INTENT(IN)  :: stars
    TYPE(t_sphhar),INTENT(IN) :: sphhar
    TYPE(t_atoms),INTENT(IN)  :: atoms

    !     .. Scalar Arguments ..    
    INTEGER, INTENT (IN) :: nu,ndomfile,npotmatfile  

    !     ..
    !     .. Local Scalars ..
    INTEGER imeshpt,ipot,jspin,ig2 ,ig3,ivac,ifft2,ifft3,imz,iter
    REAL    vup,vdown,veff,beff  ,zero,vziw,theta,phi
    LOGICAL l_domfexst
    !     ..
    !     .. Local Arrays ..
    COMPLEX, ALLOCATABLE :: vpw(:,:),vxy(:,:,:,:)
    REAL,    ALLOCATABLE :: vr(:,:,:,:),vz(:,:,:)
    REAL,    ALLOCATABLE :: vvacxy(:,:,:,:),vis(:,:),fftwork(:)

    zero = 0.0
    ifft3 = 27*stars%k1d*stars%k2d*stars%k3d
    ifft2 = 9*stars%k1d*stars%k2d
    IF (oneD%odi%d1) ifft2 = 9*stars%k3d*oneD%odi%M
    IF (input%film) ALLOCATE(vvacxy(0:ifft2-1,vacuum%nmzxyd,2,4))

    IF (input%jspins .NE. 2) THEN
       WRITE (6,*) 'This is the non-collinear version of the flapw-'
       WRITE (6,*) 'program. It can only perform spin-polarized'
       WRITE (6,*) 'calculations.'
       CALL juDFT_error("jspins not equal 2",calledby="vmatgen")
    ENDIF

    ALLOCATE ( vpw(stars%n3d,3),vis(0:27*stars%k1d*stars%k2d*stars%k3d-1,4),&
Daniel Wortmann's avatar
Daniel Wortmann committed
85
         &           vxy(vacuum%nmzxyd,oneD%odi%n2d-1,2,3),vr(atoms%jmtd,0:sphhar%nlhd,atoms%ntype,input%jspins),&
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
         &           vz(vacuum%nmzd,2,4),fftwork(0:27*stars%k1d*stars%k2d*stars%k3d-1) )

    !---> reload the spin up and down potential
    !      OPEN (nu,file='pottot',form='unformatted',status='old')
    OPEN (nu,file='nrp',form='unformatted',status='old')
    CALL loddop(stars,vacuum,atoms,sphhar,&
         &            input,sym,&
         &            nu,&
         &            iter,vr,vpw(1,1),vz(1,1,1),vxy(1,1,1,1))
    CLOSE(nu)

    !---> check, whether the direction of magnetic field file exists
    INQUIRE (FILE='dirofmag',EXIST=l_domfexst)
    IF (l_domfexst) THEN
       !--->    if it does, read the theta and phi values
       OPEN (ndomfile,FILE='dirofmag',FORM='unformatted',&
            &        STATUS='unknown')
       READ (ndomfile) (vis(imeshpt,3),imeshpt=0,ifft3-1)
       READ (ndomfile) (vis(imeshpt,4),imeshpt=0,ifft3-1)
       IF (input%film) THEN
          READ (ndomfile) ((vz(imz,ivac,3),imz=vacuum%nmzxyd+1,vacuum%nmzd),&
               &                       ivac=1,vacuum%nvac)
          READ (ndomfile) ((vz(imz,ivac,4),imz=vacuum%nmzxyd+1,vacuum%nmzd),&
               &                       ivac=1,vacuum%nvac)
          READ (ndomfile) (((vvacxy(imeshpt,imz,ivac,3),&
               &                   imeshpt=0,ifft2-1),imz=1,vacuum%nmzxyd),ivac=1,vacuum%nvac)
          READ (ndomfile) (((vvacxy(imeshpt,imz,ivac,4),&
               &                   imeshpt=0,ifft2-1),imz=1,vacuum%nmzxyd),ivac=1,vacuum%nvac)
       ENDIF
       CLOSE (ndomfile)
    ELSE
       !--->    if it doesn't, set all angles to zero
       vis(:,3:4)=0.0
       IF (input%film) THEN
          DO ivac = 1,2
             DO imz = vacuum%nmzxyd+1,vacuum%nmzd
                vz(imz,ivac,3) = 0.0
                vz(imz,ivac,4) = 0.0
             ENDDO
             DO imz = 1,vacuum%nmzxyd
                DO imeshpt = 0,ifft2-1
                   vvacxy(imeshpt,imz,ivac,3) = 0.0
                   vvacxy(imeshpt,imz,ivac,4) = 0.0
                ENDDO
             ENDDO
          ENDDO
       ENDIF
    ENDIF

    !---> fouriertransform the spin up and down potential
    !---> in the interstitial, vpw, to real space (vis)
    DO jspin = 1,input%jspins
       CALL fft3d(&
            &               vis(0,jspin),fftwork,&
            &               vpw(1,jspin),&
            &               stars,+1)
    ENDDO

    !---> calculate the four components of the matrix potential on
    !---> real space mesh
    DO imeshpt = 0,ifft3-1
       vup   = vis(imeshpt,1)
       vdown = vis(imeshpt,2)
       theta = vis(imeshpt,3)
       phi   = vis(imeshpt,4)
       !         write (35,'(i4,4f12.6)') mod(imeshpt,33),vup,vdown,theta,phi
       !--->    at first determine the effective potential and magnetic field
       veff  = (vup + vdown)/2.0
       beff  = (vup - vdown)/2.0
       !--->    now calculate the matrix potential, which is hermitian.
       !--->    thus calculate the diagonal elements:
       !--->    V_11
       vis(imeshpt,1) = veff + beff*COS(theta)
       !--->    V_22
       vis(imeshpt,2) = veff - beff*COS(theta)
       !--->    the real part of V_21
       vis(imeshpt,3) = beff*SIN(theta)*COS(phi)
       !--->    and the imaginary part of V_21
       vis(imeshpt,4) = beff*SIN(theta)*SIN(phi)
       DO ipot = 1,4
          vis(imeshpt,ipot) =  vis(imeshpt,ipot) * stars%ufft(imeshpt)
       ENDDO
    ENDDO

    !---> Fouriertransform the matrix potential back to reciprocal space
    DO ipot = 1,2
       fftwork=0.0
       CALL fft3d(&
            &               vis(0,ipot),fftwork,&
            &               vpw(1,ipot),&
            &               stars,-1)
    ENDDO
    CALL fft3d(&
         &           vis(0,3),vis(0,4),&
         &           vpw(1,3),&
         &           stars,-1)

    IF (input%film) THEN
       !--->    fouriertransform the spin up and down potential
       !--->    in the vacuum, vz & vxy, to real space (vvacxy)
       DO jspin = 1,input%jspins
          DO ivac = 1,vacuum%nvac
             DO imz = 1,vacuum%nmzxyd
                vziw = 0.0
                IF (oneD%odi%d1) THEN

                   CALL judft_error("oneD not implemented",calledby="vmatgen")
                   !                  CALL fft2d(&
                   !     &                 oneD%k3,odi%M,odi%n2d,&
                   !     &                 vvacxy(0,imz,ivac,jspin),fftwork,&
                   !     &                 vz(imz,ivac,jspin),vziw,vxy(imz,1,ivac,jspin),&
                   !     &                 vacuum,odi%nq2,odi%kimax2,1,&
                   !     &                  %igf,odl%pgf,odi%nst2)
                ELSE
                   CALL fft2d(&
                        &                 stars,&
                        &                 vvacxy(0,imz,ivac,jspin),fftwork,&
                        &                 vz(imz,ivac,jspin),vziw,vxy(imz,1,ivac,jspin),&
                        &                 vacuum%nmzxyd,1)
                ENDIF
             ENDDO
          ENDDO
       ENDDO

       !--->    calculate the four components of the matrix potential on
       !--->    real space mesh
       DO ivac = 1,vacuum%nvac
          DO imz = 1,vacuum%nmzxyd
             DO imeshpt = 0,ifft2-1
                vup   = vvacxy(imeshpt,imz,ivac,1)
                vdown = vvacxy(imeshpt,imz,ivac,2)
                theta = vvacxy(imeshpt,imz,ivac,3)
                phi   = vvacxy(imeshpt,imz,ivac,4)
                veff  = (vup + vdown)/2.0
                beff  = (vup - vdown)/2.0
                vvacxy(imeshpt,imz,ivac,1) = veff + beff*COS(theta)
                vvacxy(imeshpt,imz,ivac,2) = veff - beff*COS(theta)
                vvacxy(imeshpt,imz,ivac,3) = beff*SIN(theta)*COS(phi)
                vvacxy(imeshpt,imz,ivac,4) = beff*SIN(theta)*SIN(phi)
             ENDDO
          ENDDO
          DO imz = vacuum%nmzxyd+1,vacuum%nmzd
             vup   = vz(imz,ivac,1)
             vdown = vz(imz,ivac,2)
             theta = vz(imz,ivac,3)
             phi   = vz(imz,ivac,4)
             veff  = (vup + vdown)/2.0
             beff  = (vup - vdown)/2.0
             vz(imz,ivac,1) = veff + beff*COS(theta)
             vz(imz,ivac,2) = veff - beff*COS(theta)
             vz(imz,ivac,3) = beff*SIN(theta)*COS(phi)
             vz(imz,ivac,4) = beff*SIN(theta)*SIN(phi)
          ENDDO
       ENDDO

       !--->    Fouriertransform the matrix potential back to reciprocal space
       DO ipot = 1,2
          DO ivac = 1,vacuum%nvac
             DO imz = 1,vacuum%nmzxyd
                fftwork=0.0
                IF (oneD%odi%d1) THEN

                   CALL judft_error("oneD not implemented",calledby="vmatgen")
                   !                CALL fft2d(&
                   !     &                 oneD%k3,odi%M,odi%n2d,&
                   !     &                 vvacxy(0,imz,ivac,ipot),fftwork,&
                   !     &                 vz(imz,ivac,ipot),vziw,vxy(imz,1,ivac,ipot),&
                   !     &                 vacuum,odi%nq2,odi%kimax2,-1,&
                   !     &                  %igf,odl%pgf,odi%nst2)
                ELSE
                   CALL fft2d(&
                        &                 stars,&
                        &                 vvacxy(0,imz,ivac,ipot),fftwork,&
                        &                 vz(imz,ivac,ipot),vziw,vxy(imz,1,ivac,ipot),&
                        &                 vacuum%nmzxyd,-1)
                END IF
             ENDDO
          ENDDO
       ENDDO

       DO ivac = 1,vacuum%nvac
          DO imz = 1,vacuum%nmzxyd
             fftwork=0.0
             IF (oneD%odi%d1) THEN
                CALL judft_error("oneD not implemented",calledby="vmatgen")
                !              CALL fft2d(&
                !   &              oneD%k3,odi%M,odi%n2d,&
                !   &              vvacxy(0,imz,ivac,3),vvacxy(0,imz,ivac,4),&
                !   &              vz(imz,ivac,3),vz(imz,ivac,4),vxy(imz,1,ivac,3),&
                !   &              vacuum,odi%nq2,odi%kimax2,-1,&
                !   &               %igf,odl%pgf,odi%nst2)
             ELSE
                CALL fft2d(&
                     &              stars,&
                     &              vvacxy(0,imz,ivac,3),vvacxy(0,imz,ivac,4),&
                     &              vz(imz,ivac,3),vz(imz,ivac,4),vxy(imz,1,ivac,3),&
                     &              vacuum%nmzxyd,-1)
             END IF
          ENDDO
       ENDDO

    ENDIF
    !
    !---> save matrix potential to file potmat
    !
    OPEN (npotmatfile,FILE='potmat',FORM='unformatted',&
         &     STATUS='unknown')
    DO ipot = 1,3
       WRITE (npotmatfile) (vpw(ig3,ipot),ig3=1,stars%ng3)
    ENDDO
    IF (input%film) THEN
       DO ivac = 1,vacuum%nvac
          WRITE (npotmatfile)((vz(imz,ivac,ipot),imz=1,vacuum%nmzd),ipot=1,4)
          DO ipot = 1,3
             WRITE (npotmatfile)((vxy(imz,ig2,ivac,ipot),&
                  &                      imz=1,vacuum%nmzxyd),ig2=1,oneD%odi%nq2-1)
          ENDDO
       ENDDO
    ENDIF
8000 FORMAT(6f16.10)
    CLOSE (npotmatfile)

    DEALLOCATE ( vpw,vis,vxy,vr,vz,fftwork)
    IF (input%film) DEALLOCATE (vvacxy)
    RETURN
  END SUBROUTINE vmatgen
END MODULE m_vmatgen