od_vvac.f90 3.3 KB
Newer Older
1 2 3 4 5 6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
MODULE m_od_vvac
CONTAINS
  SUBROUTINE od_vvac(&
       &     stars,vacuum,cell,&
       &     psq,rht,&
       &     vz)

    !     subroutine which calculates the non warped part of the
    !     vacuum potential (m=0,gz=0)
    !                               Y. Mokrousov
    !     the potential in this subroutine can be defined in two
    !     equivalent ways, which nevertheless give a bit defferent 
    !     results, 2nd one seems to be more precise 

    USE m_qsf
    USE m_od_cylbes
    USE m_types
    USE m_constants
    IMPLICIT NONE
    TYPE(t_vacuum),INTENT(IN)   :: vacuum
    TYPE(t_stars),INTENT(IN)    :: stars
    TYPE(t_cell),INTENT(IN)     :: cell


31
    COMPLEX, INTENT (IN) :: psq(stars%ng3)
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    REAL,    INTENT (IN) :: rht(:,:,:) !(vacuum%nmzd,2,dimension%jspd)
    REAL,    INTENT (OUT) :: vz(:,:,:) !(vacuum%nmzd,2,dimension%jspd)

    COMPLEX  rhobar
    INTEGER  k1,k2,irec3,irec2,i,j,ivac,imz,imz1
    REAL     g2 ,a(vacuum%nmzd)
    REAL     fJ,z,zp,phi
    REAL     rht1(vacuum%nmzd)
    REAL     f2(vacuum%nmzd),f22(vacuum%nmzd)

    INTRINSIC cmplx


    DO i = 1,vacuum%nmz
       f2(i) = 0.
       f22(i) = 0.
       DO ivac = 1,vacuum%nvac
          vz(i,ivac,1) = 0.
       END DO
    END DO


    rhobar = -psq(1)

56 57
    DO  k1 = -stars%mx1,stars%mx1
       DO  k2 = -stars%mx2,stars%mx2
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
          irec3 = stars%ig(k1,k2,0)
          IF (irec3.NE.0) THEN
             irec2 = stars%ig2(irec3)
             IF (irec2.NE.1) THEN
                g2 = stars%sk2(irec2)
                phi = stars%phi2(irec2)
                CALL od_cylbes(1,cell%z1*g2,fJ)
                rhobar = rhobar - 2.*psq(irec3)*CMPLX(fJ/(g2*cell%z1),0.0)

             END IF
          END IF
       ENDDO
    ENDDO
    !----> 1st equivalent way      

    DO  i=1,vacuum%nmz
       rht1(i) = fpi_const*(cell%z1+(i-1)*vacuum%delz)*rht(i,1,1)
    ENDDO
    CALL qsf(vacuum%delz,rht1(1),f2(1),vacuum%nmz,1)

    DO  i = 1,vacuum%nmz
       f2(i) = tpi_const*cell%z1*cell%z1*rhobar-f2(i)
    ENDDO

    DO  i = 1,vacuum%nmz
       DO  j = 1,vacuum%nmz
          IF (j.LT.i) THEN
             f22(j) = 0.0
          ELSE
             f22(j) = f2(j)/(cell%z1+vacuum%delz*(j-1))
          END IF
       ENDDO
       CALL qsf(vacuum%delz,f22(1),a,vacuum%nmz,0)
       DO  ivac =1,vacuum%nvac
          vz(i,ivac,1) = -a(1)
       ENDDO
    ENDDO
    !----> 2nd equivalent way (via the Green function)

    DO imz = 1,vacuum%nmz
       z = cell%z1 + (imz-1)*vacuum%delz
       DO imz1 = 1,vacuum%nmz
          zp = cell%z1 +  (imz1-1)*vacuum%delz
          IF (imz1.LE.imz) THEN
             rht1(imz1) = fpi_const*LOG(z)*zp*rht(imz1,1,1)
          ELSE
             rht1(imz1) = fpi_const*LOG(zp)*zp*rht(imz1,1,1)
          END IF

       END DO
       CALL qsf(vacuum%delz,rht1,a,vacuum%nmz,0)
       vz(imz,1,1) = tpi_const*LOG(z)*(cell%z1*cell%z1)*rhobar - a(1)
    END DO

    RETURN
  END SUBROUTINE od_vvac
END MODULE m_od_vvac