struct_input.f 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
      MODULE m_structinput
      use m_juDFT
!********************************************************************
!     read in lattice information and generate space group operations
!********************************************************************
      CONTAINS
      SUBROUTINE struct_input( 
     >                        infh,errfh,bfh,warnfh,symfh,symfn,
     >                        natmax,nop48,
     X                        nline,xl_buffer,buffer,
     <                        title,film,cal_symm,checkinp,symor,
12
     <                    cartesian,oldfleur,a1,a2,a3,dvac,aa,scale,i_c,
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
     <                       factor,natin,atomid,atompos,ngen,mmrot,ttr,
     <                        l_hyb,l_soc,l_ss,theta,phi,qss,inistop)

      use m_calculator
      USE m_readrecord
      USE m_rwsymfile
      USE m_lattice, ONLY : lattice2
      IMPLICIT NONE

!===> Arguments
      INTEGER, INTENT (IN)    :: infh, errfh, bfh, warnfh, symfh
      INTEGER, INTENT (IN)    :: natmax, nop48, xl_buffer
      INTEGER, INTENT (INOUT)  :: nline
      CHARACTER(len=xl_buffer) :: buffer
      LOGICAL                 :: cal_symm, checkinp, symor, film
      LOGICAL                 :: cartesian,oldfleur,inistop
29
      LOGICAL, INTENT (OUT)   :: l_hyb,l_soc,l_ss
30
      INTEGER, INTENT (OUT)   :: natin,i_c
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
      INTEGER, INTENT (OUT)   :: ngen
      REAL,    INTENT (OUT)   :: aa,theta,phi
      REAL,    INTENT (OUT)   :: dvac
      REAL,    INTENT (OUT)   :: a1(3),a2(3),a3(3)
      REAL,    INTENT (OUT)   :: scale(3),factor(3),qss(3)
      REAL,    INTENT (OUT)   :: atompos(3,natmax)
      REAL,    INTENT (OUT)   :: atomid(natmax)
      INTEGER, INTENT (OUT)   :: mmrot(3,3,nop48)
      REAL,    INTENT (OUT)   :: ttr(3,nop48)
      CHARACTER(len=80), INTENT (OUT) :: title
      CHARACTER(len=7),  INTENT (IN)  :: symfn

!===> data
      REAL,             PARAMETER :: eps=1.e-7
      CHARACTER(len=1), PARAMETER :: cops(-1:3)=(/'2','3','4','6','1'/)

!===> Local Variables
      INTEGER :: n, ng, op, nbuffer, ios,nop2
49
      REAL    :: shift(3),rdummy(3,3),z_max,z_min,mat(3,3),x(3)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
      LOGICAL :: oldfleurset,l_symfile,l_gen,hybrid
      CHARACTER(len=10)        :: chtmp
      CHARACTER(len=3)         :: ch_test
!===> namelists
      NAMELIST /input/ film, cartesian, cal_symm, checkinp, inistop,
     &                 symor, oldfleur, hybrid

!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

!--->    set defaults
      film      = .false.   ! bulk calculation is default

      cartesian = .false.   ! read in atomic positions 
                            ! in either lattice units (.false.)
                            ! or scaled cartesian coordinates (.true.)

      cal_symm  = .true.    ! calculate space group symmetry    (.true.)
                            ! read in space group symmetry info (.false.)

      checkinp  = .false.   ! =T program reads input and stops
      
      inistop = .FALSE.     ! = T program stops after strho,swsp,flip

      op = -911             ! =1 => checkinp=t
                            ! =2 => inistop=t
                            ! =4 => itmax=0

      oldfleur  = .true.    ! =T fleur21 compatibility

      symor     = .false.   ! =T select the largest symmorphic subgroup

      hybrid    = .false.   ! =T create inp file for hybrid functionals, too
      l_ss      = .false.   ! =T spin-spiral calculation ... may affect
      l_soc     = .false.   ! =T spin-orbit interaction ... the symmetry

      factor(:) = 1.0
      theta = 0.0 ; phi = 0.0
      qss(:) = (/0.0,0.0,0.0/)
!initialize the calculator
      DO
         READ (UNIT = infh,FMT = "(a3)",iostat=ios) ch_test
         if (ios.ne.0) exit
         BACKSPACE(infh)
         IF (ch_test   /="def") EXIT
         READ(unit = infh,FMT="(4x,a)") buffer
         n = INDEX(buffer,"=")
         IF (n == 0.OR.n>len_TRIM(buffer)-1) STOP
     $        "Error in variable definitions"
         CALL ASSIGN_var(buffer(:n-1),evaluate(buffer(n+1:)))
      ENDDO
      backspace(infh)


!===> start reading input

      CALL read_record(
     >                 infh,xl_buffer,
     X                 nline,
     <                 nbuffer,buffer,ios )

      READ (buffer,'(a)') title

      IF ( buffer(1:1) == '&' ) THEN         ! already read some input
        title = 'unnamed project'
      ELSE   
        CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios )
      ENDIF

      IF ( buffer(1:6)=='&input' ) THEN      ! get namelist 'input'
        READ (bfh,input)
        l_hyb       = hybrid
        oldfleurset = .false.
        IF ( index(buffer,'oldfleur')>0 ) oldfleurset = .true.
        op = 0 
        IF ( op > 0 ) THEN
          IF ( btest(op,0) ) checkinp = .true.
          IF ( BTEST(op,1) ) inistop  = .TRUE.
          IF ( btest(op,2) ) WRITE (6,*) 'action N/A'
!dbg+
          IF ( btest(op,0) ) WRITE (6,*) 'bit 0 set'
          IF ( btest(op,1) ) WRITE (6,*) 'bit 1 set'
          IF ( btest(op,2) ) WRITE (6,*) 'bit 2 set'
!dbg-
        ENDIF

        CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios )
      ENDIF

      IF ( buffer(1:1) == '&' ) THEN

        IF ( buffer(1:8)=='&lattice' ) THEN
          CALL lattice2( 
     >                  buffer,xl_buffer,errfh,bfh,nline,
143
     <                  a1,a2,a3,aa,scale,mat,i_c,ios )
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
          dvac = 0.00
          IF ( ios.NE.0 ) THEN
            WRITE (errfh,*)
            WRITE (errfh,*) 'struct_input: ERROR! ',
     &                   'while reading &lattice in line',nline,'.'
            WRITE (errfh,*)
            CALL juDFT_error("ERROR! while reading &lattice",calledby
     +           ="struct_input")
          ENDIF
        ELSE
          WRITE(errfh,*)
          WRITE(errfh,*) 'struct_input: ERROR! line',nline,'.'
          WRITE(errfh,*)
     &     'Expecting either namelist &lattice or dircet lattice input.'
          WRITE (errfh,*)
          CALL juDFT_error("ERROR! Cannot find lattice info.",calledby
     +         ="struct_input")
        ENDIF

      ELSE

!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!--->    title:
!        cannot begin with an & and should not contain an !
!
!--->    lattice vectors:
!--->
!--->    lattice vectors are input in scaled cartesian coordinates:
!--->
!--->    the overall scale is set by aa and scale(:) as follows:
!--->    assume that we want the lattice vectors to be given by
!--->      a_i = ( a_i(1) xa , a_i(2) xb , a_i(3) xc )
!--->    then choose aa, scale such that: xa = aa * scale(1), etc.
!--->    to make it easy to input sqrts, if scale(i)<0, then
!--->    scale = sqrt(|scale|)
!--->    Example: hexagonal lattice
!           a1 = ( sqrt(3)/2 a , -1/2 a , 0.      )
!           a2 = ( sqrt(3)/2 a ,  1/2 a , 0.      )
!           a3 = ( 0.          , 0.     , c=1.62a )
!
!        input:
!            0.5  -0.5  0.0     ! a1
!            0.5   0.5  0.0     ! a2
!            0.0   0.0  1.0     ! a3
!           6.2                 ! lattice constant
!          -3.0   0.0   1.62    ! scale(2) is 1 by default

!--->    read in (scaled) lattice vectors (and dvac, if present)

         !READ (buffer,*) a1
         a1(1)=evaluatefirst(buffer)
         a1(2)=evaluatefirst(buffer)
         a1(3)=evaluatefirst(buffer)
         CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios)
         !READ (buffer,*) a2
         a2(1)=evaluatefirst(buffer)
         a2(2)=evaluatefirst(buffer)
         a2(3)=evaluatefirst(buffer)
         CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios)
         !READ (buffer,*, err=811,end=811, iostat=ios) a3, dvac
         a3(1)=evaluatefirst(buffer)
         a3(2)=evaluatefirst(buffer)
         a3(3)=evaluatefirst(buffer)
         dvac=evaluatefirst(buffer)
         film =.true.
         IF ( dvac <= 0.00 ) THEN
           film = .false.
           dvac = a3(3)
         ENDIF
 811     CONTINUE              ! obviously no film calculation
         !READ(buffer,*) a3

!--->    read in overall lattice constant

         CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios)
         !READ (buffer,*) aa
         aa=evaluatefirst(buffer)

!--->    read in scale
         scale = 0.00
         CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios)
         !READ (buffer,*) scale
         scale(1)=evaluatefirst(buffer)
         scale(2)=evaluatefirst(buffer)
         scale(3)=evaluatefirst(buffer)
         
      ENDIF ! &lattice ...

!===>    program configuration
!     if oldfleur was not set in the input, set it here, dependent on 
!     film/bulk calculation

      IF ( .not.oldfleurset ) THEN
        oldfleur = .false.
        IF ( film ) oldfleur = .true.
      ENDIF

!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!--->    atomic positions:
!--->
!--->    atomic positions input can be either in scaled cartesian
!--->    or lattice vector units, as determined by logical cartesian.
!--->    (for supercells, sometimes more natural to input positions
!--->    in scaled cartesian.)
!--->
!--->    if ntin < 0, then the representative atoms only are given;
!--->    this requires that the space group symmetry be given as input.

!--->    read in number of atoms or types

      CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios )
      !READ (buffer,*) natin
      natin=evaluatefirst(buffer)
!--->    read in atomic positions
!--->    and atomic identification number (atomid)
!--->    to distinguish different atom types. 
!--->    (atomid is used later as default for atom Z value (zatom)

      DO n = 1, abs(natin)
        CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios)
        !READ (buffer,*) atomid(n), atompos(:,n)
        atomid(n)=evaluatefirst(buffer)
        atompos(1,n)=evaluatefirst(buffer)
        atompos(2,n)=evaluatefirst(buffer)
        atompos(3,n)=evaluatefirst(buffer)
      ENDDO

      CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios )

      IF ( buffer(1:6)=='&shift') then
        buffer = buffer(7:len_trim(buffer)-1)
        shift = -911.0
        READ (buffer,*, err=821,end=821, iostat=ios) shift
 821    CONTINUE
        READ (buffer,*) shift(1)
        IF ( shift(3)<-900.0 ) shift(3) = shift(1)
        IF ( shift(2)<-900.0 ) shift(2) = shift(1)
        DO n = 1, 3
          atompos(n,1:abs(natin)) = atompos(n,1:abs(natin))+shift(n)
        ENDDO
        
        CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios)
      ENDIF

      IF ( buffer(1:7)=='&factor') THEN
        buffer = buffer(8:len_trim(buffer)-1)
        factor = -911.0 
        READ (buffer,*, err=831,end=831, iostat=ios) factor
 831    CONTINUE
        READ (buffer,*) factor(1)
        IF ( factor(3)<-900.0 ) factor(3) = factor(1)
        IF ( factor(2)<-900.0 ) factor(2) = factor(1)
        DO n = 1, 3
          atompos(n,1:abs(natin)) = atompos(n,1:abs(natin))/factor(n)
        ENDDO
        
        CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios)
      ENDIF

      IF ( buffer(1:1).NE.'&') THEN
        WRITE (warnfh,*)
        WRITE (warnfh,*) 'struct_input: WARNING! ',
     &       'Number of atoms to small or too many atoms in list?.'
        WRITE (warnfh,*)
      ENDIF

310 311 312 313 314 315 316 317 318 319 320 321 322 323
      IF (abs(mat(1,1)).GT.0.0000001) THEN ! transform hex->trig
        CALL recip(a1,a2,a3,rdummy)
        DO n = 1, abs(natin)
!          CALL cotra0(atompos(1,n),x,mat)
          x = matmul(mat,atompos(:,n))
          write(*,'(3f10.5)') x(1:3)
          write(*,'(3f10.5)') rdummy
!          CALL cotra1(x,atompos(1,n),rdummy)
          atompos(:,n) = matmul(rdummy,x)
          write(*,'(3f10.5)') atompos(1:3,n)
        ENDDO
        i_c = 1
      ENDIF

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
      IF (film) THEN

        z_max = MAXVAL( atompos(3,1:abs(natin)) )  ! check the outmost atomic position
        z_min = MINVAL( atompos(3,1:abs(natin)) )  
        z_max = 2 * (MAX(z_max,-z_min) + 3.0)      ! how much space do we need in z-dir.
        a3(3) = MAX( a3(3), z_max/(aa*scale(3)) )  ! adjust a3(3) so that it fits

        atompos(3,1:abs(natin)) =                  ! rescale to internal coordinates
     +  atompos(3,1:abs(natin))/(a3(3)*aa*scale(3))

      ENDIF

!===> read symmetry from file or from namelist

      INQUIRE ( file=trim(symfn), exist=l_symfile )

      IF ( l_symfile ) THEN

        WRITE (6,*) 'DBG: l_symfile=',l_symfile
        CALL rw_symfile(
     >                  'r',symfh,symfn,nop48,rdummy,
     X                   mmrot,ttr,ngen,nop2,symor)
        cal_symm = .false.

      ELSE

        l_gen = .false.
        IF ( buffer(1:4)=='&gen' ) l_gen = .true.

        IF ( buffer(1:4)=='&gen' .or.
     &       buffer(1:4)=='&sym'     ) THEN

          WRITE (6,*) 'DBG: &sym=',buffer(1:4)

          buffer  = ADJUSTL(buffer(5:nbuffer))
          nbuffer = LEN_TRIM(buffer)

          READ (buffer,*,err=913, end=913, iostat=ios) ngen
          n = scan(buffer,' ')
          IF ( n>0 ) buffer = buffer(n+1:nbuffer)
          buffer  = adjustl(buffer(1:nbuffer))
          nbuffer = len_trim(buffer)
          READ (buffer,*,err=913, end=913, iostat=ios) 
     &         ( mmrot(1,1,n),mmrot(1,2,n),mmrot(1,3,n),ttr(1,n),
     &           mmrot(2,1,n),mmrot(2,2,n),mmrot(2,3,n),ttr(2,n),
     &           mmrot(3,1,n),mmrot(3,2,n),mmrot(3,3,n),ttr(3,n),
     &           n = 2, ngen+1 )

        cal_symm = .false.

        CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios)

        ENDIF ! &gen or &sym

      ENDIF ! from_symfile
      IF ( buffer(1:4)=='&soc' ) THEN
         l_soc=.true. 
         buffer  = ADJUSTL(buffer(5:nbuffer))
         nbuffer = LEN_TRIM(buffer)
         READ (buffer,*,err=913, end=913, iostat=ios) theta,phi
         CALL read_record( infh, xl_buffer, nline, nbuffer, buffer, ios)
      ENDIF
      IF ( buffer(1:4)=='&qss' ) THEN
         l_ss=.true.
         buffer  = ADJUSTL(buffer(5:nbuffer))
         nbuffer = LEN_TRIM(buffer)
         READ (buffer,*,err=913,end=913,iostat=ios) qss(1),qss(2),qss(3)
      ENDIF


      IF ( .not.cal_symm ) THEN   ! &gen or &sym

!---> make sure idenity is first operation          
        mmrot(:,:,1) = reshape((/ 1,0,0, 0,1,0, 0,0,1 /),(/ 3,3 /))
        ttr(:,1) = 0.0

        DO ng = 2, ngen + 1
          IF ( all( mmrot(:,:,ng)==mmrot(:,:,1) ) .AND.          ! identity was entered 
     &         all( abs( ttr(:,ng)-ttr(:,1) ) < eps ) ) THEN     ! explicitely as matrix 'ng'
            DO n = ng, ngen
              mmrot(:,:,n) = mmrot(:,:,n+1)                      ! shift by '-1' & exit
              ttr(:,n)     = ttr(:,n+1) 
            ENDDO
            ngen = ngen - 1
            EXIT
          ENDIF
        END DO

        IF ( l_gen ) mmrot(1,1,1) = 0 ! is used later to distinguish
                                      ! between generators and full group

        WRITE (6,*) 'DBG: mmrot(1,1,1)=',mmrot(1,1,1)

      ENDIF ! .not.cal_symm

      RETURN

 912  CONTINUE
      WRITE (errfh,*) 'struct_input: ERROR reading namelist.',
     &               ' ios =',ios,
     &               ' line =',nline
      WRITE (errfh,*) buffer(1:nbuffer)
      WRITE (errfh,*) 'The cause of this error may be ...'
      WRITE (errfh,*) '        a variable not defined in this namelist,'
      WRITE (errfh,*) '        wrong type of data for a variable.'
      CALL juDFT_error("ERROR reading input",calledby ="struct_input")

 913  CONTINUE
      WRITE (errfh,*) 'struct_input: ERROR reading record.',
     &               ' ios =',ios,
     &               ' line =',nline
      WRITE (errfh,*) buffer(1:nbuffer)
       CALL juDFT_error("ERROR reading input",calledby="struct_input")

      END SUBROUTINE struct_input
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
!-------------------------------------
      SUBROUTINE recip(a1,a2,a3,b)

      USE m_constants, ONLY : pimach
      IMPLICIT NONE
      REAL, INTENT (IN) :: a1(3),a2(3),a3(3)
      REAL, INTENT (OUT):: b(3,3)
      REAL volume

!  volume (without scaling factor aa^3)
      volume  = a1(1)*a2(2)*a3(3) + a2(1)*a3(2)*a1(3) +
     &          a3(1)*a1(2)*a2(3) - a1(3)*a2(2)*a3(1) -
     &          a2(3)*a3(2)*a1(1) - a3(3)*a1(2)*a2(1)

!  reciprocal lattice vectors in scaled Cartesian units
      b(1,1) = (a2(2)*a3(3) - a2(3)*a3(2))
      b(1,2) = (a2(3)*a3(1) - a2(1)*a3(3))
      b(1,3) = (a2(1)*a3(2) - a2(2)*a3(1))
      b(2,1) = (a3(2)*a1(3) - a3(3)*a1(2))
      b(2,2) = (a3(3)*a1(1) - a3(1)*a1(3))
      b(2,3) = (a3(1)*a1(2) - a3(2)*a1(1))
      b(3,1) = (a1(2)*a2(3) - a1(3)*a2(2))
      b(3,2) = (a1(3)*a2(1) - a1(1)*a2(3))
      b(3,3) = (a1(1)*a2(2) - a1(2)*a2(1))
!      b = 2.0*pimach()*b/volume
      b = b/volume
      END SUBROUTINE recip

467
      END MODULE m_structinput