chkmt.f90 18.2 KB
Newer Older
1 2 3 4 5 6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7
      MODULE m_chkmt
Gregor Michalicek's avatar
Gregor Michalicek committed
8
      USE m_juDFT
9 10 11 12 13
      private
      public chkmt
!---------------------------------------------------------------------
!  Check muffin tin radii and determine a reasonable choice for MTRs.
!  Derive also other parameters for the input file, to provide some
Gregor Michalicek's avatar
Gregor Michalicek committed
14 15
!  help in the out-file.
!                         GM'16
16 17 18 19 20 21 22 23
!---------------------------------------------------------------------
      CONTAINS
      SUBROUTINE chkmt(&
     &                 atoms,input,vacuum,cell,oneD,&
     &                 l_gga,noel,l_test,&
     &                 kmax,dtild,dvac1,lmax1,jri1,rmt1,dx1)

      USE m_types
Gregor Michalicek's avatar
Gregor Michalicek committed
24 25
      USE m_sort
      USE m_inv3
26
      USE m_juDFT
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
      IMPLICIT NONE
!     ..
!     .. Scalar Arguments ..
      TYPE(t_atoms),INTENT(IN) :: atoms
      TYPE(t_input),INTENT(IN) :: input
      TYPE(t_vacuum),INTENT(IN):: vacuum
      TYPE(t_cell),INTENT(IN)  :: cell
      TYPE(t_oneD),INTENT(IN)  :: oneD
      CHARACTER*3, INTENT (IN) :: noel(atoms%ntype)
      LOGICAL, INTENT (IN)     :: l_gga,l_test
      REAL,    INTENT (OUT)    :: kmax,dtild,dvac1
!     ..
!     .. Array Arguments ..
      INTEGER, INTENT (OUT)    :: lmax1(atoms%ntype),jri1(atoms%ntype)
      REAL,    INTENT (OUT)    :: rmt1(atoms%ntype),dx1(atoms%ntype)
!     ..
!     .. Local Scalars ..
Gregor Michalicek's avatar
Gregor Michalicek committed
44 45 46 47 48 49 50 51 52
      INTEGER na,n
      INTEGER i,j,k,l,jri11,lmax11
      INTEGER maxCubeAtoms, iAtom, numAtoms, iNeighborAtom, identicalAtoms
      INTEGER typeA, typeB
      REAL    dx11,rkm,sum_r,facA,facB
      REAL    rmtMax, rmtMin, rmtMaxDefault, rmtDelta
      REAL    rmtFac, cubeLength, amatAuxDet
      REAL    maxSqrDist, dist, currentDist
      LOGICAL error, outOfBounds
53 54
!     ..
!     .. Local Arrays ..
Gregor Michalicek's avatar
Gregor Michalicek committed
55 56 57 58 59 60 61 62 63 64
      REAL    t_rmt(0:103), minRmts(0:103)
      REAL    amatAux(3,3), invAmatAux(3,3)
      REAL    taualAux(3,atoms%nat), posAux(3,atoms%nat)
      REAL    minPos(3), maxPos(3), pos(3), point(3), realCellPos(3)
      REAL    offsetPos(3)
      REAL    nearestAtomDists(atoms%ntype)
      INTEGER nearestAtoms(atoms%ntype)
      INTEGER sortedDistList(atoms%ntype)
      INTEGER minCubeIndex(3), maxCubeIndex(3), cubeIndex(3)
      INTEGER minCellIndices(3), maxCellIndices(3)
65

Gregor Michalicek's avatar
Gregor Michalicek committed
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
      INTEGER, ALLOCATABLE :: numAtomsInCubes(:,:,:)
      INTEGER, ALLOCATABLE :: atomRefsInCubes(:,:,:,:)
      INTEGER, ALLOCATABLE :: refCubes(:,:)
      INTEGER, ALLOCATABLE :: nearestNeighbors(:,:)
      INTEGER, ALLOCATABLE :: numNearestNeighbors(:)
      INTEGER, ALLOCATABLE :: neighborAtoms(:)
      INTEGER, ALLOCATABLE :: distIndexList(:)
      REAL,    ALLOCATABLE :: posInCubes(:,:,:,:,:)
      REAL,    ALLOCATABLE :: refPos(:,:)
      REAL,    ALLOCATABLE :: nearestNeighborDists(:,:)
      REAL,    ALLOCATABLE :: sqrDistances(:)

!     Plan for this routine:
!     0. Do initializations and set some constants
!     1. Locally replace unit cell by an auxiliary unit cell with:
!        a) all atoms within the unit cell
!        b) basis vectors obtained by lattice reduction of the original cell. 
!           [not in 1st (this) version of routine. Can be implemented with the LLL algorithm when needed.]
!     2. Get minimal and maximal coordinates within auxiliary unit cell
!     3. Construct mesh of cubes covering the auxiliary unit cell and a boundary of width 2*rmtMax + rmtDelta
!     4. Fill mesh of cubes with atoms
!        a) Store atoms in cubes and representative cube for each atom type
!     5. For each atom in auxiliary unit cell select cube and collect shortest distances to other atoms in neighborhood
!        a) Sort distances and set MT radii for the atoms
!     6. Correct bad choices and set missing MT radii, vacuum distances, and other parameters
!     7. Test old MT radii
92 93


Gregor Michalicek's avatar
Gregor Michalicek committed
94 95 96 97 98 99 100 101 102 103
!     0. Do initializations and set some constants

      rmtMaxDefault = 2.8
      rmtMax = rmtMaxDefault
      rmtMin = 1.0
      IF (l_test) THEN
         rmtMax = MAX(rmtMax,MAXVAL(atoms%rmt(:)))
         rmtMin = MIN(rmtMin,MINVAL(atoms%rmt(:)))
      END IF
      rmtDelta = 0.3
104
      IF (input%film) THEN
Gregor Michalicek's avatar
Gregor Michalicek committed
105
        rmtFac = 0.95
106
      ELSE
Gregor Michalicek's avatar
Gregor Michalicek committed
107
        rmtFac = 0.975
108
      ENDIF
Gregor Michalicek's avatar
Gregor Michalicek committed
109 110 111
      t_rmt(0:103) = 2.3 ! default value
      t_rmt(1) = 1.0 ; t_rmt(5:9) = 1.3 ; t_rmt(16:17) = 1.8
      cubeLength = 2*rmtMax+rmtDelta
112
      maxCubeAtoms = (FLOOR(cubeLength / (0.7*2.0*rmtMin)) + 1)**3
Gregor Michalicek's avatar
Gregor Michalicek committed
113
      error  = .FALSE.
114

Gregor Michalicek's avatar
Gregor Michalicek committed
115 116
!     1. For the 1st version the auxiliary unit cell is just a copy of the original unit cell with
!        all atoms within the cell.
117

Gregor Michalicek's avatar
Gregor Michalicek committed
118 119 120 121 122 123 124 125 126 127
      DO i = 1, 3
         DO j = 1, 3
            amatAux(i,j) = cell%amat(i,j)
         END DO
      END DO

      DO i = 1, atoms%nat
         taualAux(1,i) = atoms%taual(1,i) - FLOOR(atoms%taual(1,i))
         taualAux(2,i) = atoms%taual(2,i) - FLOOR(atoms%taual(2,i))
         taualAux(3,i) = atoms%taual(3,i) - FLOOR(atoms%taual(3,i))
128
         posAux(:,i) = MATMUL(amatAux,taualAux(:,i))
Gregor Michalicek's avatar
Gregor Michalicek committed
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
      END DO

!     2. Get minimal and maximal coordinates for auxiliary unit cell

      minPos = 0.0
      maxPos = 0.0

      DO i = 0, 1
         DO j = 0, 1
            DO k = 0, 1
               DO l = 1, 3
                  pos(l) = i*amatAux(l,1) + j*amatAux(l,2) + k*amatAux(l,3)
                  IF (pos(l).GT.maxPos(l)) maxPos(l) = pos(l)
                  IF (pos(l).LT.minPos(l)) minPos(l) = pos(l)
               END DO
            END DO
         END DO
      END DO
      
!     3. Construct cube mesh:
!        In each dimension cube i covers the interval from i*cubeLength to (i+1)*cubeLength
!        Each cube may cover up to maxCubeAtoms atoms. This should be set to a save size.

      DO i = 1, 3
         minPos(i) = minPos(i) - cubeLength
         maxPos(i) = maxPos(i) + cubeLength
         minCubeIndex(i) = FLOOR(minPos(i)/cubeLength)
         maxCubeIndex(i) = CEILING(maxPos(i)/cubeLength)
      END DO

      ALLOCATE (numAtomsInCubes(minCubeIndex(1):maxCubeIndex(1),&
                                minCubeIndex(2):maxCubeIndex(2),&
                                minCubeIndex(3):maxCubeIndex(3)))
      ALLOCATE (atomRefsInCubes(maxCubeAtoms,minCubeIndex(1):maxCubeIndex(1),&
                                             minCubeIndex(2):maxCubeIndex(2),&
                                             minCubeIndex(3):maxCubeIndex(3)))
      ALLOCATE (posInCubes(3,maxCubeAtoms,minCubeIndex(1):maxCubeIndex(1),&
                                          minCubeIndex(2):maxCubeIndex(2),&
                                          minCubeIndex(3):maxCubeIndex(3)))
      ALLOCATE (refCubes(3,atoms%ntype),refPos(3,atoms%ntype))
      ALLOCATE (nearestNeighbors(maxCubeAtoms,atoms%ntype),numNearestNeighbors(atoms%ntype))
      ALLOCATE (nearestNeighborDists(maxCubeAtoms,atoms%ntype))

      numAtomsInCubes = 0

!     4. Fill mesh of cubes with atoms
!        First obtain minimal and maximal indices for relevant unit cells

      minCellIndices = 0
      maxCellIndices = 0

      CALL inv3(amatAux,invAmatAux,amatAuxDet)

      DO i = 0, 1
         DO j = 0, 1
            DO k = 0, 1
               point(:) = minPos(:)
               IF(i.EQ.1) point(1) = maxPos(1)
               IF(j.EQ.1) point(2) = maxPos(2)
               IF(k.EQ.1) point(3) = maxPos(3)
               realCellPos(:) = matmul(invAmatAux,point(:))
               DO l = 1, 3
                  IF(minCellIndices(l).GT.realCellPos(l)) THEN
                     minCellIndices(l) = FLOOR(realCellPos(l))
                  END IF
                  IF(maxCellIndices(l).LT.realCellPos(l)) THEN
                     maxCellIndices(l) = FLOOR(realCellPos(l)) ! Is 'FLOOR' enough?
                  END IF
               END DO
            END DO
         END DO
      END DO

!        Store atoms in cubes and representative cube for each atom type

      DO i = minCellIndices(1), maxCellIndices(1)
         DO j = minCellIndices(2), maxCellIndices(2)
            DO k = minCellIndices(3), maxCellIndices(3)
               DO l = 1, 3
                  offsetPos(l) = i*amatAux(l,1) + j*amatAux(l,2) + k*amatAux(l,3)
               END DO
               iAtom = 0
               DO n = 1, atoms%ntype
                  DO na = 1, atoms%neq(n)
                     iAtom = iAtom + 1
                     pos(:) = posAux(:,iAtom) + offsetPos(:)
                     outOfBounds = .FALSE.
                     DO l = 1, 3
                        cubeIndex(l) = FLOOR(pos(l)/cubeLength)
                        IF(cubeIndex(l).LT.minCubeIndex(l)) outOfBounds = .TRUE.
                        IF(cubeIndex(l).GT.maxCubeIndex(l)) outOfBounds = .TRUE.
                     END DO
                     IF(.NOT.outOfBounds) THEN
                        numAtomsInCubes(cubeIndex(1),cubeIndex(2),cubeIndex(3)) = &
                           numAtomsInCubes(cubeIndex(1),cubeIndex(2),cubeIndex(3)) + 1
                        numAtoms = numAtomsInCubes(cubeIndex(1),cubeIndex(2),cubeIndex(3))
                        IF(numAtoms.GT.maxCubeAtoms) THEN
                           STOP 'ERROR: maxCubeAtoms is not large enough in chkmt.'
                        END IF
                        atomRefsInCubes(numAtoms,cubeIndex(1),cubeIndex(2),cubeIndex(3)) = n
                        posInCubes(:,numAtoms,cubeIndex(1),cubeIndex(2),cubeIndex(3)) = pos(:)
                        IF((i.EQ.0).AND.(j.EQ.0).AND.(k.EQ.0).AND.(na.EQ.1)) THEN
                           refCubes(:,n) = cubeIndex(:)
                           refPos(:,n) = pos(:)
                        END IF
                     END IF
                  END DO
               END DO
            END DO
         END DO
      END DO

!     5. For each atom type in auxiliary unit cell select cube and collect shortest distances 
!        to other atoms in neighborhood

      maxSqrDist = cubeLength**2
      ALLOCATE(sqrDistances(8*maxCubeAtoms)) ! Formally 27, but 8 should be enough due to maxSqrDist
      ALLOCATE(neighborAtoms(8*maxCubeAtoms))
      ALLOCATE(distIndexList(8*maxCubeAtoms))

      DO n = 1, atoms%ntype
         cubeIndex(:) = refCubes(:,n)
         neighborAtoms = 0
         iNeighborAtom = 0
         identicalAtoms = 0
         DO i = cubeIndex(1) - 1, cubeIndex(1) + 1
            DO j = cubeIndex(2) - 1, cubeIndex(2) + 1
               DO k = cubeIndex(3) - 1, cubeIndex(3) + 1
                  DO iAtom = 1, numAtomsInCubes(i,j,k)
                     currentDist = (refPos(1,n) - posInCubes(1,iAtom,i,j,k))**2 + &
                                   (refPos(2,n) - posInCubes(2,iAtom,i,j,k))**2 + &
                                   (refPos(3,n) - posInCubes(3,iAtom,i,j,k))**2
                     IF (currentDist.LT.0.000001) THEN
                        identicalAtoms = identicalAtoms + 1
                     ELSE IF (currentDist.LT.maxSqrDist) THEN
                        iNeighborAtom = iNeighborAtom + 1
                        neighborAtoms(iNeighborAtom) = atomRefsInCubes(iAtom,i,j,k)
                        sqrDistances(iNeighborAtom) = currentDist
                     END IF
                  END DO
               END DO
            END DO
         END DO
         IF (identicalAtoms.GT.1) THEN
            WRITE(*,*) 'Position: ', refPos(:,n)
274
            CALL juDFT_error("Too many atoms at same position.",calledby ="chkmt")
Gregor Michalicek's avatar
Gregor Michalicek committed
275 276
         END IF
         numNearestNeighbors(n) = MIN(maxCubeAtoms,iNeighborAtom)
277
         CALL sort(distIndexList(:iNeighborAtom),sqrDistances(:iNeighborAtom))
Gregor Michalicek's avatar
Gregor Michalicek committed
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
         DO i = 1, numNearestNeighbors(n)
            nearestNeighbors(i,n) = neighborAtoms(distIndexList(i))
            nearestNeighborDists(i,n) = SQRT(sqrDistances(distIndexList(i)))
         END DO
      END DO

      DO i = 1, atoms%ntype
         IF(numNearestNeighbors(i).GE.1) THEN
            nearestAtoms(i) = nearestNeighbors(1,i)
            nearestAtomDists(i) = nearestNeighborDists(1,i)
         ELSE
            nearestAtoms(i) = -1
            nearestAtomDists(i) = 5000.0 * cubeLength
         END IF
      END DO

!        Sort distances and set MT radii for the atoms

296
      CALL sort(sortedDistList,nearestAtomDists)
Gregor Michalicek's avatar
Gregor Michalicek committed
297 298 299 300 301 302 303
      rmt1 = -1.0
      minRmts = -1.0
      DO i = 1, atoms%ntype
         typeA = sortedDistList(i)
         typeB = nearestAtoms(typeA)
         IF(typeB.LT.0) CYCLE
         dist = nearestAtomDists(typeA)
304 305 306 307 308 309 310
         IF (dist.LT.0.5) THEN
            WRITE (*,*) "Distance between atoms too small!"
            WRITE (*,*) "atom type A: ", typeA
            WRITE (*,*) "atom type B: ", typeB
            WRITE (*,*) "distance: ", dist
            CALL juDFT_error("Distance between atoms too small!",calledby ="chkmt")
         END IF
Gregor Michalicek's avatar
Gregor Michalicek committed
311 312 313 314 315 316 317 318 319
         sum_r = 1.0 / ( t_rmt(atoms%nz(typeA)) + t_rmt(atoms%nz(typeB)) )
         facA = t_rmt(atoms%nz(typeA)) * sum_r
         facB = t_rmt(atoms%nz(typeB)) * sum_r
         ! Note: The result of this section may be slightly different from the old version
         !       iff the nearest atom is another atom of the same type
         IF (minRmts(atoms%nz(typeA)).LT.0.0) THEN
            IF (minRmts(atoms%nz(typeB)).LT.0.0) THEN
               minRmts(atoms%nz(typeA)) = rmtFac * dist * facA
               minRmts(atoms%nz(typeB)) = rmtFac * dist * facB
320
            ELSE
Gregor Michalicek's avatar
Gregor Michalicek committed
321
               minRmts(atoms%nz(typeA)) = rmtFac * (dist - minRmts(atoms%nz(typeB)))
322
            END IF
Gregor Michalicek's avatar
Gregor Michalicek committed
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
         ELSE IF (minRmts(atoms%nz(typeB)).LT.0.0) THEN
           minRmts(atoms%nz(typeB)) = rmtFac * (dist - minRmts(atoms%nz(typeA)))
         END IF
      END DO

!     6. Correct bad choices and set missing MT radii, vacuum distances, and other parameters

      DO i = 1, atoms%ntype
         IF((minRmts(atoms%nz(i)).LT.0.0).OR.(minRmts(atoms%nz(i)).GE.rmtMaxDefault)) THEN
            minRmts(atoms%nz(i)) = rmtMaxDefault
         END IF
         rmt1(i) = minRmts(atoms%nz(i))
      END DO

      ! NOTE: The result of this section may be slightly different from the old version
      !       iff the old version would enlarge a MT sphere at this point.
      !       Also the old version does not propagate the changes of the MT radii to all
      !       atoms with the same atomic number
      DO i = 1, atoms%ntype
         DO j = 1, numNearestNeighbors(i)
            k = nearestNeighbors(j,i)
            IF (rmt1(i)+rmt1(k).GE.nearestNeighborDists(j,i)) THEN
               minRmts(atoms%nz(i)) = MIN(rmtFac*nearestNeighborDists(j,i)/2.0,MIN(rmt1(i),minRmts(atoms%nz(i))))
               minRmts(atoms%nz(k)) = MIN(rmtFac*nearestNeighborDists(j,i)/2.0,MIN(rmt1(k),minRmts(atoms%nz(k))))
            END IF
         END DO
      END DO

      DO i = 1, atoms%ntype
         rmt1(i) = minRmts(atoms%nz(i))
      END DO

      WRITE (6,*) '----------------------------------------------------'
      WRITE (6,*) 'Suggested values for input: '
      WRITE (6,*) 
358

Gregor Michalicek's avatar
Gregor Michalicek committed
359
      dvac1 = 0.0
360
      IF (input%film) THEN
Gregor Michalicek's avatar
Gregor Michalicek committed
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
         iAtom = 0
         DO i = 1, atoms%ntype
            DO na = 1, atoms%neq(i)
               iAtom = iAtom + 1
               IF (oneD%odd%d1) THEN
                  dvac1 = MAX(dvac1, SQRT(atoms%pos(1,iAtom)**2+atoms%pos(2,iAtom)**2)+rmt1(i))
               ELSE
                  dvac1 = MAX(dvac1, ABS(atoms%pos(3,iAtom))+rmt1(i))
               END IF
            END DO
         END DO
         dvac1 = 2.0 * (dvac1+0.3)
         dtild = dvac1 + 1.5 * MAXVAL(rmt1(:))
         WRITE (6,'("vacuum distance dvac =",f10.5)') dvac1
         WRITE (6,'("extra vac.dist. dtild=",f10.5)') dtild
      END IF

      rkm = 0.0
      WRITE (6,*) 'Atom Z  lmax jri    rmt         dx'
      DO n = 1, atoms%ntype
         IF (rmt1(n).LT.1.8) THEN
            lmax11 = 6
         ELSE IF (rmt1(n).LT.2.4) THEN
            lmax11 = 8
         ELSE 
            lmax11 = 10
         END IF
         IF (l_gga) THEN
            jri11 = NINT(330*rmt1(n)) 
         ELSE
            jri11 = NINT(220*rmt1(n)) 
         END IF
         jri11 = NINT(jri11*0.5) * 2 + 1
394 395 396 397 398
         IF (atoms%nz(n) > 0) THEN
           dx11 = LOG(3200*atoms%nz(n)*rmt1(n))/(jri11-1)
         ELSE
           dx11 = LOG(3200*rmt1(n))/(jri11-1)
         ENDIF
Gregor Michalicek's avatar
Gregor Michalicek committed
399 400 401 402 403 404
         rkm = MAX(rkm, lmax11/rmt1(n))
         WRITE (6,'(a3,i3,2i5,2f10.6)') noel(n),atoms%nz(n),lmax11,jri11,rmt1(n),dx11
         dx1(n) = dx11
         lmax1(n) = lmax11
         jri1(n) = jri11
      END DO
405 406 407 408
      WRITE (6,'("k_max =",f8.5)') rkm
      WRITE (6,'("G_max =",f8.5)') 3*rkm
      kmax = rkm

Gregor Michalicek's avatar
Gregor Michalicek committed
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
!     7. Test old MT radii

      IF (l_test) THEN
         iAtom = 0
         DO i = 1, atoms%ntype
            DO j = 1, numNearestNeighbors(i)
               k = nearestNeighbors(j,i)
               IF (atoms%rmt(i)+atoms%rmt(k).GE.nearestNeighborDists(j,i)) THEN
                  error = .TRUE.
                  WRITE(6,240) i,k,nearestNeighborDists(j,i),atoms%rmt(i),atoms%rmt(k)
               END IF
            END DO
            IF (input%film) THEN
               DO na = 1, atoms%neq(i)
                  iAtom = iAtom + 1
                  IF (oneD%odd%d1) THEN
                     IF ((sqrt(atoms%pos(1,iAtom)**2+atoms%pos(2,iAtom)**2)+&
                         atoms%rmt(i)).GT.vacuum%dvac/2.) THEN
                        error=.TRUE.
                        WRITE(6,241) i ,na
                        WRITE(6,*) sqrt(atoms%pos(1,iAtom)**2+atoms%pos(2,iAtom)**2),&
                                   atoms%rmt(i),vacuum%dvac/2.
                     END IF
                  ELSE
                     IF (((atoms%pos(3,iAtom)+atoms%rmt(i)).GT. vacuum%dvac/2.).OR.&
                         ((atoms%pos(3,iAtom)-atoms%rmt(i)).LT.-vacuum%dvac/2.)) THEN
                        error=.TRUE.
                        WRITE(6,241) i ,na
                        WRITE(6,*) atoms%pos(3,iAtom),atoms%rmt(i),vacuum%dvac/2.
                     ENDIF
                  ENDIF
               END DO
            END IF
         END DO
         IF (error) CALL juDFT_error("Error checking M.T. radii",calledby ="chkmt")
      END IF

      DEALLOCATE(nearestNeighbors,numNearestNeighbors,nearestNeighborDists)
      DEALLOCATE(distIndexList,neighborAtoms,sqrDistances)
      DEALLOCATE(numAtomsInCubes,atomRefsInCubes,posInCubes,refCubes,refPos)

  240 FORMAT('Error in muffin tin radii pair (',i5,',',i5,'):',3f10.5)
451 452 453 454
  241 FORMAT('   error: atom ',i3,' # ',i3,'reaches out into vaccuum')

      END SUBROUTINE chkmt
      END MODULE m_chkmt