hsmt_nonsph.F90 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
MODULE m_hsmt_nonsph
#define CPP_BLOCKSIZE 64
  !      USE m_juDFT
  !$     USE omp_lib

  !TODO:
  !  Check what can be done in l_noco=.true. case in terms of use of zgemm or aa_block
  !  Check what happens in case of CPP_INVERSION -> real matrix a

  IMPLICIT NONE
CONTAINS
  SUBROUTINE hsmt_nonsph(DIMENSION,atoms,sym,SUB_COMM, n_size,n_rank,input,isp,nintsp,&
       hlpmsize,noco,l_socfirst, lapw, cell,tlmplm, fj,gj,gk,vk,oneD,aa)

#include"cpp_double.h"
    USE m_constants, ONLY : tpi_const
    USE m_ylm
    USE m_hsmt_spinor

#ifndef CPP_INVERSION
    USE m_hsmt_hlptomat
#endif
    USE m_types
    IMPLICIT NONE
    TYPE(t_dimension),INTENT(IN):: DIMENSION
    TYPE(t_oneD),INTENT(IN)     :: oneD
    TYPE(t_input),INTENT(IN)    :: input
    TYPE(t_noco),INTENT(IN)     :: noco
    TYPE(t_sym),INTENT(IN)      :: sym
    TYPE(t_cell),INTENT(IN)     :: cell
    TYPE(t_atoms),INTENT(IN)    :: atoms
    TYPE(t_lapw),INTENT(INOUT)  :: lapw !lapw%nv_tot is updated

    !     ..
    !     .. Scalar Arguments ..
    INTEGER, INTENT (IN) :: nintsp,isp
    INTEGER, INTENT (IN) :: SUB_COMM,n_size,n_rank 
    INTEGER, INTENT (IN) :: hlpmsize
    LOGICAL, INTENT (IN) :: l_socfirst
    !     ..
    !     .. Array Arguments ..
    TYPE(t_tlmplm),INTENT(IN)::tlmplm
    REAL, INTENT(IN)     :: fj(:,0:,:,:),gj(:,0:,:,:)
    REAL,INTENT(IN)      :: gk(:,:,:),vk(:,:,:)
    !-odim
    !+odim
#ifdef CPP_INVERSION
    REAL,    INTENT (INOUT) :: aa(:)!(matsize)
#else
    COMPLEX, INTENT (INOUT) :: aa(:)
#endif
    COMPLEX,PARAMETER :: one=CMPLX(1.0,0.0),zero=CMPLX(0.0,0.0)

    !     ..
    !     .. Local Scalars ..
    INTEGER :: i,iii,ii,ij,im,in,k,ki,kj,l,ll1,lm,lmp,lp,jd,m
    INTEGER :: mp,n,na,nn,np,kjmax,iintsp,jintsp
    INTEGER :: nc ,kii,spin2,ab_dim,lnonsphd,bsize,bsize2,kb
    REAL    :: th,invsfct
    COMPLEX :: term,chi11,chi21,chi22,chihlp


    !     ..
    !     .. Local Arrays ..
    COMPLEX,ALLOCATABLE :: aa_block(:,:)
    COMPLEX,ALLOCATABLE :: dtd(:,:),dtu(:,:),utd(:,:),utu(:,:)
    REAL   :: bmrot(3,3),gkrot(DIMENSION%nvd,3),vmult(3),v(3)
    COMPLEX:: ylm( (atoms%lmaxd+1)**2 ),chi(2,2)
    !     ..
    COMPLEX, ALLOCATABLE :: a(:,:,:),b(:,:,:),ax(:,:),bx(:,:)
    COMPLEX, ALLOCATABLE :: c_ph(:,:)
    COMPLEX,ALLOCATABLE :: aahlp(:),aa_tmphlp(:)
    INTEGER :: n_threads,thread,blocksize,maxloop
    INTEGER,ALLOCATABLE :: start_thread(:),stop_thread(:)

76
77

    
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    lnonsphd=MAXVAL(atoms%lnonsph)*(MAXVAL(atoms%lnonsph)+2)
    ALLOCATE(dtd(0:lnonsphd,0:lnonsphd),utd(0:lnonsphd,0:lnonsphd),dtu(0:lnonsphd,0:lnonsphd),utu(0:lnonsphd,0:lnonsphd))
    !Decide how to distribute the work

    IF ( noco%l_noco .AND. (.NOT. noco%l_ss) ) ALLOCATE ( aahlp(hlpmsize),aa_tmphlp(hlpmsize) )

    ALLOCATE(aa_block(CPP_BLOCKSIZE,MAXVAL(lapw%nv)))

    ab_dim=1
    IF (noco%l_ss) ab_dim=2
    ALLOCATE(a(DIMENSION%nvd,0:DIMENSION%lmd,ab_dim),b(DIMENSION%nvd,0:DIMENSION%lmd,ab_dim))
    ALLOCATE(ax(DIMENSION%nvd,0:DIMENSION%lmd),bx(DIMENSION%nvd,0:DIMENSION%lmd))
    ALLOCATE(c_ph(DIMENSION%nvd,ab_dim))

    ntyploop: DO n=1,atoms%ntype
       IF (noco%l_noco) THEN
          IF (.NOT.noco%l_ss) aahlp=CMPLX(0.0,0.0)
          IF (.NOT.noco%l_ss) aa_tmphlp=CMPLX(0.0,0.0)
          CALL hsmt_spinor(isp,n, noco,input, chi, chi11, chi21, chi22)
       ENDIF
       DO nn = 1,atoms%neq(n)
99
100
	  a=0.0
	  b=0.0
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
          na = SUM(atoms%neq(:n-1))+nn
          IF (atoms%lnonsph(n)<0) CYCLE ntyploop
          IF ((atoms%invsat(na)==0) .OR. (atoms%invsat(na)==1)) THEN
             IF (atoms%invsat(na)==0) invsfct = 1
             IF (atoms%invsat(na)==1) invsfct = 2
             np = sym%invtab(atoms%ngopr(na))
             IF (oneD%odi%d1) np = oneD%ods%ngopr(na)
             !--->       loop over interstitial spins
             DO iintsp = 1,nintsp
                IF (noco%l_constr.OR.l_socfirst) THEN
                   spin2=isp
                ELSE
                   spin2=iintsp
                ENDIF
                !--->          set up phase factors
                DO k = 1,lapw%nv(iintsp)
                   th= DOT_PRODUCT((/lapw%k1(k,iintsp),lapw%k2(k,iintsp),lapw%k3(k,iintsp)/)+(iintsp-1.5)*noco%qss,atoms%taual(:,na))
                   c_ph(k,iintsp) = CMPLX(COS(tpi_const*th),-SIN(tpi_const*th))
                END DO

                IF (np==1) THEN
                   gkrot( 1:lapw%nv(iintsp),:) = gk( 1:lapw%nv(iintsp),:,iintsp)
                ELSE
                   IF (oneD%odi%d1) THEN
                      bmrot=MATMUL(oneD%ods%mrot(:,:,np),cell%bmat)
                   ELSE
                      bmrot=MATMUL(1.*sym%mrot(:,:,np),cell%bmat)
                   END IF
                   DO k = 1,lapw%nv(iintsp)
                      !-->  apply the rotation that brings this atom into the
                      !-->  representative (this is the definition of ngopr(na)
                      !-->  and transform to cartesian coordinates
                      v(:) = vk(k,:,iintsp)
                      gkrot(k,:) = MATMUL(TRANSPOSE(bmrot),v)
                   END DO
                END IF
                DO k = 1,lapw%nv(iintsp)
                   !-->    generate spherical harmonics
                   vmult(:) =  gkrot(k,:)
                   CALL ylm4(atoms%lnonsph(n),vmult,ylm)
                   !-->  synthesize the complex conjugates of a and b
                   DO l = 0,atoms%lnonsph(n)
                      ll1 = l* (l+1)
                      DO m = -l,l
                         term = c_ph(k,iintsp)*ylm(ll1+m+1)
                         a(k,ll1+m,iintsp) = fj(k,l,n,spin2)*term
                         b(k,ll1+m,iintsp) = gj(k,l,n,spin2)*term
                      END DO
                   END DO
                ENDDO !k-loop
                !--->       end loop over interstitial spin
             ENDDO
             !--->       loops over the interstitial spin
             DO iintsp = 1,nintsp

                DO jintsp = 1,iintsp

                   jd = 1 ; IF (noco%l_noco) jd = isp
                   !--->       loop over l',m'
                   utu=0.0;utd=0.0;dtu=0.0;dtd=0.0
!!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(lp,mp,lmp,l,m,lm,in,utu,dtu,utd,dtd,im,k) &
!!$OMP SHARED(tlmplm,invsfct,lnonsph,nv,jintsp,jd,n)
                   DO lmp=0,atoms%lnonsph(n)*(atoms%lnonsph(n)+2)
                      lp=FLOOR(SQRT(1.0*lmp))
                      mp=lmp-lp*(lp+1)
                      IF (lp>atoms%lnonsph(n).OR.ABS(mp)>lp) STOP "BUG"
                      !--->             loop over l,m
                      DO l = 0,atoms%lnonsph(n)
                         DO m = -l,l
                            lm = l* (l+1) + m
                            in = tlmplm%ind(lmp,lm,n,jd)
                            IF (in/=-9999) THEN
                               IF (in>=0) THEN
                                  utu(lm,lmp) =CONJG(tlmplm%tuu(in,n,jd))*invsfct
                                  dtu(lm,lmp) =CONJG(tlmplm%tdu(in,n,jd))*invsfct
                                  utd(lm,lmp) =CONJG(tlmplm%tud(in,n,jd))*invsfct
                                  dtd(lm,lmp) =CONJG(tlmplm%tdd(in,n,jd))*invsfct
                               ELSE
                                  im = -in
                                  utu(lm,lmp) =tlmplm%tuu(im,n,jd)*invsfct
                                  dtu(lm,lmp) =tlmplm%tud(im,n,jd)*invsfct
                                  utd(lm,lmp) =tlmplm%tdu(im,n,jd)*invsfct
                                  dtd(lm,lmp) =tlmplm%tdd(im,n,jd)*invsfct
                               END IF
                               !--->    update ax, bx

                            END IF
                         END DO
                      END DO
                   ENDDO
!!$OMP END PARALLEL DO
                   lmp=atoms%lnonsph(n)*(atoms%lnonsph(n)+2)
                   !ax(:nv(jintsp),0:lmp)=(matmul(a(:nv(jintsp),0:lmp,jintsp),utu(0:lmp,0:lmp))+matmul(b(:nv(jintsp),0:lmp,jintsp),utd(0:lmp,0:lmp)))
                   !bx(:nv(jintsp),0:lmp)=(matmul(a(:nv(jintsp),0:lmp,jintsp),dtu(0:lmp,0:lmp))+matmul(b(:nv(jintsp),0:lmp,jintsp),dtd(0:lmp,0:lmp)))

                   CALL zgemm("N","N",lapw%nv(jintsp),lmp+1,lmp+1,one,a(1,0,jintsp),SIZE(a,1),utu(0,0),SIZE(utu,1),zero,ax,SIZE(ax,1))
                   CALL zgemm("N","N",lapw%nv(jintsp),lmp+1,lmp+1,one,b(1,0,jintsp),SIZE(a,1),utd(0,0),SIZE(utu,1),one,ax,SIZE(ax,1))

                   CALL zgemm("N","N",lapw%nv(jintsp),lmp+1,lmp+1,one,a(1,0,jintsp),SIZE(a,1),dtu(0,0),SIZE(utu,1),zero,bx,SIZE(ax,1))
                   CALL zgemm("N","N",lapw%nv(jintsp),lmp+1,lmp+1,one,b(1,0,jintsp),SIZE(a,1),dtd(0,0),SIZE(utu,1),one,bx,SIZE(ax,1))

                   !
                   !--->             update hamiltonian and overlap matrices
                   nc = 0
                   IF ( noco%l_noco .AND. (n_size>1) ) THEN
                      lapw%nv_tot = lapw%nv(1) + lapw%nv(2)
                   ELSE
                      lapw%nv_tot = lapw%nv(iintsp)
                   ENDIF
                   kii=n_rank
                   DO WHILE(kii<lapw%nv_tot)
                      !DO kii =  n_rank, nv_tot-1, n_size
                      ki = MOD(kii,lapw%nv(iintsp)) + 1
214
                      bsize=MIN(SIZE(aa_block,1),(lapw%nv(iintsp)-ki)/n_size+1) !Either use maximal blocksize or number of rows left to calculate
215
                      IF (bsize<1) EXIT !nothing more to do here
216
                      bsize2=bsize*n_size
217
218
219
220
221
                      bsize2=min(bsize2,lapw%nv(iintsp)-ki+1)
                      aa_block(:bsize,:ki+bsize2-1)=matmul(a(ki:ki+bsize2-1:n_size,0:lmp,iintsp),conjg(transpose(ax(:ki+bsize2-1,0:lmp))))+ &
                                                    matmul(b(ki:ki+bsize2-1:n_size,0:lmp,iintsp),conjg(transpose(bx(:ki+bsize2-1,0:lmp))))
                      !CALL zgemm("N","C",bsize,ki+bsize2-1,lmp+1,one,a(ki,0,iintsp),SIZE(a,1)*n_size,ax(1,0),SIZE(ax,1),zero,aa_block,SIZE(aa_block,1))
                      !CALL zgemm("N","C",bsize,ki+bsize2-1,lmp+1,one,b(ki,0,iintsp),SIZE(a,1)*n_size,bx(1,0),SIZE(ax,1),one,aa_block,SIZE(aa_block,1))
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
                      DO kb=1,bsize
                         IF ( noco%l_noco .AND. (.NOT. noco%l_ss) ) THEN
                            nc = 1+kii/n_size
                            ii = nc*(nc-1)/2*n_size-(nc-1)*(n_size-n_rank-1)
                            IF ( (n_size==1).OR.(kii+1<=lapw%nv(1)) ) THEN    !
                               aahlp(ii+1:ii+ki) = aahlp(ii+1:ii+ki)+MATMUL(CONJG(ax(:ki,:lmp)),a(ki,:,iintsp))+MATMUL(CONJG(bx(:ki,:lmp)),b(ki,:lmp,iintsp))
                            ELSE                    ! components for <2||2> block unused
                               aa_tmphlp(:ki) = MATMUL(CONJG(ax(:ki,:lmp)),a(ki,:lmp,iintsp))+MATMUL(CONJG(bx(:ki,:DIMENSION%lmd)),b(ki,:lmp,iintsp))
                               !--->                   spin-down spin-down part
                               ij = ii + lapw%nv(1)
                               aa(ij+1:ij+ki)=aa(ij+1:ij+ki)+chi22*aa_tmphlp(:ki)
                               !--->                   spin-down spin-up part, lower triangle
                               ij =  ii
                               aa(ij+1:ij+ki)=aa(ij+1:ij+ki)+chi21*aa_tmphlp(:ki)
                            ENDIF
                            !-||
                         ELSEIF ( noco%l_noco .AND. noco%l_ss ) THEN
                            IF ( iintsp==1 .AND. jintsp==1 ) THEN
                               !--->                      spin-up spin-up part
                               kjmax = ki
                               chihlp = chi11
                               ii = (ki-1)*(ki)/2
                            ELSEIF ( iintsp==2 .AND. jintsp==2 ) THEN
                               !--->                      spin-down spin-down part
                               kjmax = ki
                               chihlp = chi22
                               ii = (lapw%nv(1)+atoms%nlotot+ki-1)*(lapw%nv(1)+atoms%nlotot+ki)/2+&
                                    lapw%nv(1)+atoms%nlotot
                            ELSE
                               !--->                      spin-down spin-up part
                               kjmax = lapw%nv(1)
                               chihlp = chi21
                               ii = (lapw%nv(1)+atoms%nlotot+ki-1)*(lapw%nv(1)+atoms%nlotot+ki)/2
                            ENDIF
                            aa(ii+1:ii+kjmax) = aa(ii+1:ii+kjmax) + chihlp*&
                                 (MATMUL(CONJG(ax(:kjmax,:lmp)),a(ki,:,iintsp))+MATMUL(CONJG(bx(:kjmax,:lmp)),b(ki,:lmp,iintsp)))
                         ELSE
                            nc = 1+kii/n_size
                            ii = nc*(nc-1)/2*n_size- (nc-1)*(n_size-n_rank-1)
                            aa(ii+1:ii+ki) = aa(ii+1:ii+ki) + aa_block(kb,:ki)

                            !print*,ii,ki,kb
                            !                           IF (.not.apw(l)) THEN
                            !aa(ii+1:ii+ki) = aa(ii+1:ii+ki) + b(ki,lmp,iintsp)*bx(:ki)
                            !                           ENDIF
                         ENDIF
                         ki=ki+n_size
                         kii=kii+n_size
                      ENDDO
                      !--->             end loop over ki
                   END DO
                   !--->       end loops over interstitial spin
                ENDDO
             ENDDO
          ENDIF              ! atoms%invsat(na) = 0 or 1
          !--->    end loop over equivalent atoms
       END DO
#ifndef CPP_INVERSION
       IF ( noco%l_noco .AND. (.NOT. noco%l_ss) ) CALL hsmt_hlptomat(atoms%nlotot,lapw%nv,sub_comm,chi11,chi21,chi22,aahlp,aa)
#endif            
       !---> end loop over atom types (ntype)
    ENDDO ntyploop

    RETURN
  END SUBROUTINE hsmt_nonsph


END MODULE m_hsmt_nonsph