eigen.F90 27.5 KB
Newer Older
1
2
3
4
5
6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7
8
9
10
MODULE m_eigen
  use m_juDFT
CONTAINS
  SUBROUTINE eigen(mpi,stars,sphhar,atoms,obsolete,xcpot,&
11
       sym,kpts,dimension, vacuum, input, cell, enpara_in,banddos, noco,jij, oneD,hybrid,&
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
       it,eig_id,results)
    !*********************************************************************
    !     sets up and solves the eigenvalue problem for a basis of lapws.
    !
    ! nv,   nvd     ... actual length & dimension of EV without LO's
    ! nmat, nbasfcn                                   including LO's
    !        g. bihlmayer '96
    !**********************************************************************
    USE m_constants, ONLY : pi_const,sfp_const
    USE m_types
    USE m_lodpot
    USE m_tlmplm
    USE m_tlmplm_store
    USE m_apws
    USE m_hsmt
    USE m_hsint
    USE m_hsvac
    USE m_od_hsvac
    USE m_usetup
    USE m_loddop
    USE m_eigen_diag
#ifdef CPP_NOTIMPLEMENTED
    USE m_symm_hf,  ONLY : symm_hf_nkpt_EIBZ
    USE m_gen_bz
    USE m_gen_wavf
    USE m_hsfock
    USE m_read_core
    USE m_subvxc
    USE m_gweig
    USE m_gw_qsgw
    USE m_checkolap
#endif
    USE m_hsefunctional
    USE m_hybridmix    , ONLY: amix_pbe0,amix_hf
    USE m_util
47
    USE m_icorrkeys
48
49
50
51
    USE m_eig66_io, ONLY : open_eig, write_eig, close_eig,read_eig
#ifdef CPP_MPI
    USE m_mpimakegroups
#endif
52
    USE m_xmlOutput
53
54
55
56
57
58
59
60
61
62
63
64
65

    IMPLICIT NONE
    TYPE(t_results),INTENT(INOUT):: results
    TYPE(t_xcpot),INTENT(IN)     :: xcpot
    TYPE(t_mpi),INTENT(IN)       :: mpi
    TYPE(t_dimension),INTENT(IN) :: dimension
    TYPE(t_oneD),INTENT(IN)      :: oneD
    TYPE(t_hybrid),INTENT(IN)    :: hybrid
    TYPE(t_enpara),INTENT(INOUT) :: enpara_in
    TYPE(t_obsolete),INTENT(IN)  :: obsolete
    TYPE(t_input),INTENT(IN)     :: input
    TYPE(t_vacuum),INTENT(IN)    :: vacuum
    TYPE(t_noco),INTENT(IN)      :: noco
66
    TYPE(t_banddos),INTENT(IN)   :: banddos
67
    TYPE(t_jij),INTENT(IN)       :: jij
68
    TYPE(t_sym),INTENT(INOUT)    :: sym  !l_zref will be modified in EVP
69
70
71
72
73
74
75
76
77
78
79
    TYPE(t_stars),INTENT(IN)     :: stars
    TYPE(t_cell),INTENT(IN)      :: cell
    TYPE(t_kpts),INTENT(IN)      :: kpts
    TYPE(t_sphhar),INTENT(IN)    :: sphhar
    TYPE(t_atoms),INTENT(INOUT)  :: atoms !in u_setup n_u might be modified

#ifdef CPP_MPI
    INCLUDE 'mpif.h'
#endif
    !     ..
    !     .. Scalar Arguments ..
80
    INTEGER,INTENT(IN) :: it
81
82
83
84
85
86
    INTEGER,INTENT(INOUT):: eig_id
    !     ..
    !-odim
    !+odim
    !     ..
    !     .. Local Scalars ..
87
    INTEGER jsp,nk,nred,ne_all,n_u_in,ne_found
88
89
90
    INTEGER iter,ne,matsize  ,nrec,lh0
    INTEGER nspins,isp,l,i,j,err,gwc
    INTEGER mlotot,mlolotot,mlot_d,mlolot_d,nlot_d
91
    LOGICAL l_wu,lcal_qsgw,l_file,l_real
92
93
94
    REAL evac_sv(dimension%jspd)
    INTEGER ::eig_id_hf=-1
    INTEGER :: nu=8
95
    
96
97
98
99
    !     ..
    !     .. Local Arrays ..
    INTEGER, PARAMETER :: lmaxb=3
    INTEGER, ALLOCATABLE :: matind(:,:),kveclo(:)
100
    INTEGER, ALLOCATABLE :: nv2(:)
101
    REAL,    ALLOCATABLE :: bkpt(:)
102
    REAL,    ALLOCATABLE :: eig(:)
103
104
105
106

    REAL,    ALLOCATABLE :: z_r(:,:),a_r(:),b_r(:)
    COMPLEX, ALLOCATABLE :: z_c(:,:),a_c(:),b_c(:)

107
108
    COMPLEX, ALLOCATABLE :: vpw(:,:),vzxy(:,:,:,:)
    COMPLEX, ALLOCATABLE :: vpwtot(:,:)
109
    REAL,    ALLOCATABLE :: vz(:,:,:),vr(:,:,:,:)
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    REAL,    ALLOCATABLE :: vrtot(:,:,:,:)

    COMPLEX, ALLOCATABLE :: vs_mmp(:,:,:,:)
    TYPE(t_tlmplm) :: td
    TYPE(t_usdus)  :: ud
    TYPE(t_lapw)   :: lapw
    Type(t_enpara) :: enpara
    !
    INTEGER n_start,n_groups,n_rank,n_size,n,n_stride
    INTEGER SUB_COMM,fh
    INTEGER ierr(3)

    !
    !     .. variables for HF or hybrid functional calculation ..
    !
    !      - scalar -
#ifdef CPP_NEVER
    INTEGER, INTENT(IN)     ::  maxlcutm,maxindxm,maxbasm
128
129
    INTEGER, INTENT(IN)     ::  maxindxp
    INTEGER, INTENT(IN)     ::  bands
130
131
    !     - arrays -
    INTEGER, INTENT(IN)     ::  nindxm(0:maxlcutm,atoms%ntypd)
132
    INTEGER, INTENT(IN)     ::  lcutm(atoms%ntypd)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    REAL   , INTENT(IN)     ::  basm(atoms%jmtd,maxindxm,0:maxlcutm,atoms%ntypd)
#endif
    !     - local scalar -
    INTEGER                 ::  itype,ispin,isym,iisym
    INTEGER                 ::  indx,ic
    INTEGER                 ::  ll,lm,l1,l2
    INTEGER                 ::  lmaxcd
    INTEGER                 ::  maxindxc,mnobd
    INTEGER                 ::  maxfac
    INTEGER                 ::  maxbands
    LOGICAL                 ::  l_hybrid
    !     - local arrays -
#ifdef CPP_NEVER
    INTEGER                 ::  nobd(kpts%nkptf)
    INTEGER                 ::  lmaxc(atoms%ntypd)
148
    INTEGER                 ::  g(3)
149
    INTEGER                 ::  nindxp(0:maxlcutm,atoms%ntypd)
150
    INTEGER , ALLOCATABLE   ::  nkpt_EIBZ(:)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    INTEGER , ALLOCATABLE   ::  nindxc(:,:)
    INTEGER , ALLOCATABLE   ::  kveclo_eig(:,:)
    INTEGER , ALLOCATABLE   ::  nbasm(:)
    INTEGER                 ::  comm(kpts%nkpt),irank2(kpts%nkpt),isize2(kpts%nkpt)
    REAL                    ::  el_eig(0:atoms%lmaxd,atoms%ntypd), ello_eig(atoms%nlod,atoms%ntypd),rarr(3)
    REAL                    ::  bas1_MT(hybrid%maxindx,0:atoms%lmaxd,atoms%ntypd)
    REAL                    ::  drbas1_MT(hybrid%maxindx,0:atoms%lmaxd,atoms%ntypd)
    REAL,    ALLOCATABLE    ::  eig_c(:,:,:)
    REAL,    ALLOCATABLE    ::  core1(:,:,:,:),core2(:,:,:,:)
    REAL,    ALLOCATABLE    ::  gauntarr(:,:,:,:,:,:)
    REAL,    ALLOCATABLE    ::  sfac(:),fac(:)
    REAL,    ALLOCATABLE    ::  prodm(:,:,:,:)
    TYPE(PRODTYPE),ALLOCATABLE :: prod(:,:,:)
#endif
    INTEGER                 ::  ne_eig(kpts%nkptd),nbands(kpts%nkptd)
    REAL,    ALLOCATABLE    ::  eig_irr(:,:),vr0(:,:,:)
    REAL                    ::  bas1(atoms%jmtd,hybrid%maxindx,0:atoms%lmaxd,atoms%ntypd)
    REAL                    ::  bas2(atoms%jmtd,hybrid%maxindx,0:atoms%lmaxd,atoms%ntypd)

#ifdef CPP_MPI
    INTEGER   :: sndreqd,sndreq(mpi%isize*kpts%nkptd)
#endif
    !
    !
175
    ! --> Allocate
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    !
    ALLOCATE ( ud%uloulopn(atoms%nlod,atoms%nlod,atoms%ntypd,dimension%jspd),nv2(dimension%jspd) )
    ALLOCATE ( ud%ddn(0:atoms%lmaxd,atoms%ntypd,dimension%jspd),eig(dimension%neigd),bkpt(3) )
    ALLOCATE ( ud%us(0:atoms%lmaxd,atoms%ntypd,dimension%jspd),ud%uds(0:atoms%lmaxd,atoms%ntypd,dimension%jspd) )
    ALLOCATE ( ud%dus(0:atoms%lmaxd,atoms%ntypd,dimension%jspd),ud%duds(0:atoms%lmaxd,atoms%ntypd,dimension%jspd))
    ALLOCATE ( ud%ulos(atoms%nlod,atoms%ntypd,dimension%jspd),ud%dulos(atoms%nlod,atoms%ntypd,dimension%jspd) )
    ALLOCATE ( ud%uulon(atoms%nlod,atoms%ntypd,dimension%jspd),ud%dulon(atoms%nlod,atoms%ntypd,dimension%jspd) )
   ! ALLOCATE ( enpara%ello(atoms%nlod,atoms%ntypd,dimension%jspd) )
   ! ALLOCATE ( enpara%el(0:atoms%lmaxd,atoms%ntypd,dimension%jspd),enpara%evac(2,dimension%jspd) )
    ALLOCATE ( lapw%k1(dimension%nvd,dimension%jspd),lapw%k2(dimension%nvd,dimension%jspd),lapw%k3(dimension%nvd,dimension%jspd),lapw%rk(dimension%nvd,dimension%jspd) )
    !
    ! --> some parameters first
    !
    !     determine the total number of lo's : nlotot
    !
    mlotot = 0 ; mlolotot = 0
    DO n = 1, atoms%ntype
       mlotot = mlotot + atoms%nlo(n)
       mlolotot = mlolotot + atoms%nlo(n)*(atoms%nlo(n)+1)/2
    ENDDO
    nlot_d = atoms%nlotot !max(atoms%nlotot,1)
    ALLOCATE ( kveclo(nlot_d) )
    !     ..
    nbands     = 0
    bas1 = 0 ; bas2 = 0
    l_hybrid   = (&
         xcpot%icorr == icorr_pbe0 .OR.&
         xcpot%icorr == icorr_hse  .OR.&
         xcpot%icorr == icorr_vhse .OR.&
         xcpot%icorr == icorr_hf   .OR.&
         xcpot%icorr == icorr_exx)
207
208
209
    l_real=sym%invs.and..not.noco%l_noco
    if (noco%l_soc.and.l_real.and.l_hybrid ) THEN
       CALL juDFT_error('hybrid functional + SOC + inv.symmetry is not tested', calledby='eigen')
210
    END IF
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

    !
    !  if gw = 1 or 2, we are in the first or second run of a GW  calculation
    !  if gw = 1 we just proceed as normal (one round),
    !  if gw = 2 it's the second run: write out the eigenfunctions and
    !  the matrix elements with the xc-potential (needs two rounds)
    !  if gw = 3 energy-independet hermitian self-energy is read in from file
    !            spex.qsgw, transformed to the APW basis, and SCF is performed
    !
    gwc = 1
    fh = 0
    !
    ! look, if WU diagonalisation
    !
    IF (it.LT.input%isec1) THEN
       IF (mpi%irank.eq.0) WRITE (6,FMT=8110) it,input%isec1
8110   FORMAT (' IT=',i4,'  ISEC1=',i4,' standard diagonalization')
       l_wu = .false.
    ELSE
       IF (mpi%irank.eq.0) WRITE (6,FMT=8120) it,input%isec1
8120   FORMAT (' IT=',i4,'  ISEC1=',i4,' reduced diagonalization')
       l_wu = .true.
    END IF
    !
    ! load potential from file pottot (=unit 8)
    !
    ALLOCATE ( vpw(stars%n3d,dimension%jspd),vzxy(vacuum%nmzxyd,oneD%odi%n2d-1,2,dimension%jspd) )
    ALLOCATE ( vz(vacuum%nmzd,2,4), vr(atoms%jmtd,0:sphhar%nlhd,atoms%ntypd,dimension%jspd) )
    ALLOCATE ( vr0(atoms%jmtd,atoms%ntypd,dimension%jspd) ) ; vr0 = 0
    OPEN (nu,file='pottot',form='unformatted',status='old')
    IF (input%gw.eq.2) THEN
       ALLOCATE ( vpwtot(stars%n3d,dimension%jspd), vrtot(atoms%jmtd,0:sphhar%nlhd,atoms%ntypd,dimension%jspd) )
       IF ( mpi%irank == 0 ) WRITE(6,'(A/A/A/A)')&
            &  'Info: vxc matrix elements for GW will be calculated in gw_vxc',&
            &  'Info: and stored in "vxc", the values obtained from the',&
            &  'Info: original implementation are saved to "vxc.old".'
    ENDIF
999 CONTINUE
    CALL loddop(stars,vacuum,atoms,sphhar, input,sym, nu, iter,vr,vpw,vz,vzxy)
    CLOSE(nu)
252
253
    IF (mpi%irank.EQ.0) CALL openXMLElementFormPoly('iteration',(/'numberForCurrentRun','overallNumber      '/),(/it,iter/),&
                                                    reshape((/19,13,5,5/),(/2,2/)))
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

    !
    ! some modifications for gw-calculations
    !
    IF (input%gw.eq.2.and.gwc.eq.1) THEN
       vrtot(:,:,:,:)  = vr  ! store potential for subroutine gw_vxc
       vpwtot(:,:) = vpw !
    ENDIF

    IF (gwc==1) THEN
       vr0(:,:,:) = vr(:,0,:,:)
       lh0 = 1
    ELSE IF (gwc==2) THEN
       lh0 = 0                         ! for a input%gw-calculation, we
                                       ! now evaluate matrix elements
       DO jsp = 1,input%jspins               ! with the coulomb potential
          DO n = 1,atoms%ntype                ! but with explicit kinetic energy
             DO j = 1,atoms%jri(n)
                vr(j,0,n,jsp) = vr(j,0,n,jsp)-vr0(j,n,jsp)*sfp_const/atoms%rmsh(j,n)
             ENDDO
          ENDDO
       ENDDO
    ENDIF

    INQUIRE(file='fleur.qsgw',EXIST=lcal_qsgw)
    lcal_qsgw = .not. lcal_qsgw

    !
    ! set energy parameters (normally to that, what we read in)
    !
    IF (gwc /= 2) THEN
       CALL lodpot(mpi,atoms,sphhar,obsolete,vacuum,&
            input, vr,vz, enpara_in, enpara)
    ENDIF
    !
289
   
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336


    !---> set up and solve the eigenvalue problem
    !---> loop over energy windows


#if ( defined(CPP_MPI))
    !#if ( defined(CPP_MPI) && defined(CPP_EVP) )
    !
    IF ( hybrid%l_calhf ) THEN
       n_start  = 1
       n_stride = 1
    ELSE
       CALL mpi_make_groups(mpi,dimension,kpts, input,atoms,noco, mlotot,mlolotot,&
            n_start,n_groups,n,matsize,ne, n_rank,n_size,SUB_COMM)
       n_stride = kpts%nkpt/n_groups
       IF (n_size > 1) sym%l_zref = .false.
    END IF
    !
#else
    n_rank = 0
    n_size = 1

#ifdef CPP_MPI
    IF ( mpi%isize > kpts%nkpt ) THEN
       CALL juDFT_error("no. processors must be <= no. kpts")
    END IF
    IF ( hybrid%l_calhf ) THEN
       n_start  = 1
       n_stride = 1
    ELSE
       n_start  = mpi%irank + 1
       n_stride = mpi%isize
    END IF
#else
    n_start  = 1
    n_stride = 1
#endif
    n = dimension%nbasfcn/n_size
    matsize = dimension%nbasfcn * (dimension%nbasfcn+1)/2
    ne = dimension%neigd
#endif
    if (l_hybrid.or.hybrid%l_calhf) THEN
       eig_id_hf=eig_id
    endif
    eig_id=open_eig(&
         mpi%mpi_comm,dimension%nbasfcn,dimension%neigd,kpts%nkpt,dimension%jspd,atoms%lmaxd,&
337
338
339
340
341
342
343
         atoms%nlod,atoms%ntypd,atoms%nlotot,noco%l_noco,l_real,noco%l_soc,.true.,.false.,n_size,layers=vacuum%layers,nstars=vacuum%nstars,ncored=dimension%nstd,nsld=atoms%natd,nat=atoms%natd,l_dos=banddos%dos.or.input%cdinf,l_mcd=banddos%l_mcd,l_orb=banddos%l_orb)

    IF (l_real) THEN
       ALLOCATE ( a_r(matsize), stat = err )
    ELSE
       ALLOCATE ( a_c(matsize), stat = err )
    endif
344
345
346
347
348
    IF (err.NE.0) THEN
       WRITE (*,*) 'eigen: an error occured during allocation of'
       WRITE (*,*) 'the Hamilton Matrix: ',err,'  size: ',matsize
       CALL juDFT_error("eigen: Error during allocation of Hamilton" //"matrix",calledby ="eigen")
    ENDIF
349
350
351
352
353
354
    if (l_real) THEN
       ALLOCATE ( b_r(matsize), stat = err )
    else
       ALLOCATE ( b_c(matsize), stat = err )
    endif

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
    IF (err.NE.0) THEN
       WRITE (*,*) 'eigen: an error occured during allocation of'
       WRITE (*,*) 'the overlap Matrix: ',err,'  size: ',matsize
       CALL juDFT_error("eigen: Error during allocation of overlap " //"matrix",calledby ="eigen")
    ENDIF
    ALLOCATE (  matind(dimension%nbasfcn,2) )
    !
    !--->    loop over spins
    nspins = input%jspins
    IF (noco%l_noco) nspins = 1
    !
    !        Append information about file eig to gwa
    IF(input%gw.eq.2.and.gwc.eq.1) THEN
       IF ( mpi%irank == 0 ) THEN
          OPEN(15,file='gwa',status='old',form='unformatted')
          READ(15)
          READ(15)
          READ(15)
          WRITE(15) n_start,n_stride,n_rank,n_size,dimension%nvd,&
               &                 dimension%nbasfcn,atoms%nlotot
          CLOSE(15)
       END IF
    ENDIF
    !  ..
    !  LDA+U
380
    n_u_in=atoms%n_u
381
382
    IF ((atoms%n_u.GT.0)) THEN
       ALLOCATE( vs_mmp(-lmaxb:lmaxb,-lmaxb:lmaxb,atoms%n_u,input%jspins) )
383
       CALL u_setup(sym,atoms,lmaxb,sphhar,input, enpara%el0(0:,:,:),vr,mpi, vs_mmp,results)
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    ELSE
       ALLOCATE( vs_mmp(-lmaxb:-lmaxb,-lmaxb:-lmaxb,1,2) )
    ENDIF
    !
    !--->    loop over k-points: each can be a separate task

    DO jsp = 1,nspins
       !+do

       !-do

       !
       !--->       set up k-point independent t(l'm',lm) matrices
       !
       CALL timestart("tlmplm")
       err=0
       j = 1 ; IF (noco%l_noco) j = 2
       ALLOCATE(td%tuu(0:dimension%lmplmd,atoms%ntypd,j),stat=err)
       ALLOCATE(td%tud(0:dimension%lmplmd,atoms%ntypd,j),stat=err)
       ALLOCATE(td%tdd(0:dimension%lmplmd,atoms%ntypd,j),stat=err)
       ALLOCATE(td%tdu(0:dimension%lmplmd,atoms%ntypd,j),stat=err)
       mlot_d = max(mlotot,1) ; mlolot_d = max(mlolotot,1)
       ALLOCATE(td%tdulo(0:dimension%lmd,-atoms%llod:atoms%llod,mlot_d,j),stat=err)
       ALLOCATE(td%tuulo(0:dimension%lmd,-atoms%llod:atoms%llod,mlot_d,j),stat=err)
       ALLOCATE(td%tuloulo(-atoms%llod:atoms%llod,-atoms%llod:atoms%llod,mlolot_d,j), stat=err)
       ALLOCATE(td%ind(0:dimension%lmd,0:dimension%lmd,atoms%ntypd,j),stat=err )
       IF (err.NE.0) THEN
          WRITE (*,*) 'eigen: an error occured during allocation of'
          WRITE (*,*) 'the tlmplm%tuu, tlmplm%tdd etc.: ',err,'  size: ',mlotot
          CALL juDFT_error("eigen: Error during allocation of tlmplm, tdd  etc.",calledby ="eigen")
       ENDIF
       CALL tlmplm(sphhar,atoms,dimension,enpara, jsp,1,mpi, vr(1,0,1,jsp),gwc,lh0,input, td,ud)
       IF (input%l_f) call write_tlmplm(td,vs_mmp,atoms%n_u>0,1,jsp,input%jspins)
       CALL timestop("tlmplm")

       !---> pk non-collinear
       !--->       call tlmplm again for the second spin direction in
       !--->       each MT, because the t-matrices are needed for both
       !--->       spins at once in hsmt
       IF (noco%l_noco) THEN
          isp = 2
          CALL timestart("tlmplm")
          CALL tlmplm(sphhar,atoms,dimension,enpara,isp,isp,mpi, vr(1,0,1,isp),gwc,lh0,input, td,ud)
          IF (input%l_f) call write_tlmplm(td,vs_mmp,atoms%n_u>0,2,2,input%jspins)
          CALL timestop("tlmplm")
       ENDIF
       !

432
#ifdef CPP_MPI
433
434
       ! check that all sending operations are completed
       IF ( hybrid%l_calhf ) CALL MPI_WAITALL(sndreqd,sndreq,MPI_STATUSES_IGNORE,ierr)
435
#endif
436
437

       k_loop:DO nk = n_start,kpts%nkpt,n_stride
438
#if defined(CPP_MPI)&&defined(CPP_NEVER)
439
440
441
442
443
444
          IF ( hybrid%l_calhf ) THEN
             ! jump to next k-point if this process is not present in communicator
             IF ( comm(nk) == MPI_COMM_NULL ) CYCLE
             ! allocate buffer for communication of the results
             IF ( irank2(nk) /= 0 ) CALL work_dist_reserve_buffer( nbands(nk) )
          END IF
445
#endif
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

          nrec =  kpts%nkpt*(jsp-1) + nk
          nrec = n_size*(nrec-1) + n_rank + 1
          !
          !--->         set up lapw list
          !
          call timestart("Setup of LAPW")
          lapw%rk = 0 ; lapw%k1 = 0 ; lapw%k2 = 0 ; lapw%k3 = 0
          CALL apws(dimension,input,noco, kpts,nk,cell,sym, n_size,jsp, bkpt,lapw,matind,nred)

          call timestop("Setup of LAPW")
          IF (noco%l_noco) THEN
             !--->         the file potmat contains the 2x2 matrix-potential in
             !--->         the interstitial region and the vacuum
             OPEN (25,FILE='potmat',FORM='unformatted', STATUS='old')
          ENDIF
          !
          !--->         set up interstitial hamiltonian and overlap matrices
          !
          call timestart("Interstitial Hamiltonian&Overlap")
466
          CALL hsint(input,noco,jij,stars, vpw(:,jsp),lapw,jsp, n_size,n_rank,kpts%bk(:,nk),cell,atoms,l_real,a_r,b_r,a_c,b_c)
467

468
469
470
471
472
473
          call timestop("Interstitial Hamiltonian&Overlap")
          !
          !--->         update with sphere terms
          !
          IF (.not.l_wu) THEN
             call timestart("MT Hamiltonian&Overlap")
474
475
             CALL hsmt(dimension,atoms,sphhar,sym,enpara, SUB_COMM,n_size,n_rank,jsp,input,mpi,&
                  lmaxb,gwc, noco,cell, lapw, bkpt,vr, vs_mmp, oneD,ud, kveclo,td,l_real,a_r,b_r,a_c,b_c)
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
             call timestop("MT Hamiltonian&Overlap")
          ENDIF
          !
#ifdef CPP_NOTIMPLEMENTED
          IF( l_hybrid ) THEN

             CALL hsfock(nk,atoms,lcutm,obsolete,lapw, dimension,kpts,jsp,input,hybrid,maxbasm,&
                  maxindxp,maxlcutm,maxindxm,nindxm, basm,bas1,bas2,bas1_MT,drbas1_MT,ne_eig,eig_irr,&
                  n_size,sym,cell, noco,noco,oneD, nbasp,nbasm, results,results,it,nbands(nk),maxbands,nobd,&
                  mnobd,xcpot, core1,core2,nindxc,maxindxc,lmaxc, lmaxcd, kveclo_eig,maxfac,fac,sfac,gauntarr,&
                  nindxp,prod,prodm,gwc, mpi,irank2(nk),isize2(nk),comm(nk), a)

             IF ( irank2(nk) /= 0 ) CYCLE

             IF( hybrid%l_subvxc ) THEN
                CALL subvxc(lapw,kpts(:,nk),obsolete,dimension, input,jsp,atoms, hybrid,matsize,enpara%el0,enpara%ello0,&
                     sym, nlot_d,kveclo, cell,sphhar, stars,stars, xcpot,mpi, irank2(nk),vacuum,&
                     oneD, vr(:,:,:,jsp),vpw(:,jsp), a)
             END IF

          END IF ! l_hybrid
#endif
          !
          !--->         update with vacuum terms
          !
          call timestart("Vacuum Hamiltonian&Overlap")
          IF (input%film .AND. .NOT.oneD%odi%d1) THEN
             CALL hsvac(vacuum,stars,dimension, atoms, jsp,input,vzxy(1,1,1,jsp),vz,enpara%evac0,cell, &
504
                  bkpt,lapw,sym, noco,jij, n_size,n_rank,nv2,l_real,a_r,b_r,a_c,b_c)
505
506
507
          ELSEIF (oneD%odi%d1) THEN
             CALL od_hsvac(vacuum,stars,dimension, oneD,atoms, jsp,input,vzxy(1,1,1,jsp),vz, &
                  enpara%evac0,cell, bkpt,lapw, oneD%odi%M,oneD%odi%mb,oneD%odi%m_cyl,oneD%odi%n2d, &
508
                  n_size,n_rank,sym,noco,jij,nv2,l_real,a_r,b_r,a_c,b_c)
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
          END IF
          call timestop("Vacuum Hamiltonian&Overlap")

#ifdef CPP_NOTIMPLEMENTED
          IF ( input%gw.eq.3.or.(input%gw.eq.2.and.gwc.eq.1.and..not.lcal_qsgw)) THEN

             CALL gw_qsgw ( lcal_qsgw, b,cell,sym,atoms,&
                  jsp,dimension,lapw, nk,kpts, matsize,oneD%tau,noco, a )


          END IF

          IF (gwc==2) THEN
             CALL gw_eig(eig_id,nk,kpts,atoms,dimension,neigd,sym,&
                  kveclo,cell, ud%us(0,1,jsp),ud%dus(0,1,jsp),ud%uds(0,1,jsp),&
                  ud%duds(0,1,jsp),ud%ddn(0,1,jsp),ud%ulos(1,1,jsp),ud%uulon(1,1,jsp),ud%dulon(1,1,jsp),&
                  ud%dulos(1,1,jsp),nrec,noco,jsp,matsize,a,sphhar,stars,stars,&
                  vrtot(1,0,1,jsp),vpwtot,vr,vpw,vs_mmp(-lmaxb,-lmaxb,1,jsp),lmaxb,oneD)
             CYCLE k_loop
          ENDIF
#endif
          IF (noco%l_noco) CLOSE (25)

          !write overlap matrix b to direct access file olap
          inquire(file='olap',exist=l_file)
          if (l_file) THEN
535
536
537
538
539
540
541
542
543
             if (l_real) THEN
                OPEN(88,file='olap',form='unformatted',access='direct', recl=matsize*8)
                WRITE(88,rec=nrec) b_r
                CLOSE(88)
             else
                OPEN(88,file='olap',form='unformatted',access='direct', recl=matsize*16)
                WRITE(88,rec=nrec) b_c
                CLOSE(88)
             endif
544
545
          endif

546
       
547
548
          CALL eigen_diag(jsp,eig_id,it,atoms,dimension,matsize,mpi, n_rank,n_size,ne,nk,lapw,input,&
               nred,sub_comm, sym,matind,kveclo, noco,cell,bkpt,enpara%el0,jij,l_wu,&
549
               oneD,td,ud, eig,ne_found,a_r,b_r,z_r,a_c,b_c,z_c)
550
          
551
552
553
554
          !
          !--->         output results
          !
          CALL timestart("EV output")
555
          ne_all=ne_found
556
557
#if defined(CPP_MPI)
          !Collect number of all eigenvalues
558
          CALL MPI_ALLREDUCE(ne_found,ne_all,1,MPI_INTEGER,MPI_SUM, sub_comm,ierr)
559
560
#endif
          !jij%eig_l = 0.0 ! need not be used, if hdf-file is present
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
          if (.not.l_real) THEN
             IF (.not.jij%l_J) THEN
                z_c(:lapw%nmat,:ne_found) = conjg(z_c(:lapw%nmat,:ne_found))
             ELSE
                z_c(:lapw%nmat,:ne_found) = cmplx(0.0,0.0)
             ENDIF
          endif
          if (l_real) THEN
             CALL write_eig(eig_id, nk,jsp,ne_found,ne_all,lapw%nv(jsp),lapw%nmat,&
                  lapw%k1(:lapw%nv(jsp),jsp),lapw%k2 (:lapw%nv(jsp),jsp),lapw%k3(:lapw%nv(jsp),jsp),&
                  bkpt, kpts%wtkpt(nk),eig(:ne_found),enpara%el0(0:,:,jsp), enpara%ello0(:,:,jsp),enpara%evac0(:,jsp),&
                  atoms%nlotot,kveclo,n_size,n_rank,z=z_r(:,:ne_found))
          else
             CALL write_eig(eig_id, nk,jsp,ne_found,ne_all,lapw%nv(jsp),lapw%nmat,&
                  lapw%k1(:lapw%nv(jsp),jsp),lapw%k2 (:lapw%nv(jsp),jsp),lapw%k3(:lapw%nv(jsp),jsp),&
                  bkpt, kpts%wtkpt(nk),eig(:ne_found),enpara%el0(0:,:,jsp), enpara%ello0(:,:,jsp),enpara%evac0(:,jsp),&
                  atoms%nlotot,kveclo,n_size,n_rank,z=z_c(:,:ne_found))
          endif
579
          IF (noco%l_noco) THEN
580
             CALL write_eig(eig_id, nk,2,ne_found,ne_all,lapw%nv(2),lapw%nmat,&
581
                  lapw%k1(:lapw%nv(2),2),lapw%k2 (:lapw%nv(2),2),lapw%k3(:lapw%nv(2),2),&
582
                  bkpt, kpts%wtkpt(nk),eig(:ne_found),enpara%el0(0:,:,2), enpara%ello0(:,:,2),enpara%evac0(:,2),&
583
584
585
                  atoms%nlotot,kveclo)
          ENDIF

586
#if defined(CPP_MPI)&&defined(CPP_NEVER)
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
          IF ( hybrid%l_calhf ) THEN
             IF ( isize2(nk) == 1 ) THEN
                WRITE(*,'(a,i6,a,i6,a)') 'HF: kpt ', nk, ' was done by rank ', mpi%irank, '.'
             ELSE
                WRITE(*,'(a,i6,a,i6,a,i6,a)')&
                     'HF: kpt ', nk, ' was done by rank ', mpi%irank, ' and ', isize2(nk)-1, ' more.'
             END IF
             !                ELSE
             !                  WRITE(*,'(a,i6,a,i6,a)')        '    kpt ', nk, ' was done by rank ', irank, '.'
          END IF
          !#             else
          !                WRITE (*,*) 'pe: ',irank,' wrote ',nrec
#             endif
          CALL timestop("EV output")
          !#ifdef CPP_MPI
602
603
604
605
606
          if (l_real) THEN
             DEALLOCATE ( z_r )
          else
             DEALLOCATE ( z_c )
endif
607
608
609
610
611
612
613
614
615
616
617
618
619
          !
       END DO  k_loop

       DEALLOCATE (td%tuu,td%tud,td%tdu,td%tdd)
       DEALLOCATE (td%ind,td%tuulo,td%tdulo)
       DEALLOCATE (td%tuloulo)
#ifdef CPP_NEVER
       IF ( hybrid%l_calhf ) THEN
          DEALLOCATE ( eig_irr,kveclo_eig )
       END IF
#endif
    END DO ! spin loop ends
    DEALLOCATE( vs_mmp )
620
621
622
623
624
625
    DEALLOCATE (matind)
    if (l_real) THEN
       deallocate(a_r,b_r)
    else
       deallocate(a_c,b_c)
    endif
626
627
628
629
630
631
#ifdef CPP_NEVER
    IF( hybrid%l_calhf ) THEN
       DEALLOCATE( fac,sfac,gauntarr )
       DEALLOCATE( nindxc,core1,core2,nbasm,eig_c )
    END IF
#endif
632
#if defined(CPP_MPI)&&defined(CPP_NEVER)
633
    IF ( hybrid%l_calhf ) DEALLOCATE (nkpt_EIBZ)
634
#endif
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

    IF ( input%gw.eq.2.AND.(gwc==1) )  THEN        ! go for another round
       OPEN (nu,file='potcoul',form='unformatted',status='old')
       !
       !       Generate input file abcoeff for subsequent GW calculation
       !       28.10.2003 Arno Schindlmayr
       !
       IF ( mpi%irank == 0 ) THEN
          WRITE(6,'(A)') 'Info: Write out vxc for GW and vxc.old.'
          WRITE(6,'(A)') 'Info: Write out abcoeff for GW.'
          WRITE(6,'(A)') 'Info: Write out radfun for gw_vxc and GW.'
       END IF
       OPEN (12,file='vxc.old',form='formatted',status='unknown') ! contains vxc from gw_eig
       OPEN (13,file='vxc',form='formatted',status='unknown')     ! contains vxc from gw_vxc
       OPEN (1013,file='vxcfull',form='unformatted',status='unknown')
       INQUIRE(file='fleur.qsgw',exist=l_file)
       IF(l_file) THEN
          WRITE(6,'(A)') 'Info: Write file qsgw for GW.'
          OPEN(1014,file='qsgw',form='unformatted')
       ENDIF
       OPEN (15,file='abcoeff',form='unformatted',status='unknown', action='write')
       OPEN (14,file='radfun',form='unformatted',status='unknown')
       WRITE(14) atoms%jri(1:atoms%ntype)
       OPEN (16,file='latharm',form='unformatted',status='unknown')
       WRITE(16) sphhar%nlhd,sphhar%memd
       l = 0
       DO i = 1,atoms%ntype
          j = atoms%ntypsy(sum(atoms%neq(:i-1))+1)
          WRITE(16) sphhar%nlh(j),sphhar%llh(:sphhar%nlh(j),j),sphhar%nmem(:sphhar%nlh(j),j),&
               sphhar%mlh(:sphhar%memd,:sphhar%nlh(j),j),sphhar%clnu(:sphhar%memd,:sphhar%nlh(j),j)
          DO j = 1,atoms%neq(i)
             l = l + 1
             IF(atoms%invsat(l).EQ.2) THEN
                WRITE(16) -atoms%ngopr(sym%invsatnr(l))
             ELSE
                WRITE(16)  atoms%ngopr(l)
             ENDIF
          ENDDO
       ENDDO
       CLOSE (16)
       gwc=2
       GOTO 999
    ELSE IF ( input%gw.eq.2.AND.(gwc==2) )  THEN
       CLOSE (12)
       CLOSE (13)
       CLOSE (1013)
       CLOSE (14)
       CLOSE (15)
       IF(.NOT.noco%l_soc)  THEN
          INQUIRE(1014,opened=l_file)
          IF(l_file) CLOSE(1014)
          INQUIRE(667,opened=l_file)
          IF(l_file) CLOSE(667)
688
          CALL juDFT_end("GW finished",mpi%irank)
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
       ENDIF
    ENDIF

    !     hf: write out radial potential vr0
    IF (l_hybrid.or.hybrid%l_calhf) THEN
       open(unit=120,file='vr0',form='unformatted')
       DO isp=1,dimension%jspd
          DO n=1,atoms%ntypd
             DO i=1,atoms%jmtd
                WRITE(120) vr0(i,n,isp)
             END DO
          END DO
       END DO
       CLOSE(120)
    ENDIF

    DEALLOCATE ( vpw,vzxy,vz,vr,vr0 )

#ifdef CPP_MPI
708
    CALL MPI_BARRIER(mpi%MPI_COMM,ierr)
709
710
#endif
    if (l_hybrid.or.hybrid%l_calhf) CALL close_eig(eig_id_hf)
711
    atoms%n_u=n_u_in
712
713
714
715
716
717


    IF( input%jspins .EQ. 1 .AND. l_hybrid ) THEN
       results%te_hfex%valence = 2*results%te_hfex%valence
       results%te_hfex%core    = 2*results%te_hfex%core
    END IF
718
719
720
    enpara_in%epara_min = minval(enpara%el0)
    enpara_in%epara_min = min(minval(enpara%ello0),enpara_in%epara_min)
!    enpara_in=enpara
721
722
  END SUBROUTINE eigen
END MODULE m_eigen