Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
fleur
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
52
Issues
52
List
Boards
Labels
Service Desk
Milestones
Operations
Operations
Incidents
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
fleur
fleur
Commits
8be96c01
Commit
8be96c01
authored
Oct 22, 2019
by
Matthias Redies
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
use modern grule
parent
76f31e47
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
66 additions
and
67 deletions
+66
-67
math/CMakeLists.txt
math/CMakeLists.txt
+1
-1
math/grule.f
math/grule.f
+0
-66
math/grule.f90
math/grule.f90
+65
-0
No files found.
math/CMakeLists.txt
View file @
8be96c01
...
...
@@ -7,7 +7,6 @@ math/d_wigner.F
math/dcylbs.f
math/dsphbs.f
math/gaussp.f
math/grule.f
math/inv3.f
math/inwint.f
math/matmul.f
...
...
@@ -32,6 +31,7 @@ math/DoubleFactorial.f90
math/ExpSave.f90
math/intgr.F90
math/ylm4.F90
math/grule.f90
)
if
(
FLEUR_USE_FFTMKL
)
set
(
fleur_F90
${
fleur_F90
}
math/mkl_dfti.f90
)
...
...
math/grule.f
deleted
100644 → 0
View file @
76f31e47
MODULE
m_grule
CONTAINS
SUBROUTINE
grule
(
n
,
x
,
w
)
c
***********************************************************************
c
determines
the
(
n
+1
)/
2
nonnegative
points
x
(
i
)
and
c
the
corresponding
weights
w
(
i
)
of
the
n
-
point
c
gauss
-
legendre
integration
rule
,
normalized
to
the
c
interval
(
-1
,
1
)
.
the
x
(
i
)
appear
in
descending
order
.
c
this
routine
is
from
'methods of numerical integration'
,
c
p
.j.
davis
and
p
.
rabinowitz
,
page
369.
c
m
.w.
c
***********************************************************************
USE
m_constants
IMPLICIT
NONE
C
..
C
..
Arguments
..
INTEGER
,
INTENT
(
IN
)
::
n
REAL
,
INTENT
(
OUT
)
::
w
(
n
/
2
),
x
(
n
/
2
)
C
..
C
..
Locals
..
INTEGER
i
,
it
,
k
,
m
REAL
d1
,
d2pn
,
d3pn
,
d4pn
,
den
,
dp
,
dpn
,
e1
,
fx
,
h
REAL
p
,
pk
,
pkm1
,
pkp1
,
t
,
t1
,
u
,
v
,
x0
C
..
C
..
m
=
(
n
+1
)/
2
e1
=
n
*
(
n
+1
)
DO
i
=
1
,
m
t
=
(
4
*
i
-1
)
*
pi_const
/
(
4
*
n
+2
)
x0
=
(
1.
-
(
1.-1.
/
n
)/
(
8.
*
n
*
n
))
*
cos
(
t
)
c
--->
iterate
on
the
value
(
m
.w.
jan
.
1982
)
DO
it
=
1
,
2
pkm1
=
1.
pk
=
x0
DO
k
=
2
,
n
t1
=
x0
*
pk
pkp1
=
t1
-
pkm1
-
(
t1
-
pkm1
)/
k
+
t1
pkm1
=
pk
pk
=
pkp1
ENDDO
den
=
1.
-
x0
*
x0
d1
=
n
*
(
pkm1
-
x0
*
pk
)
dpn
=
d1
/
den
d2pn
=
(
2.
*
x0
*
dpn
-
e1
*
pk
)/
den
d3pn
=
(
4.
*
x0
*
d2pn
+
(
2.
-
e1
)
*
dpn
)/
den
d4pn
=
(
6.
*
x0
*
d3pn
+
(
6.
-
e1
)
*
d2pn
)/
den
u
=
pk
/
dpn
v
=
d2pn
/
dpn
h
=
-
u
*
(
1.+.5
*
u
*
(
v
+
u
*
(
v
*
v
-
u
*
d3pn
/
(
3.
*
dpn
))))
p
=
pk
+
h
*
(
dpn
+.5
*
h
*
(
d2pn
+
h
/
3.
*
(
d3pn
+.25
*
h
*
d4pn
)))
dp
=
dpn
+
h
*
(
d2pn
+.5
*
h
*
(
d3pn
+
h
*
d4pn
/
3.
))
h
=
h
-
p
/
dp
x0
=
x0
+
h
ENDDO
x
(
i
)
=
x0
fx
=
d1
-
h
*
e1
*
(
pk
+.5
*
h
*
(
dpn
+
h
/
3.
*
(
d2pn
+.25
*
h
*
(
d3pn
+
+
.2
*
h
*
d4pn
))))
w
(
i
)
=
2.
*
(
1.
-
x
(
i
)
*
x
(
i
))/
(
fx
*
fx
)
ENDDO
IF
(
m
+
m
.GT.
n
)
x
(
m
)
=
0.
RETURN
END
SUBROUTINE
grule
END
MODULE
M_grule
math/grule.f90
0 → 100644
View file @
8be96c01
MODULE
m_grule
CONTAINS
SUBROUTINE
grule
(
n
,
x
,
w
)
!***********************************************************************
! determines the (n+1)/2 nonnegative points x(i) and
! the corresponding weights w(i) of the n-point
! gauss-legendre integration rule, normalized to the
! interval (-1,1). the x(i) appear in descending order.
! this routine is from 'methods of numerical integration',
! p.j. davis and p. rabinowitz, page 369.
! m.w.
!***********************************************************************
USE
m_constants
IMPLICIT
NONE
! ..
! .. Arguments ..
INTEGER
,
INTENT
(
IN
)
::
n
REAL
,
INTENT
(
OUT
)
::
w
(
n
/
2
),
x
(
n
/
2
)
! ..
! .. Locals ..
INTEGER
::
i
,
it
,
k
,
m
REAL
::
d1
,
d2pn
,
d3pn
,
d4pn
,
den
,
dp
,
dpn
,
e1
,
fx
,
h
REAL
::
p
,
pk
,
pkm1
,
pkp1
,
t
,
t1
,
u
,
v
,
x0
! ..
! ..
m
=
(
n
+
1
)/
2
e1
=
n
*
(
n
+
1
)
DO
i
=
1
,
m
t
=
(
4
*
i
-
1
)
*
pi_const
/(
4
*
n
+
2
)
x0
=
(
1.
-
(
1.-1.
/
n
)/(
8.
*
n
*
n
))
*
cos
(
t
)
!---> iterate on the value (m.w. jan. 1982)
DO
it
=
1
,
2
pkm1
=
1.
pk
=
x0
DO
k
=
2
,
n
t1
=
x0
*
pk
pkp1
=
t1
-
pkm1
-
(
t1
-
pkm1
)/
k
+
t1
pkm1
=
pk
pk
=
pkp1
ENDDO
den
=
1.
-
x0
*
x0
d1
=
n
*
(
pkm1
-
x0
*
pk
)
dpn
=
d1
/
den
d2pn
=
(
2.
*
x0
*
dpn
-
e1
*
pk
)/
den
d3pn
=
(
4.
*
x0
*
d2pn
+
(
2.
-
e1
)
*
dpn
)/
den
d4pn
=
(
6.
*
x0
*
d3pn
+
(
6.
-
e1
)
*
d2pn
)/
den
u
=
pk
/
dpn
v
=
d2pn
/
dpn
h
=
-
u
*
(
1.+.5
*
u
*
(
v
+
u
*
(
v
*
v
-
u
*
d3pn
/(
3.
*
dpn
))))
p
=
pk
+
h
*
(
dpn
+
.5
*
h
*
(
d2pn
+
h
/
3.
*
(
d3pn
+
.25
*
h
*
d4pn
)))
dp
=
dpn
+
h
*
(
d2pn
+
.5
*
h
*
(
d3pn
+
h
*
d4pn
/
3.
))
h
=
h
-
p
/
dp
x0
=
x0
+
h
ENDDO
x
(
i
)
=
x0
fx
=
d1
-
h
*
e1
*
(
pk
+
.5
*
h
*
(
dpn
+
h
/
3.
*
(
d2pn
+
.25
*
h
*
(
d3pn
+
&
.2
*
h
*
d4pn
))))
w
(
i
)
=
2.
*
(
1.
-
x
(
i
)
*
x
(
i
))/(
fx
*
fx
)
ENDDO
IF
(
m
+
m
>
n
)
x
(
m
)
=
0.
END
SUBROUTINE
grule
END
MODULE
m_grule
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment