Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
fleur
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
54
Issues
54
List
Boards
Labels
Service Desk
Milestones
Operations
Operations
Incidents
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
fleur
fleur
Commits
d22a6489
Commit
d22a6489
authored
Oct 09, 2018
by
Daniel Wortmann
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'develop' of iffgit.fz-juelich.de:fleur/fleur into develop
Conflicts: eigen/hsmt_ab.F90
parents
1d790398
1b2cda7e
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
147 additions
and
90 deletions
+147
-90
eigen/eigen_hssetup.F90
eigen/eigen_hssetup.F90
+2
-2
eigen/hsmt_ab.F90
eigen/hsmt_ab.F90
+48
-32
eigen/hsmt_nonsph.F90
eigen/hsmt_nonsph.F90
+96
-55
types/types_mpimat.F90
types/types_mpimat.F90
+1
-1
No files found.
eigen/eigen_hssetup.F90
View file @
d22a6489
...
...
@@ -93,8 +93,8 @@ CONTAINS
! Collect the four noco parts into a single matrix
! In collinear case only a copy is done
! In the parallel case also a redistribution happens
ALLOCATE
(
smat_final
,
source
=
smat
(
1
,
1
))
ALLOCATE
(
hmat_final
,
source
=
smat
(
1
,
1
))
ALLOCATE
(
smat_final
,
mold
=
smat
(
1
,
1
))
ALLOCATE
(
hmat_final
,
mold
=
smat
(
1
,
1
))
CALL
eigen_redist_matrix
(
mpi
,
lapw
,
atoms
,
smat
,
smat_final
)
CALL
eigen_redist_matrix
(
mpi
,
lapw
,
atoms
,
hmat
,
hmat_final
,
smat_final
)
...
...
eigen/hsmt_ab.F90
View file @
d22a6489
...
...
@@ -19,8 +19,44 @@ CONTAINS
#ifdef _CUDA
ATTRIBUTES
(
global
)
SUBROUTINE
synth_ab
(
grid
,
block
,
n
,
lmax
,
iintsp
,
ab_size
,
gkrot_dev
,
fj
,
gj
,
c_ph
,
ab
)
USE
m_ylm
INTEGER
,
VALUE
,
INTENT
(
IN
)
::
grid
,
block
,
n
,
lmax
,
iintsp
,
ab_size
REAL
,
DEVICE
,
INTENT
(
IN
)
::
gkrot_dev
(:,:),
fj
(:,:,:),
gj
(:,:,:)
COMPLEX
,
DEVICE
,
INTENT
(
IN
)
::
c_ph
(:,:)
COMPLEX
,
DEVICE
,
INTENT
(
OUT
)
::
ab
(:,:)
COMPLEX
,
ALLOCATABLE
::
ylm
(:)
INTEGER
::
k
,
l
,
ll1
,
m
INTEGER
::
loop_start
,
loop_end
,
i
,
loop_size
ALLOCATE
(
ylm
((
lmax
+1
)
**
2
))
k
=
(
blockidx
%
x
-1
)
*
blockdim
%
x
+
threadidx
%
x
loop_size
=
max
(
n
/(
grid
*
block
),
1
)
if
(
loop_size
*
grid
*
block
<
n
)
loop_size
=
loop_size
+
1
loop_start
=
(
k
-1
)
*
loop_size
+
1
loop_end
=
loop_start
+
loop_size
-
1
if
(
loop_end
>
n
)
loop_end
=
n
DO
i
=
loop_start
,
loop_end
!--> generate spherical harmonics
CALL
ylm4_dev
(
lmax
,
gkrot_dev
(:,
i
),
ylm
(:))
DO
l
=
0
,
lmax
ll1
=
l
*
(
l
+1
)
DO
m
=
-
l
,
l
ab
(
i
,
ll1
+
m
+1
)
=
CONJG
(
fj
(
i
,
l
+1
,
iintsp
)
*
c_ph
(
i
,
iintsp
)
*
ylm
(
ll1
+
m
+1
))
ab
(
i
,
ll1
+
m
+1
+
ab_size
)
=
CONJG
(
gj
(
i
,
l
+1
,
iintsp
)
*
c_ph
(
i
,
iintsp
)
*
ylm
(
ll1
+
m
+1
))
END
DO
END
DO
ENDDO
DEALLOCATE
(
ylm
)
END
SUBROUTINE
synth_ab
SUBROUTINE
hsmt_ab_gpu
(
sym
,
atoms
,
noco
,
ispin
,
iintsp
,
n
,
na
,
cell
,
lapw
,
fj
,
gj
,
ab
,
ab_size
,
l_nonsph
,
abclo
,
alo1
,
blo1
,
clo1
)
!Calculate overlap matrix
!Calculate overlap matrix
, GPU version
USE
m_constants
,
ONLY
:
fpi_const
,
tpi_const
USE
m_types
USE
m_ylm
...
...
@@ -53,18 +89,13 @@ CONTAINS
REAL
,
ALLOCATABLE
::
gkrot
(:,:)
COMPLEX
::
term
REAL
,
ALLOCATABLE
,
DEVICE
::
fj_dev
(:,:,:),
gj_dev
(:,:,:)
COMPLEX
,
ALLOCATABLE
,
DEVICE
::
c_ph_dev
(:,:)
COMPLEX
,
ALLOCATABLE
,
DEVICE
::
ylm_dev
(:,:)
REAL
,
ALLOCATABLE
,
DEVICE
::
gkrot_dev
(:,:)
INTEGER
::
istat
INTEGER
::
istat
,
grid
,
block
! call nvtxStartRange("hsmt_ab",2)
lmax
=
MERGE
(
atoms
%
lnonsph
(
n
),
atoms
%
lmax
(
n
),
l_nonsph
)
ALLOCATE
(
c_ph_dev
(
lapw
%
nv
(
1
),
MERGE
(
2
,
1
,
noco
%
l_ss
)))
ALLOCATE
(
ylm_dev
((
lmax
+1
)
**
2
,
lapw
%
nv
(
1
)))
ALLOCATE
(
gkrot_dev
(
3
,
lapw
%
nv
(
1
)))
ALLOCATE
(
ylm
((
lmax
+1
)
**
2
,
lapw
%
nv
(
1
)))
...
...
@@ -97,31 +128,14 @@ CONTAINS
!--> synthesize the complex conjugates of a and b
!call nvtxStartRange("hsmt_synthAB",5)
istat
=
cudaDeviceSynchronize
()
!!$cuf kernel do <<<*,256>>>
!DO k = 1,lapw%nv(1)
! !--> generate spherical harmonics
! CALL ylm4_dev(lmax,gkrot_dev(:,k),ylm_dev(:,k))
!ENDDO
DO
k
=
1
,
lapw
%
nv
(
1
)
call
ylm4
(
lmax
,
gkrot
(:,
k
),
ylm
(:,
k
))
ENDDO
ylm_dev
=
ylm
! pretty ugly solution
block
=
256
grid
=
lapw
%
nv
(
1
)/(
block
*
4
)
+
1
CALL
synth_ab
<<<
grid
,
block
>>>
(
grid
,
block
,
lapw
%
nv
(
1
),
lmax
,
iintsp
,
ab_size
,
gkrot_dev
,
fj
,
gj
,
c_ph_dev
,
ab
)
!call nvtxStartRange("hsmt_cuf",5)
!$cuf kernel do <<<*,256>>>
DO
k
=
1
,
lapw
%
nv
(
1
)
!--> generate spherical harmonics
!CALL ylm4_dev(lmax,gkrot_dev(:,k),ylm_dev(:,k))
DO
l
=
0
,
lmax
ll1
=
l
*
(
l
+1
)
DO
m
=
-
l
,
l
ab
(
k
,
ll1
+
m
+1
)
=
CONJG
(
fj
(
k
,
l
+1
,
iintsp
)
*
c_ph_dev
(
k
,
iintsp
)
*
ylm_dev
(
ll1
+
m
+1
,
k
))
ab
(
k
,
ll1
+
m
+1
+
ab_size
)
=
CONJG
(
gj
(
k
,
l
+1
,
iintsp
)
*
c_ph_dev
(
k
,
iintsp
)
*
ylm_dev
(
ll1
+
m
+1
,
k
))
END
DO
END
DO
ENDDO
!k-loop
istat
=
cudaDeviceSynchronize
()
!call nvtxEndRange
...
...
@@ -150,12 +164,14 @@ CONTAINS
ab_size
=
ab_size
*
2
!call nvtxEndRange
DEALLOCATE
(
c_ph_dev
)
DEALLOCATE
(
gkrot_dev
)
END
SUBROUTINE
hsmt_ab_gpu
#endif
SUBROUTINE
hsmt_ab_cpu
(
sym
,
atoms
,
noco
,
ispin
,
iintsp
,
n
,
na
,
cell
,
lapw
,
fj
,
gj
,
ab
,
ab_size
,
l_nonsph
,
abclo
,
alo1
,
blo1
,
clo1
)
!Calculate overlap matrix
!Calculate overlap matrix
, CPU vesion
USE
m_constants
,
ONLY
:
fpi_const
,
tpi_const
USE
m_types
USE
m_ylm
...
...
eigen/hsmt_nonsph.F90
View file @
d22a6489
...
...
@@ -27,27 +27,31 @@ CONTAINS
CLASS
(
t_mat
),
INTENT
(
INOUT
)
::
hmat
CALL
timestart
(
"non-spherical setup"
)
IF
(
mpi
%
n_size
==
1
)
THEN
#if defined (_CUDA)
CALL
priv_noMPI_gpu
(
n
,
mpi
,
sym
,
atoms
,
isp
,
iintsp
,
jintsp
,
chi
,
noco
,
cell
,
lapw
,
td
,
fj
,
gj
,
hmat
)
#else
CALL
priv_noMPI
(
n
,
mpi
,
sym
,
atoms
,
isp
,
iintsp
,
jintsp
,
chi
,
noco
,
cell
,
lapw
,
td
,
fj
,
gj
,
hmat
)
#endif
ELSE
CALL
priv_MPI
(
n
,
mpi
,
sym
,
atoms
,
isp
,
iintsp
,
jintsp
,
chi
,
noco
,
cell
,
lapw
,
td
,
fj
,
gj
,
hmat
)
ENDIF
CALL
timestop
(
"non-spherical setup"
)
END
SUBROUTINE
hsmt_nonsph
SUBROUTINE
priv_noMPI
(
n
,
mpi
,
sym
,
atoms
,
isp
,
iintsp
,
jintsp
,
chi
,
noco
,
cell
,
lapw
,
td
,
fj
,
gj
,
hmat
)
#if defined (_CUDA)
SUBROUTINE
priv_noMPI_gpu
(
n
,
mpi
,
sym
,
atoms
,
isp
,
iintsp
,
jintsp
,
chi
,
noco
,
cell
,
lapw
,
td
,
fj
,
gj
,
hmat
)
!Calculate overlap matrix
USE
m_hsmt_ab
USE
m_constants
,
ONLY
:
fpi_const
,
tpi_const
USE
m_types
USE
m_ylm
#if defined (_CUDA)
! cublas: required to use generic BLAS interface
! cudafor: required to use CUDA runtime API routines
(e.g.
!
cudaDeviceSynchronize)
USE
cublas
! cudafor: required to use CUDA runtime API routines
!
nvtx: profiling
USE
cublas
USE
cudafor
USE
nvtx
#endif
IMPLICIT
NONE
TYPE
(
t_mpi
),
INTENT
(
IN
)
::
mpi
TYPE
(
t_sym
),
INTENT
(
IN
)
::
sym
...
...
@@ -67,21 +71,16 @@ CONTAINS
INTEGER
::
nn
,
na
,
ab_size
,
l
,
ll
,
m
COMPLEX
,
ALLOCATABLE
::
ab
(:,:),
ab1
(:,:),
ab2
(:,:)
real
::
rchi
#ifdef _CUDA
COMPLEX
,
ALLOCATABLE
,
DEVICE
::
c_dev
(:,:),
ab1_dev
(:,:),
ab_dev
(:,:),
ab2_dev
(:,:)
COMPLEX
,
ALLOCATABLE
,
DEVICE
::
h_loc_dev
(:,:)
REAL
,
ALLOCATABLE
,
DEVICE
::
fj_dev
(:,:,:),
gj_dev
(:,:,:)
integer
::
i
,
j
,
istat
call
nvtxStartRange
(
"hsmt_nonsph"
,
1
)
#endif
ALLOCATE
(
ab
(
MAXVAL
(
lapw
%
nv
),
2
*
atoms
%
lmaxd
*
(
atoms
%
lmaxd
+2
)
+2
),
ab1
(
lapw
%
nv
(
jintsp
),
2
*
atoms
%
lmaxd
*
(
atoms
%
lmaxd
+2
)
+2
))
#ifdef _CUDA
ALLOCATE
(
h_loc_dev
(
size
(
td
%
h_loc
,
1
),
size
(
td
%
h_loc
,
2
)))
ALLOCATE
(
ab1_dev
(
size
(
ab1
,
1
),
size
(
ab1
,
2
)
))
ALLOCATE
(
ab_dev
(
size
(
ab
,
1
),
size
(
ab
,
2
)
))
ALLOCATE
(
ab1_dev
(
lapw
%
nv
(
jintsp
),
2
*
atoms
%
lmaxd
*
(
atoms
%
lmaxd
+2
)
+2
))
ALLOCATE
(
ab_dev
(
MAXVAL
(
lapw
%
nv
),
2
*
atoms
%
lmaxd
*
(
atoms
%
lmaxd
+2
)
+2
))
h_loc_dev
(
1
:,
1
:)
=
CONJG
(
td
%
h_loc
(
0
:,
0
:,
n
,
isp
))
!WORKAROUND, var_dev=CONJG(var_dev) does not work
ALLOCATE
(
fj_dev
(
MAXVAL
(
lapw
%
nv
),
atoms
%
lmaxd
+1
,
MERGE
(
2
,
1
,
noco
%
l_noco
)))
ALLOCATE
(
gj_dev
(
MAXVAL
(
lapw
%
nv
),
atoms
%
lmaxd
+1
,
MERGE
(
2
,
1
,
noco
%
l_noco
)))
...
...
@@ -89,12 +88,8 @@ CONTAINS
gj_dev
(
1
:,
1
:,
1
:)
=
gj
(
1
:,
0
:,
1
:)
!note that basically all matrices in the GPU version are conjugates of their
!cpu counterparts
#endif
IF
(
iintsp
.NE.
jintsp
)
ALLOCATE
(
ab2
(
lapw
%
nv
(
iintsp
),
2
*
atoms
%
lmaxd
*
(
atoms
%
lmaxd
+2
)
+2
))
#ifdef _CUDA
IF
(
iintsp
.NE.
jintsp
)
ALLOCATE
(
ab2_dev
(
lapw
%
nv
(
iintsp
),
2
*
atoms
%
lmaxd
*
(
atoms
%
lmaxd
+2
)
+2
))
#endif
IF
(
hmat
%
l_real
)
THEN
IF
(
ANY
(
SHAPE
(
hmat
%
data_c
)/
=
SHAPE
(
hmat
%
data_r
)))
THEN
...
...
@@ -103,73 +98,119 @@ CONTAINS
ENDIF
hmat
%
data_c
=
0.0
ENDIF
#ifdef _CUDA
ALLOCATE
(
c_dev
(
SIZE
(
hmat
%
data_c
,
1
),
SIZE
(
hmat
%
data_c
,
2
)))
c_dev
=
hmat
%
data_c
#endif
DO
nn
=
1
,
atoms
%
neq
(
n
)
na
=
SUM
(
atoms
%
neq
(:
n
-1
))
+
nn
IF
((
atoms
%
invsat
(
na
)
==
0
)
.OR.
(
atoms
%
invsat
(
na
)
==
1
))
THEN
rchi
=
MERGE
(
REAL
(
chi
),
REAL
(
chi
)
*
2
,(
atoms
%
invsat
(
na
)
==
0
))
#ifdef _CUDA
CALL
hsmt_ab
(
sym
,
atoms
,
noco
,
isp
,
jintsp
,
n
,
na
,
cell
,
lapw
,
fj_dev
,
gj_dev
,
ab_dev
,
ab_size
,
.TRUE.
)
! istat = cudaDeviceSynchronize()
#else
CALL
hsmt_ab
(
sym
,
atoms
,
noco
,
isp
,
jintsp
,
n
,
na
,
cell
,
lapw
,
fj
,
gj
,
ab
,
ab_size
,
.TRUE.
)
#endif
!Calculate Hamiltonian
#ifdef _CUDA
CALL
zgemm
(
"N"
,
"N"
,
lapw
%
nv
(
jintsp
),
ab_size
,
ab_size
,
CMPLX
(
1.0
,
0.0
),
ab_dev
,
SIZE
(
ab_dev
,
1
),
h_loc_dev
,
SIZE
(
h_loc_dev
,
1
),
CMPLX
(
0.
,
0.
),
ab1_dev
,
SIZE
(
ab1_dev
,
1
))
#else
CALL
zgemm
(
"N"
,
"N"
,
lapw
%
nv
(
jintsp
),
ab_size
,
ab_size
,
CMPLX
(
1.0
,
0.0
),
ab
,
SIZE
(
ab
,
1
),
td
%
h_loc
(
0
:,
0
:,
n
,
isp
),
SIZE
(
td
%
h_loc
,
1
),
CMPLX
(
0.
,
0.
),
ab1
,
SIZE
(
ab1
,
1
))
#endif
CALL
zgemm
(
"N"
,
"N"
,
lapw
%
nv
(
jintsp
),
ab_size
,
ab_size
,
CMPLX
(
1.0
,
0.0
),
ab_dev
,
SIZE
(
ab_dev
,
1
),&
h_loc_dev
,
SIZE
(
h_loc_dev
,
1
),
CMPLX
(
0.
,
0.
),
ab1_dev
,
SIZE
(
ab1_dev
,
1
))
!ab1=MATMUL(ab(:lapw%nv(iintsp),:ab_size),td%h_loc(:ab_size,:ab_size,n,isp))
IF
(
iintsp
==
jintsp
)
THEN
#ifdef _CUDA
call
nvtxStartRange
(
"zherk"
,
3
)
!ab1_dev=CONJG(ab1)
call
nvtxStartRange
(
"zherk"
,
3
)
CALL
ZHERK
(
"U"
,
"N"
,
lapw
%
nv
(
iintsp
),
ab_size
,
Rchi
,
ab1_dev
,
SIZE
(
ab1_dev
,
1
),
1.0
,
c_dev
,
SIZE
(
c_dev
,
1
))
istat
=
cudaDeviceSynchronize
()
call
nvtxEndRange
()
#else
CALL
ZHERK
(
"U"
,
"N"
,
lapw
%
nv
(
iintsp
),
ab_size
,
Rchi
,
CONJG
(
ab1
),
SIZE
(
ab1
,
1
),
1.0
,
hmat
%
data_c
,
SIZE
(
hmat
%
data_c
,
1
))
#endif
call
nvtxEndRange
()
ELSE
!here the l_ss off-diagonal part starts
!Second set of ab is needed
#ifdef _CUDA
CALL
hsmt_ab
(
sym
,
atoms
,
noco
,
isp
,
iintsp
,
n
,
na
,
cell
,
lapw
,
fj_dev
,
gj_dev
,
ab_dev
,
ab_size
,
.TRUE.
)
#else
CALL
hsmt_ab
(
sym
,
atoms
,
noco
,
isp
,
iintsp
,
n
,
na
,
cell
,
lapw
,
fj
,
gj
,
ab
,
ab_size
,
.TRUE.
)
#endif
#ifdef _CUDA
CALL
zgemm
(
"N"
,
"N"
,
lapw
%
nv
(
iintsp
),
ab_size
,
ab_size
,
CMPLX
(
1.0
,
0.0
),
ab_dev
,
SIZE
(
ab_dev
,
1
),
h_loc_dev
,
SIZE
(
td
%
h_loc
,
1
),
CMPLX
(
0.
,
0.
),
ab2_dev
,
SIZE
(
ab2_dev
,
1
))
#else
CALL
zgemm
(
"N"
,
"N"
,
lapw
%
nv
(
iintsp
),
ab_size
,
ab_size
,
CMPLX
(
1.0
,
0.0
),
ab
,
SIZE
(
ab
,
1
),
td
%
h_loc
(
0
:,
0
:,
n
,
isp
),
SIZE
(
td
%
h_loc
,
1
),
CMPLX
(
0.
,
0.
),
ab2
,
SIZE
(
ab2
,
1
))
#endif
CALL
zgemm
(
"N"
,
"N"
,
lapw
%
nv
(
iintsp
),
ab_size
,
ab_size
,
CMPLX
(
1.0
,
0.0
),
ab_dev
,
SIZE
(
ab_dev
,
1
),&
h_loc_dev
,
SIZE
(
td
%
h_loc
,
1
),
CMPLX
(
0.
,
0.
),
ab2_dev
,
SIZE
(
ab2_dev
,
1
))
!Multiply for Hamiltonian
#ifdef _CUDA
ab1
=
ab1_dev
ab1_dev
=
CONJG
(
ab1
)
CALL
zgemm
(
"N"
,
"T"
,
lapw
%
nv
(
iintsp
),
lapw
%
nv
(
jintsp
),
ab_size
,
chi
,
ab2_dev
,
SIZE
(
ab2_dev
,
1
),
ab1_dev
,
SIZE
(
ab1_dev
,
1
),
CMPLX
(
1.0
,
0.0
),
c_dev
,
SIZE
(
c_dev
,
1
))
#else
CALL
zgemm
(
"N"
,
"T"
,
lapw
%
nv
(
iintsp
),
lapw
%
nv
(
jintsp
),
ab_size
,
chi
,
conjg
(
ab2
),
SIZE
(
ab2
,
1
),
ab1
,
SIZE
(
ab1
,
1
),
CMPLX
(
1.0
,
0.0
),
hmat
%
data_c
,
SIZE
(
hmat
%
data_c
,
1
))
#endif
!$cuf kernel do<<<*,256>>>
do
i
=
1
,
size
(
ab1_dev
,
2
)
do
j
=
1
,
size
(
ab1_dev
,
1
)
ab1_dev
(
j
,
i
)
=
conjg
(
ab1_dev
(
j
,
i
))
enddo
enddo
CALL
zgemm
(
"N"
,
"T"
,
lapw
%
nv
(
iintsp
),
lapw
%
nv
(
jintsp
),
ab_size
,
chi
,
ab2_dev
,
SIZE
(
ab2_dev
,
1
),&
ab1_dev
,
SIZE
(
ab1_dev
,
1
),
CMPLX
(
1.0
,
0.0
),
c_dev
,
SIZE
(
c_dev
,
1
))
ENDIF
ENDIF
END
DO
#ifdef _CUDA
hmat
%
data_c
=
c_dev
#endif
IF
(
hmat
%
l_real
)
THEN
hmat
%
data_r
=
hmat
%
data_r
+
REAL
(
hmat
%
data_c
)
ENDIF
#ifdef _CUDA
call
nvtxEndRange
END
SUBROUTINE
priv_noMPI_gpu
#endif
SUBROUTINE
priv_noMPI
(
n
,
mpi
,
sym
,
atoms
,
isp
,
iintsp
,
jintsp
,
chi
,
noco
,
cell
,
lapw
,
td
,
fj
,
gj
,
hmat
)
!Calculate overlap matrix
USE
m_hsmt_ab
USE
m_constants
,
ONLY
:
fpi_const
,
tpi_const
USE
m_types
USE
m_ylm
IMPLICIT
NONE
TYPE
(
t_mpi
),
INTENT
(
IN
)
::
mpi
TYPE
(
t_sym
),
INTENT
(
IN
)
::
sym
TYPE
(
t_noco
),
INTENT
(
IN
)
::
noco
TYPE
(
t_cell
),
INTENT
(
IN
)
::
cell
TYPE
(
t_atoms
),
INTENT
(
IN
)
::
atoms
TYPE
(
t_lapw
),
INTENT
(
IN
)
::
lapw
TYPE
(
t_tlmplm
),
INTENT
(
IN
)
::
td
! ..
! .. Scalar Arguments ..
INTEGER
,
INTENT
(
IN
)
::
n
,
isp
,
iintsp
,
jintsp
COMPLEX
,
INTENT
(
in
)
::
chi
! ..
! .. Array Arguments ..
REAL
,
INTENT
(
IN
)
::
fj
(:,
0
:,:),
gj
(:,
0
:,:)
CLASS
(
t_mat
),
INTENT
(
INOUT
)::
hmat
INTEGER
::
nn
,
na
,
ab_size
,
l
,
ll
,
m
COMPLEX
,
ALLOCATABLE
::
ab
(:,:),
ab1
(:,:),
ab2
(:,:)
real
::
rchi
ALLOCATE
(
ab
(
MAXVAL
(
lapw
%
nv
),
2
*
atoms
%
lmaxd
*
(
atoms
%
lmaxd
+2
)
+2
),
ab1
(
lapw
%
nv
(
jintsp
),
2
*
atoms
%
lmaxd
*
(
atoms
%
lmaxd
+2
)
+2
))
IF
(
iintsp
.NE.
jintsp
)
ALLOCATE
(
ab2
(
lapw
%
nv
(
iintsp
),
2
*
atoms
%
lmaxd
*
(
atoms
%
lmaxd
+2
)
+2
))
IF
(
hmat
%
l_real
)
THEN
IF
(
ANY
(
SHAPE
(
hmat
%
data_c
)/
=
SHAPE
(
hmat
%
data_r
)))
THEN
DEALLOCATE
(
hmat
%
data_c
)
ALLOCATE
(
hmat
%
data_c
(
SIZE
(
hmat
%
data_r
,
1
),
SIZE
(
hmat
%
data_r
,
2
)))
ENDIF
hmat
%
data_c
=
0.0
ENDIF
DO
nn
=
1
,
atoms
%
neq
(
n
)
na
=
SUM
(
atoms
%
neq
(:
n
-1
))
+
nn
IF
((
atoms
%
invsat
(
na
)
==
0
)
.OR.
(
atoms
%
invsat
(
na
)
==
1
))
THEN
rchi
=
MERGE
(
REAL
(
chi
),
REAL
(
chi
)
*
2
,(
atoms
%
invsat
(
na
)
==
0
))
CALL
hsmt_ab
(
sym
,
atoms
,
noco
,
isp
,
jintsp
,
n
,
na
,
cell
,
lapw
,
fj
,
gj
,
ab
,
ab_size
,
.TRUE.
)
!Calculate Hamiltonian
CALL
zgemm
(
"N"
,
"N"
,
lapw
%
nv
(
jintsp
),
ab_size
,
ab_size
,
CMPLX
(
1.0
,
0.0
),
ab
,
SIZE
(
ab
,
1
),
td
%
h_loc
(
0
:,
0
:,
n
,
isp
),
SIZE
(
td
%
h_loc
,
1
),
CMPLX
(
0.
,
0.
),
ab1
,
SIZE
(
ab1
,
1
))
!ab1=MATMUL(ab(:lapw%nv(iintsp),:ab_size),td%h_loc(:ab_size,:ab_size,n,isp))
IF
(
iintsp
==
jintsp
)
THEN
CALL
ZHERK
(
"U"
,
"N"
,
lapw
%
nv
(
iintsp
),
ab_size
,
Rchi
,
CONJG
(
ab1
),
SIZE
(
ab1
,
1
),
1.0
,
hmat
%
data_c
,
SIZE
(
hmat
%
data_c
,
1
))
ELSE
!here the l_ss off-diagonal part starts
!Second set of ab is needed
CALL
hsmt_ab
(
sym
,
atoms
,
noco
,
isp
,
iintsp
,
n
,
na
,
cell
,
lapw
,
fj
,
gj
,
ab
,
ab_size
,
.TRUE.
)
CALL
zgemm
(
"N"
,
"N"
,
lapw
%
nv
(
iintsp
),
ab_size
,
ab_size
,
CMPLX
(
1.0
,
0.0
),
ab
,
SIZE
(
ab
,
1
),
td
%
h_loc
(
0
:,
0
:,
n
,
isp
),
SIZE
(
td
%
h_loc
,
1
),
CMPLX
(
0.
,
0.
),
ab2
,
SIZE
(
ab2
,
1
))
!Multiply for Hamiltonian
CALL
zgemm
(
"N"
,
"T"
,
lapw
%
nv
(
iintsp
),
lapw
%
nv
(
jintsp
),
ab_size
,
chi
,
conjg
(
ab2
),
SIZE
(
ab2
,
1
),
ab1
,
SIZE
(
ab1
,
1
),
CMPLX
(
1.0
,
0.0
),
hmat
%
data_c
,
SIZE
(
hmat
%
data_c
,
1
))
ENDIF
ENDIF
END
DO
IF
(
hmat
%
l_real
)
THEN
hmat
%
data_r
=
hmat
%
data_r
+
REAL
(
hmat
%
data_c
)
ENDIF
END
SUBROUTINE
priv_noMPI
...
...
types/types_mpimat.F90
View file @
d22a6489
...
...
@@ -339,7 +339,7 @@ CONTAINS
type
(
t_blacsdata
),
INTENT
(
OUT
)::
blacsdata
INTEGER
,
INTENT
(
OUT
)::
local_size1
,
local_size2
#ifdef CPP_
MPI
#ifdef CPP_
SCALAPACK
INCLUDE
'mpif.h'
INTEGER
::
myrowssca
,
mycolssca
INTEGER
::
iamblacs
,
npblacs
,
np
,
myid
,
mycol
,
myrow
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment