SUBROUTINE inconz(e,l,xmj,kap1,kap2,vv,bb,rr,xx1,xx2) c..........................................................inconz c initial point for outcome regular solution of dirac eq. c order kap1=-L-1, kap2=L c USE m_constants, ONLY : c_light IMPLICIT NONE C .. Scalar Arguments .. REAL bb,e,rr,vv,xmj INTEGER kap1,kap2,l C .. C .. Array Arguments .. REAL xx1(4),xx2(4) C .. C .. Local Scalars .. REAL aa11,aa12,aa21,aa22,bb1,bb2,bc0,bqq,cc,cg1,cg2,cg4,cg5,cg8, + cgo,csq,det,emvpp,emvqq,rpwgpm,tz,vc0 INTEGER i,j,m,mps,nsol C .. C .. Local Arrays .. REAL cgd(2),cgmd(2),gam(2),kap(2),pc(2,2,0:1),qc(2,2,0:1),wp(2,2), + wq(2,2) C .. C .. Intrinsic Functions .. INTRINSIC abs,real,int,sqrt C .. cc = c_light(2.0) csq = cc*cc c C EXPANSION COEFFICIENTS FOR THE POTENTIAL AND B-FIELD C VV=VV(1) tz = real(int(-vv*rr)) vc0 = vv - (-tz)/rr C BB=BB(1) bc0 = bb C C CALCULATE G-COEFFICIENTS OF B-FIELD C c KAP1 = - L - 1 c KAP2 = + L cg1 = -xmj/ (kap1+0.5) cg5 = -xmj/ (-kap1+0.5) cgd(1) = cg1 cgmd(1) = cg5 kap(1) = real(kap1) gam(1) = sqrt(kap(1)**2- (tz/cc)**2) IF (abs(xmj).GE.l) THEN cg2 = 0.00 cg4 = 0.00 cg8 = 0.00 nsol = 1 cgd(2) = 0.00 cgo = 0.00 cgmd(2) = 0.00 gam(2) = 0.00 kap(2) = 0.00 ELSE cg2 = -sqrt(1.0- (xmj/ (kap1+0.50))**2) cg4 = -xmj/ (kap2+0.50) cg8 = -xmj/ (-kap2+0.50) nsol = 2 cgd(2) = cg4 cgo = cg2 cgmd(2) = cg8 kap(2) = real(kap2) gam(2) = sqrt(kap(2)**2- (tz/cc)**2) END IF C DO 10 j = 1,nsol i = 3 - j pc(j,j,0) = sqrt(abs(kap(j)-gam(j))) qc(j,j,0) = (kap(j)+gam(j))* (csq/tz)*pc(j,j,0) pc(i,j,0) = 0.0 qc(i,j,0) = 0.0 10 CONTINUE C DETERMINE HIGHER EXPANSION COEFFICIENTS FOR THE WAVE FUNCTIONS mps = 1 aa12 = -tz/csq aa21 = tz emvqq = (e-vc0+csq)/csq emvpp = -e + vc0 bqq = bc0/csq DO 40 j = 1,nsol DO 30 m = 1,mps DO 20 i = 1,nsol bb1 = (emvqq+bqq*cgmd(i))*qc(i,j,m-1) bb2 = (emvpp+bc0*cgd(i))*pc(i,j,m-1) + + bc0*cgo*pc(3-i,j,m-1) aa11 = gam(j) + m + kap(i) aa22 = gam(j) + m - kap(i) det = aa11*aa22 - aa12*aa21 pc(i,j,m) = (bb1*aa22-aa12*bb2)/det qc(i,j,m) = (aa11*bb2-bb1*aa21)/det 20 CONTINUE 30 CONTINUE 40 CONTINUE C C PERFORM SUMMATION OVER WAVE FUNCTION - EXPANSION COEFFICIENTS C FOR THE FIRST - MESH - POINT c RR= RC(1) DO 80 j = 1,nsol rpwgpm = rr** (gam(j)) DO 50 i = 1,nsol wp(i,j) = pc(i,j,0)*rpwgpm wq(i,j) = qc(i,j,0)*rpwgpm 50 CONTINUE DO 70 m = 1,mps rpwgpm = rpwgpm*rr DO 60 i = 1,nsol wp(i,j) = wp(i,j) + pc(i,j,m)*rpwgpm wq(i,j) = wq(i,j) + qc(i,j,m)*rpwgpm 60 CONTINUE 70 CONTINUE 80 CONTINUE C---> First point solutions construction IF (nsol.EQ.2) THEN xx1(1) = wp(1,1) xx1(2) = wq(1,1) xx1(3) = wp(2,1) xx1(4) = wq(2,1) c xx2(1) = wp(1,2) xx2(2) = wq(1,2) xx2(3) = wp(2,2) xx2(4) = wq(2,2) ELSE xx1(1) = wp(1,1) xx1(2) = wq(1,1) c not needed xx1(3) = 0.0 xx1(4) = 0.0 xx2(1) = 0.0 xx2(2) = 0.0 xx2(3) = 0.0 xx2(4) = 0.0 END IF RETURN END