!-------------------------------------------------------------------------------- ! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany ! This file is part of FLEUR and available as free software under the conditions ! of the MIT license as expressed in the LICENSE file in more detail. !-------------------------------------------------------------------------------- MODULE m_kptgen_hybrid USE m_juDFT CONTAINS ! this programm generates an aequdistant kpoint set including the ! Gamma point; it is reduced to IBZ and written in kpts (M.B.) !Modified for types D.W. SUBROUTINE kptgen_hybrid(kpts,invs,l_soc,nop,mrot,tau) USE m_types IMPLICIT NONE TYPE(t_kpts),INTENT(INOUT)::kpts ! - scalars - INTEGER, INTENT(IN) :: nop LOGICAL, INTENT(IN) :: invs LOGICAL, INTENT(IN) :: l_soc ! - local arrays - INTEGER, INTENT(IN) :: mrot(3,3,nop) REAL , INTENT(IN) :: tau(3,nop) ! - local scalars - INTEGER :: i,j,k,nkpt INTEGER :: ikpt,ikpt0,nkpti INTEGER :: nsym ! - local arrays - INTEGER,ALLOCATABLE :: rot(:,:,:),rrot(:,:,:) INTEGER,ALLOCATABLE :: invtab(:) INTEGER,ALLOCATABLE :: neqkpt(:) INTEGER,ALLOCATABLE :: pkpt(:,:,:),kptp(:),symkpt(:),iarr(:), & iarr2(:) REAL,ALLOCATABLE :: rtau(:,:) REAL,ALLOCATABLE :: bk(:,:),bkhlp(:,:) REAL,ALLOCATABLE :: rarr(:) LOGICAL :: ldum nkpt=kpts%nkpt3(1)*kpts%nkpt3(2)*kpts%nkpt3(3) ALLOCATE( bk(3,nkpt),bkhlp(3,nkpt) ) ikpt = 0 DO i=0,kpts%nkpt3(1)-1 DO j=0,kpts%nkpt3(2)-1 DO k=0,kpts%nkpt3(3)-1 ikpt = ikpt + 1 bk(:,ikpt) = (/ 1.0*i/kpts%nkpt3(1),1.0*j/kpts%nkpt3(2), & 1.0*k/kpts%nkpt3(3) /) END DO END DO END DO IF( ikpt .ne. nkpt) STOP 'failure: number of k-points' IF( invs .or. l_soc ) THEN nsym = nop ELSE nsym = 2*nop END IF ALLOCATE( rot(3,3,nsym),rtau(3,nsym) ) DO i=1,nop rot(:,:,i) = mrot(:,:,i) rtau( :,i) = tau(:,i) END DO DO i = nop+1,nsym rot(:,:,i) = rot(:,:,i-nop) rtau( :,i) = rtau( :,i-nop) END DO IF(any(rot(:,:,1)-reshape((/1,0,0,0,1,0,0,0,1/),(/3,3/)).ne.0)) & STOP 'kptgen: First symmetry operation is not the identity.' ALLOCATE( rrot(3,3,nsym),invtab(nsym) ) invtab = 0 DO i = 1,nop DO j = 1,nop IF( all( matmul(rot(:,:,i),rot(:,:,j)) & .eq.reshape((/1,0,0,0,1,0,0,0,1/),(/3,3/))) & .and.all(modulo(matmul(rot(:,:,i),rtau(:,j))+rtau(:,i),1.0) & .lt.1d-10) )THEN IF(invtab(i).ne.0) STOP 'kptgen: inverse operation & & already defined.' invtab(i) = j rrot(:,:,i) = transpose_int ( rot(:,:,j) ) ! temporary fix for ifc END IF END DO IF(invtab(i).eq.0) STOP 'kptgen: inverse operation not found.' END DO DO i = nop+1,nsym rrot(:,:,i) = - rrot(:,:,i-nop) END DO ALLOCATE ( kptp(nkpt),symkpt(nkpt),rarr(3),iarr2(3),iarr(nkpt) ) ALLOCATE ( pkpt(kpts%nkpt3(1)+1,kpts%nkpt3(2)+1,kpts%nkpt3(3)+1) ) pkpt = 0 DO ikpt = 1,nkpt iarr2 = nint ( bk(:,ikpt) * kpts%nkpt3 ) + 1 pkpt(iarr2(1),iarr2(2),iarr2(3)) = ikpt END DO pkpt(kpts%nkpt3(1)+1, : , : ) = pkpt(1,:,:) pkpt( : ,kpts%nkpt3(2)+1, : ) = pkpt(:,1,:) pkpt( : , : ,kpts%nkpt3(3)+1) = pkpt(:,:,1) IF(any(pkpt.eq.0)) THEN CALL juDFT_error('kptgen: Definition of pkpt-pointer failed.', & calledby='kptgen_hybrid') END IF iarr = 1 ldum = .false. DO i = 1,nkpt IF(iarr(i).eq.0) CYCLE kptp(i) = i symkpt(i) = 1 DO k = 2,nsym rarr = matmul(rrot(:,:,k),bk(:,i)) * kpts%nkpt3 iarr2 = nint(rarr) IF(any(abs(iarr2-rarr).gt.1d-10)) THEN WRITE(6,'(A,I3,A)') 'kptgen: Symmetry operation',k, & ' incompatible with k-point set.' ldum = .true. END IF iarr2 = modulo(iarr2,kpts%nkpt3) + 1 IF(any(iarr2.gt.kpts%nkpt3)) & STOP 'kptgen: pointer indices exceed pointer dimensions.' j = pkpt(iarr2(1),iarr2(2),iarr2(3)) IF(j.eq.0) STOP 'kptgen: k-point index is zero (bug?)' IF(iarr(j).eq.0.or.j.eq.i) CYCLE iarr(j) = 0 kptp(j) = i symkpt(j) = k END DO END DO IF(ldum) &STOP 'kptgen: Some symmetry operations are incompatible & with k-point set.' i = 0 DO ikpt = 1,nkpt IF(iarr(ikpt).eq.1) THEN i = i + 1 iarr(ikpt) = i END IF END DO nkpti = i DO ikpt = 1,nkpt IF(iarr(ikpt).eq.0) THEN i = i + 1 iarr(ikpt) = i END IF END DO bk(:,iarr) = bk kptp = iarr(kptp) kptp(iarr) = kptp symkpt(iarr) = symkpt DO i=1,kpts%nkpt3(1)+1 DO j=1,kpts%nkpt3(2)+1 DO k=1,kpts%nkpt3(3)+1 pkpt(i,j,k) = iarr(pkpt(i,j,k)) END DO END DO END DO ALLOCATE( neqkpt(nkpti) ) neqkpt = 0 DO ikpt0 = 1,nkpti DO ikpt = 1,nkpt IF( kptp(ikpt) .eq. ikpt0 ) neqkpt(ikpt0) = neqkpt(ikpt0) + 1 END DO END DO ! Do not do any IO, but store in kpts kpts%nkpt=nkpti if (allocated(kpts%bk)) deallocate(kpts%bk) if (allocated(kpts%wtkpt)) deallocate(kpts%wtkpt) ALLOCATE(kpts%bk(3,kpts%nkpt),kpts%wtkpt(kpts%nkpt)) DO ikpt=1,nkpti kpts%bk(:,ikpt)=bk(:,ikpt) kpts%wtkpt(ikpt)=neqkpt(ikpt) END DO kpts%posScale=1.0 CONTAINS ! Returns least common multiple of the integers iarr(1:n). FUNCTION kgv(iarr,n) IMPLICIT NONE INTEGER :: kgv INTEGER, INTENT(IN) :: n,iarr(n) LOGICAL :: lprim(2:maxval(iarr)) INTEGER, ALLOCATABLE :: prim(:),expo(:) INTEGER :: nprim,marr INTEGER :: i,j,ia,k ! Determine prime numbers marr = maxval(iarr) lprim = .true. DO i = 2,marr j = 2 DO WHILE (i*j.le.marr) lprim(i*j) = .false. j = j + 1 END DO END DO nprim = count(lprim) ALLOCATE ( prim(nprim),expo(nprim) ) j = 0 DO i = 2,marr IF(lprim(i)) THEN j = j + 1 prim(j) = i END IF END DO ! Determine least common multiple expo = 0 DO i = 1,n ia = iarr(i) IF(ia.eq.0) CYCLE DO j = 1,nprim k = 0 DO WHILE(ia/prim(j)*prim(j).eq.ia) k = k + 1 ia = ia / prim(j) END DO expo(j) = max(expo(j),k) END DO END DO kgv = 1 DO j = 1,nprim kgv = kgv * prim(j)**expo(j) END DO DEALLOCATE ( prim,expo ) END FUNCTION kgv c ifc seems to have problems transposing integer arrays. this is a fix. FUNCTION transpose_int ( a ) IMPLICIT NONE integer transpose_int(3,3),a(3,3) integer i,j DO i = 1,3 DO j = 1,3 transpose_int(i,j) = a(j,i) END DO END DO END FUNCTION transpose_int c function modulo1 maps kpoint into first BZ FUNCTION modulo1(kpoint,nkpt,a,b,c) IMPLICIT NONE INTEGER,INTENT(IN) :: nkpt,a,b,c REAL, INTENT(IN) :: kpoint(3) REAL :: modulo1(3) INTEGER :: help(3),nkpt3(3) nkpt3 = (/a,b,c/) modulo1 = kpoint*nkpt3 help = nint(modulo1) IF(any(abs(help-modulo1).gt.1d-8)) THEN modulo1 = kpoint*nkpt3 WRITE(*,*) modulo1 help = nint(modulo1) WRITE(*,*) help WRITE(6,'(A,F5.3,2('','',F5.3),A)') 'modulo1: argument (', & kpoint,') is not an element of the k-point set.' CALL juDFT_error( + 'modulo1: argument not an element of k-point set.', + calledby = 'kptgen_hybrid:modulo1') END IF modulo1 = modulo(help,nkpt3)*1d0/nkpt3 END FUNCTION modulo1 END SUBROUTINE kptgen_hybrid END MODULE m_kptgen_hybrid