module m_vmts contains subroutine vmts( input, mpi, stars, sphhar, atoms, sym, cell, oneD, vpw, rho, yukawa_residual, vr ) !------------------------------------------------------------------------- ! This subroutine calculates the lattice harmonics expansion coefficients ! of the Coulomb / Yukawa potential for all atom types. ! ! In more detail: ! the radius-dependent coefficient of the potential is ! V_{lm}(r) = \int_0^R G_l(r,r') \rho_{lm}(r') r'^2 dr' + V_{lm}(R) P_l(r) ! where ! [sphere boundary contribution - first part of code:] ! V_{lm}(R) is the spherical harmonics expansion of the interstitial ! potential, ! P_l(r) is the derivative of the spherical Green's function on the sphere ! boundary (times a constant), ! [sphere interior contribution - second part of code:] ! G_l(r,r') ) = green_factor u_1(r_<) u_2(r_>) is the spherical Green's ! function with homogeneous solutions u_1 and u_2 and ! r_< = min(r,r') and r_> = max(r,r') ! The integral is split in a part where r'=r_< and a part where r'=r_> and ! the integral from r to R is split in \int_0^R - \int_0^r. Resulting ! terms depending solely on R (not on r) are summarised in the variable ! termsR. !------------------------------------------------------------------------- #include"cpp_double.h" use m_constants use m_types use m_intgr, only : intgr2 use m_phasy1 use m_sphbes use m_od_phasy use m_SphBessel implicit none type(t_input), intent(in) :: input type(t_mpi), intent(in) :: mpi type(t_stars), intent(in) :: stars type(t_sphhar), intent(in) :: sphhar type(t_atoms), intent(in) :: atoms type(t_sym), intent(in) :: sym type(t_cell), intent(in) :: cell type(t_oneD), intent(in) :: oneD complex, intent(in) :: vpw(:)!(stars%ng3,input%jspins) real, intent(in) :: rho(:,0:,:)!(atoms%jmtd,0:sphhar%nlhd,atoms%ntype) logical, intent(in) :: yukawa_residual real, intent(out) :: vr(:,0:,:)!(atoms%jmtd,0:sphhar%nlhd,atoms%ntype) complex :: cp, sm integer :: i, jm, k, l, lh, n, nd, lm, n1, nat, m, imax, lmax complex :: vtl(0:sphhar%nlhd, atoms%ntype) complex :: pylm(( atoms%lmaxd + 1 ) ** 2, atoms%ntype) real :: green_factor, termsR real :: green_1 (1:atoms%jmtd), green_2 (1:atoms%jmtd) real :: integrand_1(1:atoms%jmtd), integrand_2(1:atoms%jmtd) real :: integral_1 (1:atoms%jmtd), integral_2 (1:atoms%jmtd) real :: sbf(0:atoms%lmaxd) real, allocatable, dimension(:,:) :: il, kl !$ COMPLEX vtl_loc(0:sphhar%nlhd,atoms%ntype) #ifdef CPP_MPI include 'mpif.h' integer :: ierr(3) complex, allocatable :: c_b(:) external MPI_REDUCE #endif integer :: OMP_GET_NUM_THREADS, OMP_GET_THREAD_NUM !------------------------------------------------------------------------- ! sphere boundary contribution to the coefficients calculated from the values ! of the interstitial Coulomb / Yukawa potential on the sphere boundary vtl(:,:) = cmplx( 0.0, 0.0 ) #ifdef CPP_MPI call MPI_BCAST( vpw, size(vpw), CPP_MPI_COMPLEX, 0, mpi, ierr ) #endif ! q=0 component if ( mpi%irank == 0 ) then vtl(0,1:atoms%ntype) = sfp_const * vpw(1) end if ! q/=0 components !$omp parallel default( none ) & !$omp& shared( mpi, stars, vpw, oneD, atoms, sym, cell, sphhar, vtl ) & !$omp& private( k, cp, pylm, nat, n, sbf, nd, lh, sm, jm, m, lm, l ) & !$omp& private( vtl_loc ) !$ vtl_loc(:,:) = cmplx(0.d0,0.d0) !$omp do do k = mpi%irank+2, stars%ng3, mpi%isize cp = vpw(k) * stars%nstr(k) if ( .not. oneD%odi%d1 ) then call phasy1( atoms, stars, sym, cell, k, pylm ) else call od_phasy( atoms%ntype, stars%ng3, atoms%nat, atoms%lmaxd, atoms%ntype, & atoms%neq, atoms%lmax, atoms%taual, cell%bmat, stars%kv3, k, oneD%odi, oneD%ods, pylm ) end if nat = 1 do n = 1, atoms%ntype call sphbes( atoms%lmax(n), stars%sk3(k) * atoms%rmt(n), sbf ) nd = atoms%ntypsy(nat) do lh = 0, sphhar%nlh(nd) l = sphhar%llh(lh,nd) sm = (0.0,0.0) do jm = 1, sphhar%nmem(lh,nd) m = sphhar%mlh(jm,lh,nd) lm = l * ( l + 1 ) + m + 1 sm = sm + conjg( sphhar%clnu(jm,lh,nd) ) * pylm(lm,n) end do !$ if (.false.) then vtl(lh,n) = vtl(lh,n) + cp * sbf(l) * sm !$ end if !$ vtl_loc(lh,n) = vtl_loc(lh,n) + cp * sbf(l) * sm end do nat = nat + atoms%neq(n) end do end do !$omp end do !$omp critical !$ vtl = vtl + vtl_loc !$omp end critical !$omp end parallel #ifdef CPP_MPI n1 = ( sphhar%nlhd + 1 ) * atoms%ntype allocate( c_b(n1) ) call MPI_REDUCE( vtl, c_b, n1, CPP_MPI_COMPLEX, MPI_SUM, 0, mpi%mpi_comm, ierr ) if ( mpi%irank == 0 ) vtl = reshape( c_b, (/sphhar%nlhd+1,atoms%ntype/) ) deallocate (c_b) #endif !------------------------------------------------------------------------- ! sphere interior contribution to the coefficients calculated from the ! values of the sphere Coulomb/Yukawa potential on the sphere boundary if ( yukawa_residual ) then allocate( il(0:atoms%lmaxd, 1:atoms%jmtd), kl(0:atoms%lmaxd, 1:atoms%jmtd) ) end if nat = 1 do n = 1, atoms%ntype nd = atoms%ntypsy(nat) imax = atoms%jri(n) lmax = sphhar%llh(sphhar%nlh(nd), nd) if ( yukawa_residual ) then do concurrent (i = 1:imax) call ModSphBessel( il(0:,i), kl(0:,i), input%preconditioning_param * atoms%rmsh(i,n), lmax ) end do end if do lh = 0, sphhar%nlh(nd) l = sphhar%llh(lh,nd) if ( yukawa_residual ) then green_1(1:imax) = il(l,1:imax) green_2(1:imax) = kl(l,1:imax) green_factor = fpi_const * input%preconditioning_param else green_1(1:imax) = atoms%rmsh(1:imax,n) ** l green_2(1:imax) = 1.0 / ( green_1(1:imax) * atoms%rmsh(1:imax,n) ) green_factor = fpi_const / ( 2 * l + 1 ) end if integrand_1(1:imax) = green_1(1:imax) * rho(1:imax,lh,n) integrand_2(1:imax) = green_2(1:imax) * rho(1:imax,lh,n) call intgr2( integrand_1(1:imax), atoms%rmsh(1,n), atoms%dx(n), imax, integral_1(1:imax) ) call intgr2( integrand_2(1:imax), atoms%rmsh(1,n), atoms%dx(n), imax, integral_2(1:imax) ) termsR = integral_2(imax) + ( vtl(lh,n) / green_factor - integral_1(imax) * green_2(imax) ) / green_1(imax) vr(1:imax,lh,n) = green_factor * ( green_1(1:imax) * ( termsR - integral_2(1:imax) ) & + green_2(1:imax) * integral_1(1:imax) ) end do nat = nat + atoms%neq(n) end do if ( yukawa_residual ) then deallocate( il, kl ) end if if ( .not. yukawa_residual ) then do n = 1, atoms%ntype vr(1:atoms%jri(n),0,n) = vr(1:atoms%jri(n),0,n) - sfp_const * ( 1.0 / atoms%rmsh(1:atoms%jri(n),n) - 1.0 / atoms%rmt(n) ) * atoms%zatom(n) end do end if end subroutine vmts end module m_vmts