grp_k.f90 30.7 KB
Newer Older
1 2 3 4 5 6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
MODULE m_grp_k
  USE m_juDFT

  IMPLICIT NONE

  PRIVATE
  PUBLIC :: grp_k, euler

CONTAINS 

  SUBROUTINE grp_k(sym,mrot_k,cell,bk,nclass,nirr,char_table,&
       &    grpname,irrname,su,sp_alph,sp_beta)

    !************************************************************
    !
    !   Determines the group of k, returns the number of classes, the name of the
    !   group, the irreducible representations and the character table.
    !   All the groups are not implemented yet, and the identification is not tested for 
    !   the groups. 
    !
    !  The subroutine works also with double groups, however, no double groups are 
    !  tabulated at the moment.
    !
    ! 
    !   Character tables are taken from 
    !   T. Inui, Y Tanabe, and Y. Onodera, "Group theory and its applications in physics",
    !   Springer (1996)
    !
    !   Jussi Enkovaara, Juelich 2004
    !**************************************************************

    !      USE m_mrot2su
    USE m_inv3
    USE m_constants, ONLY : pi_const
    USE m_socsym,    ONLY : soc_sym, cross
    USE m_types
    IMPLICIT NONE

    TYPE(t_sym),INTENT(IN)   :: sym
    TYPE(t_cell),INTENT(IN)   :: cell
   

    REAL,INTENT(IN)      :: bk(3)
    COMPLEX, INTENT(OUT) :: char_table(:,:)
    INTEGER, INTENT(OUT) :: mrot_k(:,:,:),nclass,nirr
    CHARACTER(LEN=7),  INTENT(OUT) :: grpname
    CHARACTER(LEN=5),  INTENT(OUT) :: irrname(:)
    COMPLEX, OPTIONAL, INTENT(OUT) :: su(:,:,:)
    REAL,    OPTIONAL, INTENT(IN)  :: sp_alph,sp_beta ! spin quant. axis

    ! locals
    INTEGER ::  nopk,c
    LOGICAL, ALLOCATABLE :: error(:)
    INTEGER :: mrot2(3,3,48)
    REAL    :: ktest(3),rtmp,rtmp2(4),kt(3)
    INTEGER :: mtest(3,3),mtmp(3,3),mtmpinv(3,3),munit(3,3)
    INTEGER :: n,n2 ,i,itmp
    INTEGER :: elem(48),belongs(48),members(48)
    LOGICAL :: soc,l_sorted
    ! COMPLEX :: sutmp(2,2), sutmpinv(2,2), su2(2,2,48)
    COMPLEX :: sutest(2,2)
    INTEGER :: d,det(48),rot(12),rot_type(48)
    REAL :: alpha,beta,gamma,theta(48),rax(4,48)
    REAL,PARAMETER :: eps=0.000001
    COMPLEX :: omega
    COMPLEX,PARAMETER :: one=CMPLX(1.0,0.0),zero=CMPLX(0.0,0.0)
    COMPLEX,PARAMETER :: imi=CMPLX(0.0,1.0)


    soc=.FALSE.
    IF (PRESENT(su)) soc=.TRUE.
    !sym%nop=SIZE(sym%mrot,3)

    ALLOCATE(error(sym%nop))
    error=.FALSE.
    ! Reduce the symmetry due to spin-orbit
    IF (soc.AND.PRESENT(sp_alph)) THEN
       CALL soc_sym(&
            &        sym%nop,sym%mrot,sp_beta,sp_alph,cell%amat,&
            &        error)!keep
    ENDIF

    ! determine the group of k
    nopk=0
    ksymloop: DO n=1,sym%nop
       ktest(1)=bk(1)-sym%mrot(1,1,n)*bk(1)-sym%mrot(2,1,n)*bk(2)&
            &        -sym%mrot(3,1,n)*bk(3)
       ktest(2)=bk(2)-sym%mrot(1,2,n)*bk(1)-sym%mrot(2,2,n)*bk(2)&
            &        -sym%mrot(3,2,n)*bk(3)
       ktest(3)=bk(3)-sym%mrot(1,3,n)*bk(1)-sym%mrot(2,3,n)*bk(2)&
            &        -sym%mrot(3,3,n)*bk(3)
       IF (( ABS( ktest(1) - NINT(ktest(1)) ) < eps ) .AND.&
            &         ( ABS( ktest(2) - NINT(ktest(2)) ) < eps ) .AND.&
            &         ( ABS( ktest(3) - NINT(ktest(3)) ) < eps ) .AND.&
            &         (.NOT.error(n)) ) THEN
          nopk=nopk+1
          mrot_k(:,:,nopk)=sym%mrot(:,:,n)
          CYCLE ksymloop
       ENDIF
    ENDDO ksymloop

    DEALLOCATE(error)

    ! Determine the spin-rotations
    ! Double groups not used at the moment, the groups are classified 
    ! without the spin rotations
    !       IF (soc) CALL mrot2su(mrot_k(:,:,1:nopk),amat,su)

    ! identify the group
    ! first determine the classes
    members=1
    nclass=1
    elem(nclass)=1
    belongs(1)=1
    !       IF (soc) THEN 
    ! double group
    !         DO n=1,nopk        
    !            mrot_k(:,:,n+nopk)=mrot_k(:,:,n)
    !            su(:,:,n+nopk)=-su(:,:,n)
    !         ENDDO
    !         nopk=2*nopk
    !       ENDIF

    cloop: DO n=2,nopk
       DO n2=1,nopk
          mtmp=mrot_k(:,:,n2)
          CALL inv3(mrot_k(:,:,n2),mtmpinv,d)
          mtest=MATMUL(MATMUL(mtmp,mrot_k(:,:,n)),mtmpinv)
          !            IF (soc) THEN
          !               sutmp=su(:,:,n2)
          !               sutmpinv=CONJG(TRANSPOSE(sutmp))
          !               sutest=MATMUL(MATMUL(sutmp,su(:,:,n)),sutmpinv)
          !            ENDIF
          DO c=1,nclass
             !               IF (soc) THEN
             !                  IF (ALL((mtest-mrot_k(:,:,elem(c))).EQ.0).AND.
             !c     &   ALL(ABS(REAL(sutest-su(:,:,elem(c)))).LE.0.0001).AND.
             !     &   ALL(ABS(AIMAG(sutest-su(:,:,elem(c)))).LE.0.0001)) THEN
             !                     belongs(n)=c
             !                     CYCLE classloop
             !                  ENDIF
             !               ELSE
             IF (ALL((mtest-mrot_k(:,:,elem(c))).EQ.0)) THEN 
                belongs(n)=c
                members(c)=members(c)+1
                CYCLE cloop
             ENDIF
             !               ENDIF
          ENDDO
       ENDDO
       nclass=nclass+1
       elem(nclass)=n
       belongs(n)=nclass
    ENDDO cloop
    nirr=nclass
    IF (soc) nirr=2*nclass

    ! sort the classes according the rotation type
    mrot2(:,:,1:nopk)=mrot_k(:,:,1:nopk)
    DO c=1,nclass
       mrot_k(:,:,c)=mrot2(:,:,elem(c))
    ENDDO
    !        IF (soc) THEN
    !           su2(:,:,1:nopk)=su(:,:,1:nopk)
    !           DO c=1,nclass
    !              su(:,:,c)=su2(:,:,elem(c))
    !           ENDDO
    !        ENDIF



    ! identify the group
    rot=0
    rot_type=0
    ! rot_type: 2=two fold rot, 3=three fold rot, etc, 7=identity
    !           8=two fold improper rot, ...
    munit=0
    munit(1,1)=1
    munit(2,2)=1
    munit(3,3)=1
    ! determine the number of different rotations
    DO c=1,nclass
       det(c)=&
            &      mrot_k(1,1,c)*mrot_k(2,2,c)*mrot_k(3,3,c)+&
            &      mrot_k(1,2,c)*mrot_k(2,3,c)*mrot_k(3,1,c)+&
            &      mrot_k(2,1,c)*mrot_k(3,2,c)*mrot_k(1,3,c)-&
            &      mrot_k(1,3,c)*mrot_k(2,2,c)*mrot_k(3,1,c)-&
            &      mrot_k(2,3,c)*mrot_k(3,2,c)*mrot_k(1,1,c)-&
            &      mrot_k(2,1,c)*mrot_k(1,2,c)*mrot_k(3,3,c)
       mtest=det(c)*mrot_k(:,:,c)
       rotloop: DO i=1,6
          IF (ALL((mtest-munit).EQ.0)) THEN
             rot(i+(1-det(c))*3)=rot(i+(1-det(c))*3)+1
             IF (i.EQ.1) THEN
                rot_type(c)=7-(1-det(c))*3
             ELSE
                rot_type(c)=i-(1-det(c))*3
             ENDIF
             EXIT rotloop
          ENDIF
          mtest=MATMUL(det(c)*mrot_k(:,:,c),mtest)
       ENDDO rotloop
       IF (ANY((mtest-munit).NE.0)) THEN
          WRITE(6,*) 'grp_k: Cannot find the order of rotation'
       ENDIF
       IF ((rot(5).GT.0).OR.(rot(11).GT.0)) THEN
          WRITE(6,*) 'grp_k: 5 fold rotation found!'
       ENDIF
       CALL euler(c,sym,cell,alpha,beta,gamma)
       CALL rotaxis(alpha,beta,gamma,rax(1:4,c),theta(c))
       IF (soc) THEN
          su(1,1,c)=COS(beta/2.0)*EXP(CMPLX(0.0,-(alpha+gamma)/2.0))
          su(1,2,c)=-SIN(beta/2.0)*EXP(CMPLX(0.0,-(alpha-gamma)/2.0))
          su(2,1,c)=SIN(beta/2.0)*EXP(CMPLX(0.0,(alpha-gamma)/2.0))
          su(2,2,c)=COS(beta/2.0)*EXP(CMPLX(0.0,(alpha+gamma)/2.0))
       ENDIF
    ENDDO

    !<-- Sort the classes
    ! The group elements are sorted in the following way:
    ! First the proper rotations, then improper ones, with increasing rotation angle
    ! Rotations with the same angle are arranged with increasing magnitude of the rotation
    ! axis, e.g. (I, 90 deg around 001, 90 around 110, mirror, ...

    l_sorted=.FALSE.
    DO WHILE (.NOT.l_sorted)
       l_sorted=.TRUE.
       DO c=1,nclass-1
          IF (rot_type(c).LT.rot_type(c+1)) THEN
             mtest=mrot_k(:,:,c)
             mrot_k(:,:,c)=mrot_k(:,:,c+1)
             mrot_k(:,:,c+1)=mtest
             rtmp=theta(c)
             theta(c)=theta(c+1)
             theta(c+1)=rtmp
             rtmp2=rax(:,c)
             rax(:,c)=rax(:,c+1)
             rax(:,c+1)=rtmp2
             itmp=det(c)
             det(c)=det(c+1)
             det(c+1)=itmp
             itmp=rot_type(c)
             rot_type(c)=rot_type(c+1)
             rot_type(c+1)=itmp
             itmp=members(c)
             members(c)=members(c+1)
             members(c+1)=itmp
             IF (soc) THEN
                sutest=su(:,:,c)
                su(:,:,c)=su(:,:,c+1)
                su(:,:,c+1)=sutest
             ENDIF
             l_sorted=.FALSE.
          ENDIF
          IF ((rot_type(c).EQ.rot_type(c+1)).AND.&
               &            (theta(c).GT.theta(c+1))) THEN
             !              IF (theta(c)+(1-det(c))*2.0*pi.GT.
             !     &             theta(c+1)+(1-det(c+1))*2.0*pi) THEN
             mtest=mrot_k(:,:,c)
             mrot_k(:,:,c)=mrot_k(:,:,c+1)
             mrot_k(:,:,c+1)=mtest
             rtmp=theta(c)
             theta(c)=theta(c+1)
             theta(c+1)=rtmp
             rtmp2=rax(:,c)
             rax(:,c)=rax(:,c+1)
             rax(:,c+1)=rtmp2
             itmp=det(c)
             det(c)=det(c+1)
             det(c+1)=itmp
             itmp=members(c)
             members(c)=members(c+1)
             members(c+1)=itmp
             IF (soc) THEN
                sutest=su(:,:,c)
                su(:,:,c)=su(:,:,c+1)
                su(:,:,c+1)=sutest
             ENDIF
             l_sorted=.FALSE.
          ENDIF
          IF ((rot_type(c).EQ.rot_type(c+1)).AND.&
               &            (ABS(theta(c)-theta(c+1)).LT.0.0001).AND.    &
               &            (rax(4,c).GT.rax(4,c+1))) THEN
             !              IF ((ABS(theta(c)+(1-det(c))*2.0*pi-
             !     &           theta(c+1)-(1-det(c+1))*2.0*pi).LT.0.0001).AND.
             !     &           (rax(4,c).GT.rax(4,c+1))) THEN
             mtest=mrot_k(:,:,c)
             mrot_k(:,:,c)=mrot_k(:,:,c+1)
             mrot_k(:,:,c+1)=mtest
             rtmp2=rax(:,c)
             rax(:,c)=rax(:,c+1)
             rax(:,c+1)=rtmp2
             itmp=members(c)
             members(c)=members(c+1)
             members(c+1)=itmp
             IF (soc) THEN
                sutest=su(:,:,c)
                su(:,:,c)=su(:,:,c+1)
                su(:,:,c+1)=sutest
             ENDIF
             l_sorted=.FALSE.
          ENDIF
       ENDDO
    ENDDO
    !>


    WRITE(24,110) bk
    DO c=1,nclass
       IF (det(c).EQ.1) THEN
          WRITE(24,111) NINT(theta(c)*180/pi_const),(rax(1:3,c)),members(c)
       ELSE
          WRITE(24,112) NINT(theta(c)*180/pi_const),(rax(1:3,c)),members(c)
       ENDIF
    ENDDO
110 FORMAT('Symmetry operations of group of k=',3f6.3)
111 FORMAT(i3,1x,'degree proper rotation around ',3f6.2,3x,&
         &      i3,' members in class')
112 FORMAT(i3,1x,'degree improper rotation around ',3f6.2,3x,i3&
         &       ,' members in class')


    !<-- Character tables

    char_table=0.0
    char_table(1,:)=1.0
    grpname='Unknown'
    irrname='Unkno'   ! Only 5 characters wide, cf. ../sympsi.F.
    ! First look the number of classes, within groups with the same number of classes
    ! check the number of different rotations
    SELECT CASE(nclass)
    CASE(1)                           ! only C1
       grpname='C1'
       char_table(1,1)=1.0
       irrname(1)='Gam1'
       IF (soc) THEN
          char_table(2,1)=1.0
          irrname(2)='Gam2'
       ENDIF
    CASE(2)                           ! C-1, C2 and Cs
       IF (rot(2).GT.0) THEN
          grpname='C2'
          char_table(1,1:2)=(/1.0,  1.0/)
          char_table(2,1:2)=(/1.0, -1.0/)
          irrname(1)='Gam1'
          irrname(2)='Gam2'
       ELSE
          grpname='C1h'
          char_table(1,1:2)=(/1.0,  1.0/)
          char_table(2,1:2)=(/1.0, -1.0/)
          irrname(1)='Gam1'
          irrname(2)='Gam2'
          IF (soc) THEN
             char_table(3,1:2)=(/one, -imi/)
             char_table(4,1:2)=(/one,  imi/)
             irrname(3)='Gam3'
             irrname(4)='Gam4'
          ENDIF
       ENDIF
    CASE(3)                           ! C3, D3 and C3v
       IF (ANY(det(1:3).EQ.-1)) THEN
          grpname='C3v'
          char_table(1,1:3)=(/1.0,  1.0,  1.0/)
          char_table(2,1:3)=(/1.0,  1.0, -1.0/)
          char_table(3,1:3)=(/2.0, -1.0,  0.0/)
          irrname(1)='Lam1'
          irrname(2)='Lam2'
          irrname(3)='Lam3'
          IF (soc) THEN
             nirr=6
             char_table(4,1:3)=(/2.0,  1.0,  0.0/)
             char_table(5,1:3)=(/one, -one,  imi/)
             char_table(6,1:3)=(/one, -one, -imi/)
             irrname(4)='Lam6'
             irrname(5)='Lam4'
             irrname(6)='Lam5'
          ENDIF
       ELSE
          grpname='C3'
          omega=EXP(CMPLX(0.0,-2*pi_const/3.0))
          char_table(1,1:3)=(/1.0,  1.0,  1.0/)
          char_table(2,1:3)=(/one, omega, omega**2/)
          char_table(3,1:3)=(/one, omega**2, omega /)
          irrname(1)='Gam1'
          irrname(2)='Gam2'
          irrname(3)='Gam3'
       ENDIF
    CASE(4)                           ! C2h, D2, C2v, C4, S4, and T
       IF((rot(2).EQ.1).AND.(rot(8).EQ.2)) THEN
          grpname='C2v'
          char_table(1,1:4)=(/1.0,  1.0,  1.0,  1.0/)
          char_table(2,1:4)=(/1.0,  1.0, -1.0, -1.0/)
          char_table(3,1:4)=(/1.0, -1.0, -1.0,  1.0/)
          char_table(4,1:4)=(/1.0, -1.0,  1.0, -1.0/)
          irrname(1)='Z1'
          irrname(2)='Z2'
          irrname(3)='Z3'
          irrname(4)='Z4'            
       ELSE IF (rot(3).GT.1) THEN
          grpname='T'
          omega=EXP(CMPLX(0.0,-2*pi_const/3.0))
          char_table(1,1:4)=(/1.0,  1.0,  1.0,  1.0/)
          char_table(2,1:4)=(/one,  one, omega, omega**2/)
          char_table(3,1:4)=(/one,  one, omega**2,  omega/)
          char_table(4,1:4)=(/3.0, -1.0,  0.0,  0.0/)
          irrname(1)='Gam1'
          irrname(2)='Gam2'
          irrname(3)='Gam3'
          irrname(4)='Gam4'
       ELSE IF ((rot(4).GT.1).OR.(rot(10).GT.1)) THEN
          IF (rot(4).GT.1) grpname='C4'
          IF (rot(10).GT.1) grpname='S4'
          char_table(1,1:4)=(/1.0,  1.0,  1.0,  1.0/)
          char_table(2,1:4)=(/1.0, -1.0,  1.0, -1.0/)
          char_table(3,1:4)=(/one, -imi, -one,  imi/)
          char_table(4,1:4)=(/one,  imi, -one, -imi/)
          irrname(1)='Gam1'
          irrname(2)='Gam2'
          irrname(3)='Gam3'
          irrname(4)='Gam4'
          IF (soc) THEN
             nirr=8
             omega=EXP(CMPLX(0.0,-pi_const/4.0))
             char_table(5,1:4)=(/one, omega, -imi, &
                  &                   -CONJG(omega)/)
             char_table(6,1:4)=(/one, CONJG(omega), imi, &
                  &                   -omega/)
             char_table(7,1:4)=(/one, -omega, -imi, &
                  &                   CONJG(omega)/)
             char_table(8,1:4)=(/one, -CONJG(omega), imi, &
                  &                   omega/)
             irrname(5)='Gam5'
             irrname(6)='Gam6'
             irrname(7)='Gam7'
             irrname(8)='Gam8'                   
          ENDIF
       ELSE IF ((rot(2).EQ.1).AND.(rot(8).EQ.1)) THEN
          grpname='ZKUS'
       ENDIF
    CASE(5)                           ! D4, C4v, D2d, O and Td
       IF (rot(3).GT.0) THEN
          grpname='Td'
          char_table(1,1:5)=(/1.0,  1.0,  1.0,  1.0,  1.0/)
          char_table(2,1:5)=(/1.0, -1.0,  1.0, -1.0,  1.0/)
          char_table(3,1:5)=(/2.0,  0.0,  2.0,  0.0, -1.0/)
          char_table(4,1:5)=(/3.0,  1.0, -1.0, -1.0,  0.0/)
          char_table(5,1:5)=(/3.0, -1.0, -1.0,  1.0,  0.0/)
          irrname(1)='P1'
          irrname(2)='P2'
          irrname(3)='P3'
          irrname(4)='P5'
          irrname(5)='P4'
       ELSE IF (rot(10).GT.0) THEN
          grpname='D2d'
          char_table(1,1:5)=(/1.0,  1.0,  1.0,  1.0,  1.0/)
          char_table(2,1:5)=(/1.0,  1.0, -1.0,  1.0, -1.0/)
          char_table(3,1:5)=(/1.0,  1.0,  1.0, -1.0, -1.0/)
          char_table(4,1:5)=(/1.0,  1.0, -1.0, -1.0,  1.0/)
          char_table(5,1:5)=(/2.0, -2.0,  0.0,  0.0,  0.0/)
          !               standard order: E, 2, 2_x, -4, m
          irrname(1)='W1'
          irrname(2)='W2'
          irrname(3)='W1`'
          irrname(4)='W2`'
          irrname(5)='W3'
       ELSE
          grpname='C4v'
          char_table(1,1:5)=(/1.0,  1.0,  1.0,  1.0,  1.0/)
          char_table(2,1:5)=(/1.0,  1.0,  1.0, -1.0, -1.0/)
          char_table(3,1:5)=(/1.0, -1.0,  1.0,  1.0, -1.0/)
          char_table(4,1:5)=(/1.0, -1.0,  1.0, -1.0,  1.0/)
          char_table(5,1:5)=(/2.0,  0.0, -2.0,  0.0,  0.0/)
          irrname(1)='Del1'
          irrname(2)='Del1`'
          irrname(3)='Del2'
          irrname(4)='Del2`'
          irrname(5)='Del5'
       ENDIF
    CASE(6)                           ! C3i, D3d, C6, C3h, D6, C6v and D3h
       IF (rot(2).EQ.0) THEN
          IF (rot(7).EQ.0) THEN
             grpname='C3h'
             char_table(:,:) = 0.0
             WRITE(24,*) 'C3h: Character table missing in grp_k.F'
          ELSE
             grpname='C3i'
             omega=CMPLX(-0.5,SQRT(3./4.))
             char_table(1,1:6)=(/one, one, one, one, one, one/)
             char_table(2,1:6)=(/one, one, one,-one,-one,-one/)
             char_table(3,1:6)=(/one, omega, CONJG(omega),&
                  &                                one, omega, CONJG(omega)/)
             char_table(4,1:6)=(/one, omega, CONJG(omega),&
                  &                               -one,-omega,-CONJG(omega)/)
             char_table(5,1:6)=(/one, CONJG(omega), omega,&
                  &                                one, CONJG(omega), omega/)
             char_table(6,1:6)=(/one, CONJG(omega), omega,&
                  &                               -one,-CONJG(omega),-omega/)
             irrname(1)='Ag  '
             irrname(2)='Au  '
             irrname(3)='E1g '
             irrname(4)='E1u '
             irrname(5)='E2g '
             irrname(6)='E2u '
             IF (soc) THEN
                char_table(7,1:6)=(/one,-one, one, one,-one, one/)
                char_table(8,1:6)=(/one,-one, one,-one, one,-one/)
                char_table( 9,1:6)=(/one,-omega, CONJG(omega),&
                     &                                one,-omega, CONJG(omega)/)
                char_table(10,1:6)=(/one,-omega, CONJG(omega),&
                     &                               -one, omega,-CONJG(omega)/)
                char_table(11,1:6)=(/one,-CONJG(omega), omega,&
                     &                                one,-CONJG(omega), omega/)
                char_table(12,1:6)=(/one,-CONJG(omega), omega,&
                     &                               -one, CONJG(omega),-omega/)
                irrname(7)="Ag' "
                irrname(8)="Au' "
                irrname(9)="E1g'"
                irrname(10)="E1u'"
                irrname(11)="E2g'"
                irrname(12)="E2u'"
             ENDIF
          ENDIF
       ELSEIF (rot(2).GT.1) THEN
          grpname='D6'
          char_table(1,1:6)=(/1.0,  1.0,  1.0,  1.0,  1.0,  1.0/)
          char_table(2,1:6)=(/1.0,  1.0,  1.0,  1.0, -1.0, -1.0/)
          char_table(3,1:6)=(/1.0, -1.0,  1.0, -1.0,  1.0, -1.0/)
          char_table(4,1:6)=(/1.0, -1.0,  1.0, -1.0, -1.0,  1.0/)
          char_table(5,1:6)=(/2.0,  1.0, -1.0, -2.0,  0.0,  0.0/)
          char_table(6,1:6)=(/2.0, -1.0, -1.0,  2.0,  0.0,  0.0/)
          irrname(1)='Gam1'
          irrname(2)='Gam2'
          irrname(3)='Gam3'
          irrname(4)='Gam4'
          irrname(5)='Gam6'
          irrname(6)='Gam5'
       ELSE
          IF (rot(6).EQ.0) THEN
             grpname='D3d'
             char_table(1,1:6)=(/1.0,  1.0,  1.0,  1.0,  1.0,  1.0/)
             char_table(2,1:6)=(/1.0,  1.0, -1.0,  1.0,  1.0, -1.0/)
             char_table(3,1:6)=(/2.0, -1.0,  0.0,  2.0, -1.0,  0.0/)
             char_table(4,1:6)=(/1.0,  1.0,  1.0, -1.0, -1.0, -1.0/)
             char_table(5,1:6)=(/1.0,  1.0, -1.0, -1.0, -1.0,  1.0/)
             char_table(6,1:6)=(/2.0, -1.0,  0.0, -2.0,  1.0,  0.0/)
             irrname(1)='A1g'
             irrname(2)='A2g'
             irrname(3)='Eg'
             irrname(4)='A1u'
             irrname(5)='A2u'
             irrname(6)='Eu'
          ELSEIF (rot(6).GT.1) THEN
             grpname='C6' 
             char_table(:,:) = 0.0
             WRITE(24,*) 'C6: Character table missing in grp_k.F'
          ELSE
             IF (members(3).GT.1) grpname='D3h'    ! maybe this works
             IF (members(3).EQ.1) grpname='C6v'
             char_table(1,1:6)=(/1.0,  1.0,  1.0,  1.0,  1.0,  1.0/)
             char_table(2,1:6)=(/1.0,  1.0,  1.0,  1.0, -1.0, -1.0/)
             char_table(3,1:6)=(/1.0, -1.0,  1.0, -1.0,  1.0, -1.0/)
             char_table(4,1:6)=(/1.0, -1.0,  1.0, -1.0, -1.0,  1.0/)
             char_table(5,1:6)=(/2.0,  1.0, -1.0, -2.0,  0.0,  0.0/)
             char_table(6,1:6)=(/2.0, -1.0, -1.0,  2.0,  0.0,  0.0/)
             irrname(1)='Gam1'
             irrname(2)='Gam2'
             irrname(3)='Gam3'
             irrname(4)='Gam4'
             irrname(5)='Gam6'
             irrname(6)='Gam5'
          ENDIF
       ENDIF
    CASE(8)                           ! Th, C4h and D2h
       IF (rot(3).GT.0) THEN
          grpname='Th'
          char_table(:,:) = 0.0
          WRITE(24,*) 'Th: Character table missing in grp_k.F'
       ELSE IF (rot(2).EQ.3) THEN
          grpname='D2h'
          char_table(:,:) = 0.0
          WRITE(24,*) 'D2h: Character table missing in grp_k.F'
       ELSE
          grpname='C4h'
          char_table(:,:) = 0.0
          WRITE(24,*) 'C4h: Character table missing in grp_k.F'
       ENDIF
    CASE(10)                           ! D4h and Oh
       IF (rot(3).GT.0) THEN
          grpname='Oh'
          char_table(1,1:10)= (/1.0,  1.0,  1.0,  1.0,  1.0,&
               &                                1.0,  1.0,  1.0,  1.0,  1.0/)
          char_table(2,1:10)= (/1.0, -1.0,  1.0,  1.0, -1.0,&
               &                                1.0, -1.0,  1.0,  1.0, -1.0/)
          char_table(3,1:10)= (/2.0,  0.0, -1.0,  2.0,  0.0,&
               &                                2.0,  0.0, -1.0,  2.0,  0.0/)
          char_table(4,1:10)= (/3.0,  1.0,  0.0, -1.0, -1.0,&
               &                                3.0,  1.0,  0.0, -1.0, -1.0/)
          char_table(5,1:10)= (/3.0, -1.0,  0.0, -1.0,  1.0,&
               &                                3.0, -1.0,  0.0, -1.0,  1.0/)
          char_table(6,1:10)= (/1.0,  1.0,  1.0,  1.0,  1.0,&
               &                               -1.0, -1.0, -1.0, -1.0, -1.0/)
          char_table(7,1:10)= (/1.0, -1.0,  1.0,  1.0, -1.0,&
               &                               -1.0,  1.0, -1.0, -1.0,  1.0/)
          char_table(8,1:10)= (/2.0,  0.0, -1.0,  2.0,  0.0,&
               &                               -2.0,  0.0,  1.0, -2.0,  0.0/)
          char_table(9,1:10)= (/3.0,  1.0,  0.0, -1.0, -1.0,&
               &                               -3.0, -1.0,  0.0,  1.0,  1.0/)
          char_table(10,1:10)=(/3.0, -1.0,  0.0, -1.0,  1.0,&
               &                               -3.0,  1.0,  0.0,  1.0, -1.0/)

          irrname(1)='Gam1+'
          irrname(2)='Gam2+'
          irrname(3)='Gam3+'
          irrname(4)='Gam4+'
          irrname(5)='Gam5+'
          irrname(6)='Gam1-'
          irrname(7)='Gam2-'
          irrname(8)='Gam3-'
          irrname(9)='Gam4-'
          irrname(10)='Gam5-'
       ELSE
          grpname='D4h'
          char_table(1,1:10)= (/1.0,  1.0,  1.0,  1.0,  1.0,&
               &                                1.0,  1.0,  1.0,  1.0,  1.0/)
          char_table(2,1:10)= (/1.0,  1.0,  1.0, -1.0, -1.0,&
               &                                1.0,  1.0,  1.0, -1.0, -1.0/)
          char_table(3,1:10)= (/1.0, -1.0,  1.0,  1.0, -1.0,&
               &                                1.0, -1.0,  1.0,  1.0, -1.0/)
          char_table(4,1:10)= (/1.0, -1.0,  1.0, -1.0,  1.0,&
               &                                1.0, -1.0,  1.0, -1.0,  1.0/)
          char_table(5,1:10)= (/2.0,  0.0, -2.0,  0.0,  0.0,&
               &                                2.0,  0.0, -2.0,  0.0,  0.0/)
          char_table(6,1:10)= (/1.0,  1.0,  1.0,  1.0,  1.0,&
               &                               -1.0, -1.0, -1.0, -1.0, -1.0/)
          char_table(7,1:10)= (/1.0,  1.0,  1.0, -1.0, -1.0,&
               &                               -1.0, -1.0, -1.0,  1.0,  1.0/)
          char_table(8,1:10)= (/1.0, -1.0,  1.0,  1.0, -1.0,&
               &                               -1.0,  1.0, -1.0, -1.0,  1.0/)
          char_table(9,1:10)= (/1.0, -1.0,  1.0, -1.0,  1.0,&
               &                               -1.0,  1.0, -1.0,  1.0, -1.0/)
          char_table(10,1:10)=(/2.0,  0.0, -2.0,  0.0,  0.0,&
               &                               -2.0,  0.0,  2.0,  0.0,  0.0/)

          ! standard char-table assumes the order: E, 4, 2, 2_h, 2_h' where 4 and 2 
          ! rotate around the same axis and 2_h is perpendicular to this axis. Check:

          CALL cross( rax(1,2),rax(1,3),kt )
          IF (kt(1)**2+kt(2)**2+kt(3)**2 < eps) THEN
             !                  all ok
          ELSE 
             CALL cross( rax(1,2),rax(1,4),kt )
             IF (kt(1)**2+kt(2)**2+kt(3)**2 < eps) THEN      ! change 3 & 4
                CALL change_column(char_table,10,10,3,4)
                ! check, whether element 3 is perpendicular to element 2
                IF (DOT_PRODUCT(rax(1:3,2),rax(1:3,3)) < eps) THEN
                   !                     all ok
                ELSE             ! change 4 & 5
                   WRITE(*,*) DOT_PRODUCT(rax(1:3,2),rax(1:3,3))
                   CALL change_column(char_table,10,10,4,5)
                ENDIF
             ELSE
                CALL cross( rax(1,2),rax(1,5),kt )
                IF (kt(1)**2+kt(2)**2+kt(3)**2 < eps) THEN    ! change 3 & 5
                   CALL change_column(char_table,10,10,3,5)
                   IF (DOT_PRODUCT(rax(1:3,2),rax(1:3,3)) < eps) THEN ! change 4 & 5
                      CALL change_column(char_table,10,10,4,5)
                   ELSE             
                      !                     all ok
                   ENDIF
                ELSE
                   CALL juDFT_error("D4h",calledby="grp_k")
                ENDIF
             ENDIF
          ENDIF
          irrname(1)='A1g'
          irrname(2)='A2g'
          irrname(3)='B1g'
          irrname(4)='B2g'
          irrname(5)='Eg'
          irrname(6)='A1u'
          irrname(7)='A2u'
          irrname(8)='B1u'
          irrname(9)='B2u'
          irrname(10)='Eu'
       ENDIF
    CASE(12)                           ! D6h and C6h
       IF (rot(2).EQ.3) THEN
          grpname='D6h'
          char_table(:,:) = 0.0
          WRITE(24,*) 'D6h: Character table missing in grp_k.F'
       ELSE
          grpname='C6h'
          char_table(:,:) = 0.0
          WRITE(24,*) 'C6h: Character table missing in grp_k.F'
       ENDIF
    CASE DEFAULT
       WRITE(24,*) 'Group of k not identified'
    END SELECT

    !>

  END SUBROUTINE grp_k
  !-------------------------------------------------------------------------------

  !<--SUBROUTINE rotaxis(alpha,beta,gamma,rax,theta)
  SUBROUTINE rotaxis(alpha,beta,gamma,rax,theta)

    ! Determines the rotation axis based on the Euler angles
    IMPLICIT NONE
    REAL, INTENT(IN) :: alpha,beta,gamma
    REAL, INTENT(OUT) :: rax(4),theta 

    REAL :: costhe2,the2
    INTEGER :: i

    costhe2=COS(beta/2.0)*COS((alpha+gamma)/2.0)
    the2=ACOS(costhe2)
    rax=0.0
    IF (the2.GT.0.00001) THEN
       rax(1)=-SIN(beta/2.0)*SIN((alpha-gamma)/2.0)/SIN(the2)
       rax(2)= SIN(beta/2.0)*COS((alpha-gamma)/2.0)/SIN(the2)
       rax(3)= COS(beta/2.0)*SIN((alpha+gamma)/2.0)/SIN(the2)
    ENDIF
    DO i=1,3
       IF (ABS(rax(i)).GT.0.0001) THEN
          rax(i)=rax(i)/ABS(rax(i))
       ENDIF
    ENDDO
    rax(4)=rax(1)**2+rax(2)**2+rax(3)**2
    theta=the2*2.0
  END SUBROUTINE rotaxis
  !>

  !<--Subroutine euler
  SUBROUTINE euler(n,sym,cell,alpha,beta,gamma)

    ! determines the Euler angles corresponding the proper rotation part of mrot      

    USE m_constants, ONLY : pi_const
    USE m_inv3
    USE m_types
    IMPLICIT NONE
    INTEGER,INTENT(IN)         :: n
    TYPE(t_sym),INTENT(IN)     :: sym
    TYPE(t_cell),INTENT(IN)    :: cell
    
    REAL, INTENT(OUT) :: alpha,beta,gamma

    INTEGER :: det
    REAL :: mprop(3,3)      
    REAL :: sina,sinb,sinc,cosa,cosb,cosc
    REAL :: amatinv(3,3),detr

    CALL inv3(cell%amat,amatinv,detr)
    det= sym%mrot(1,1,n)*sym%mrot(2,2,n)*sym%mrot(3,3,n) +&
         &        sym%mrot(1,2,n)*sym%mrot(2,3,n)*sym%mrot(3,1,n) +&
         &        sym%mrot(2,1,n)*sym%mrot(3,2,n)*sym%mrot(1,3,n) -&
         &        sym%mrot(1,3,n)*sym%mrot(2,2,n)*sym%mrot(3,1,n) -&
         &        sym%mrot(2,3,n)*sym%mrot(3,2,n)*sym%mrot(1,1,n) -&
         &        sym%mrot(2,1,n)*sym%mrot(1,2,n)*sym%mrot(3,3,n)

    ! Take the proper rotation         
    mprop=REAL(det)*MATMUL(cell%amat,MATMUL(REAL(sym%mrot(:,:,n)),amatinv))
    ! Euler angles         
    cosb = mprop(3,3)
    sinb = 1.00 - cosb*cosb
    sinb = MAX(sinb,0.00)
    sinb = SQRT(sinb)
    !
    ! if beta = 0 or pi , only alpha+gamma or -gamma have a meaning:
    !
    IF ( ABS(sinb).LT.1.0e-5 ) THEN 
       beta = 0.0
       IF ( cosb.LT.0.0 ) beta = pi_const
       gamma = 0.0
       cosa = mprop(1,1)/cosb
       sina = mprop(1,2)/cosb
       IF ( ABS(sina).LT.1.0e-5 ) THEN
          alpha=0.0
          IF ( cosa.LT.0.0 ) alpha=alpha+pi_const
       ELSE
          alpha = 0.5*pi_const - ATAN(cosa/sina)
          IF ( sina.LT.0.0 ) alpha=alpha+pi_const
       ENDIF
    ELSE
       beta = 0.5*pi_const - ATAN(cosb/sinb)
       !     
       ! determine alpha and gamma from d13 d23 d32 d31
       !
       cosa = mprop(3,1)/sinb
       sina = mprop(3,2)/sinb
       cosc =-mprop(1,3)/sinb
       sinc = mprop(2,3)/sinb
       IF ( ABS(sina).LT.1.0e-5 ) THEN
          alpha=0.0
          IF ( cosa.LT.0.0 ) alpha=alpha+pi_const
       ELSE
          alpha = 0.5*pi_const - ATAN(cosa/sina)
          IF ( sina.LT.0.0 ) alpha=alpha+pi_const
       ENDIF
       IF ( ABS(sinc).LT.1.0e-5 ) THEN
          gamma = 0.0
          IF ( cosc.LT.0.0 ) gamma=gamma+pi_const
       ELSE
          gamma = 0.5*pi_const - ATAN(cosc/sinc)
          IF ( sinc.LT.0.0 ) gamma=gamma+pi_const
       ENDIF

    ENDIF

  END SUBROUTINE euler
  !>
  !-----------------------------------------------------------
  SUBROUTINE change_column( char_table,nx,ny,r1,r2 )

    INTEGER, INTENT (IN)   :: nx,ny,r1,r2
    COMPLEX, INTENT(INOUT) :: char_table(:,:)

    COMPLEX tmpc(nx)

    tmpc(1:nx) = char_table(1:nx,r1)
    char_table(1:nx,r1) = char_table(1:nx,r2)
    char_table(1:nx,r2) = tmpc(1:nx)
    tmpc(1:nx) = char_table(1:nx,r1+nx/2)
    char_table(1:nx,r1+nx/2) = char_table(1:nx,r2+nx/2)
    char_table(1:nx,r2+nx/2) = tmpc(1:nx)

  END SUBROUTINE change_column
END MODULE m_grp_k