hsmt_sph.F90 27.5 KB
Newer Older
1 2 3 4 5 6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7
MODULE m_hsmt_sph
8 9
  USE m_juDFT
  IMPLICIT NONE
10
CONTAINS
11
  SUBROUTINE hsmt_sph(sym,DIMENSION,atoms,SUB_COMM,n_size,n_rank,sphhar,isp,ab_dim,&
12
       input,hlpmsize,noco,l_socfirst,cell,nintsp, lapw,el,usdus,vr,gk,rsoc,isigma,fj,gj,l_real,hamOvlp)
13 14 15 16 17 18 19 20 21 22 23 24 25 26

#include"cpp_double.h"
    USE m_constants, ONLY : fpi_const,tpi_const
    USE m_sphbes
    USE m_dsphbs
    USE m_ylm
    USE m_hsmt_socinit,ONLY:t_rsoc
    USE m_hsmt_spinor
    USE m_radovlp
#ifdef CPP_MPI
    USE m_mingeselle
#endif
    USE m_types
    IMPLICIT NONE
27 28 29 30 31 32 33 34 35 36
    TYPE(t_sym),INTENT(IN)        :: sym
    TYPE(t_dimension),INTENT(IN)  :: DIMENSION
    TYPE(t_input),INTENT(IN)      :: input
    TYPE(t_noco),INTENT(IN)       :: noco
    TYPE(t_cell),INTENT(IN)       :: cell
    TYPE(t_sphhar),INTENT(IN)     :: sphhar
    TYPE(t_atoms),INTENT(IN)      :: atoms
    TYPE(t_lapw),INTENT(INOUT)    :: lapw!lpaw%nv_tot is updated
    TYPE(t_usdus),INTENT(INOUT)   :: usdus
    TYPE(t_hamOvlp),INTENT(INOUT) :: hamOvlp
37 38 39 40 41 42 43 44
    !     ..
    !     .. Scalar Arguments ..
    INTEGER, INTENT (IN) :: isp,ab_dim
    INTEGER, INTENT (IN) :: SUB_COMM,n_size,n_rank 
    INTEGER, INTENT (IN) :: hlpmsize,nintsp
    LOGICAL, INTENT (IN) :: l_socfirst
    !     ..
    !     .. Array Arguments ..
Daniel Wortmann's avatar
Daniel Wortmann committed
45 46
    REAL,    INTENT (IN) :: el(0:atoms%lmaxd,atoms%ntype,DIMENSION%jspd)
    REAL,    INTENT (IN) :: vr(atoms%jmtd,0:sphhar%nlhd,atoms%ntype,DIMENSION%jspd)
47 48 49 50 51
    REAL,INTENT(IN)      :: gk(:,:,:)
    COMPLEX,INTENT(IN)   :: isigma(2,2,3)
    TYPE(t_rsoc),INTENT(IN) :: rsoc


52 53
    LOGICAL, INTENT(IN) :: l_real

54 55 56 57
    REAL,INTENT(OUT) :: fj(:,0:,:,:),gj(:,0:,:,:)
    !     ..
    !     .. Local Scalars ..
    REAL con1,ff,gg,gs,ws,tnn(3), elall,fct,fjkiln,gjkiln,ddnln,ski(3)
58
    REAL apw_lo1,apw_lo2,apw1,w1,aa_rDummy(1)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

    COMPLEX chi11,chi21,chi22,capw1
    INTEGER ii,iii,ij,k,ki,kj,l,lo,n,n0,n1,nn,kjmax, nsp,iintsp,jintsp
    INTEGER nc ,kii

    !     ..
    !     .. Local Arrays ..
    REAL fb(0:atoms%lmaxd),fleg1(0:atoms%lmaxd),fleg2(0:atoms%lmaxd),fl2p1(0:atoms%lmaxd)     
    REAL fl2p1bt(0:atoms%lmaxd),gb(0:atoms%lmaxd)
    REAL qssbti(3),qssbtj(3)


    REAL, ALLOCATABLE :: plegend(:,:)
    REAL, ALLOCATABLE :: rph(:,:),cph(:,:)
    REAL, ALLOCATABLE :: uun21(:,:),udn21(:,:),dun21(:,:),ddn21(:,:)


Daniel Wortmann's avatar
Daniel Wortmann committed
76
    COMPLEX chi(2,2),chj(2,2,2,atoms%ntype),aawa(DIMENSION%nvd),bbwa(DIMENSION%nvd)
77 78 79 80 81 82 83 84 85
    COMPLEX, ALLOCATABLE :: aahlp(:),bbhlp(:)
    LOGICAL apw(0:atoms%lmaxd)


    ! for Spin-orbit...
    REAL, ALLOCATABLE :: dplegend(:,:)
    REAL, ALLOCATABLE :: cross_k(:,:)
    INTEGER :: j1,j2
    COMPLEX :: isigma_x(2,2),isigma_y(2,2),isigma_z(2,2)
86
    COMPLEX :: chi11so(2,2),chi21so(2,2),chi22so(2,2),angso(DIMENSION%nvd,2,2)
87 88 89 90


    IF ( noco%l_noco .AND. (.NOT. noco%l_ss) ) ALLOCATE ( aahlp(hlpmsize),bbhlp(hlpmsize) )
    !     ..
91
    con1 = fpi_const/SQRT(cell%omtil)
92
    DO l = 0,atoms%lmaxd
93 94 95
       fleg1(l) = REAL(l+l+1)/REAL(l+1)
       fleg2(l) = REAL(l)/REAL(l+1)
       fl2p1(l) = REAL(l+l+1)/fpi_const
96 97 98 99 100
       fl2p1bt(l) = fl2p1(l)*0.5
    END DO
    !---> calculate the overlap of the radial basis functions with different
    !---> spin directions.
    IF (noco%l_constr) THEN
Daniel Wortmann's avatar
Daniel Wortmann committed
101 102
       ALLOCATE(uun21(0:atoms%lmaxd,atoms%ntype),udn21(0:atoms%lmaxd,atoms%ntype),&
            dun21(0:atoms%lmaxd,atoms%ntype),ddn21(0:atoms%lmaxd,atoms%ntype) )
103 104 105 106 107 108 109 110 111 112
       CALL rad_ovlp(atoms,usdus,input,vr,el(0:,:,:), uun21,udn21,dun21,ddn21)
    ENDIF
    !---> loop over each atom type

    DO iintsp = 1,nintsp
       !$OMP parallel do DEFAULT(SHARED)&
       !$OMP PRIVATE(n,l,apw,lo,k,gs,fb,gb,ws,ff,gg)
       DO n = 1,atoms%ntype

          DO l = 0,atoms%lmax(n)
113
             apw(l) = .FALSE.
114
             DO lo = 1,atoms%nlo(n)
115
                IF (atoms%l_dulo(lo,n)) apw(l) = .TRUE.
116
             ENDDO
117
             IF ((input%l_useapw).AND.(atoms%lapw_l(n).GE.l)) apw(l) = .FALSE.
118

119 120
          ENDDO
          DO lo = 1,atoms%nlo(n)
121
             IF (atoms%l_dulo(lo,n)) apw(atoms%llo(lo,n)) = .TRUE.
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
          ENDDO

          DO k = 1,lapw%nv(iintsp)
             gs = lapw%rk(k,iintsp)*atoms%rmt(n)
             CALL sphbes(atoms%lmax(n),gs, fb)
             CALL dsphbs(atoms%lmax(n),gs,fb, gb)
             DO l = 0,atoms%lmax(n)
                !---> set up wronskians for the matching conditions for each ntype
                ws = con1/(usdus%uds(l,n,isp)*usdus%dus(l,n,isp)&
                     - usdus%us(l,n,isp)*usdus%duds(l,n,isp))
                ff = fb(l)
                gg = lapw%rk(k,iintsp)*gb(l)
                IF ( apw(l) ) THEN
                   fj(k,l,n,iintsp) = 1.0*con1 * ff / usdus%us(l,n,isp)
                   gj(k,l,n,iintsp) = 0.0d0
                ELSE
138
                   IF (noco%l_constr.OR.l_socfirst) THEN
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
                      !--->                 in a constrained calculation fj and gj are needed
                      !--->                 both local spin directions (isp) at the same time
                      fj(k,l,n,isp) = ws * ( usdus%uds(l,n,isp)*gg - usdus%duds(l,n,isp)*ff )
                      gj(k,l,n,isp) = ws * ( usdus%dus(l,n,isp)*ff - usdus%us(l,n,isp)*gg )
                   ELSE
                      !--->                 in a spin-spiral calculation fj and gj are needed
                      !--->                 both interstitial spin directions at the same time
                      !--->                 In all other cases iintsp runs from 1 to 1.
                      fj(k,l,n,iintsp) = ws * ( usdus%uds(l,n,isp)*gg - usdus%duds(l,n,isp)*ff )
                      gj(k,l,n,iintsp) = ws * ( usdus%dus(l,n,isp)*ff - usdus%us(l,n,isp)*gg )
                   ENDIF
                ENDIF
             ENDDO
          ENDDO ! k = 1, lapw%nv
       ENDDO    ! n = 1,atoms%ntype
       !$OMP end parallel do

    ENDDO       ! iintsp = 1,nintsp
    !
    IF ( noco%l_noco .AND. (.NOT. noco%l_ss) ) THEN
       !---> pk non-collinear
       !--->    initialize hamiltonian help array
161 162
       aahlp=CMPLX(0.0,0.0)
       bbhlp=CMPLX(0.0,0.0)
163 164 165 166 167 168 169 170 171 172 173
    ENDIF

    !$OMP PARALLEL  DEFAULT(shared)&
    !$OMP PRIVATE(kii,ki,nc,iii,kjmax,ski,kj,plegend,l,n1,n)&
    !$OMP PRIVATE(n0,rph,cph,nn,tnn,fjkiln,gjkiln)&
    !$OMP PRIVATE(w1,apw_lo1,apw_lo2,ddnln,elall,fct,ij,apw1)&
    !$OMP PRIVATE(cross_k,dplegend,chi,chi11,chi21,chi22,nsp,chj)&
    !$OMP PRIVATE(isigma_x,isigma_y,isigma_z,j1,j2,chi11so,chi21so,chi22so)&
    !$OMP PRIVATE(aawa,bbwa,capw1,ii) IF (.not.l_socfirst)
    !$     IF (l_socfirst) WRITE(*,*) "WARNING: first variation SOC does not work with OPENMP in hsmt_sph"
    !$     IF (l_socfirst) WRITE(*,*) "         switching off openmp parallelization"
174 175 176
    ALLOCATE(rph(DIMENSION%nvd,ab_dim))
    ALLOCATE(cph(DIMENSION%nvd,ab_dim))
    ALLOCATE(plegend(DIMENSION%nvd,0:atoms%lmaxd))
177
    IF (l_socfirst)THEN
178
       ALLOCATE ( dplegend(DIMENSION%nvd,0:atoms%lmaxd),cross_k(DIMENSION%nvd,3))
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
       dplegend(:,0)=0.e0
       dplegend(:,1)=1.e0
    ENDIF

    plegend=0.0
    plegend(:,0)=1.0
    DO iintsp = 1,nintsp
       IF (iintsp.EQ.1) THEN
          qssbti = - noco%qss/2
       ELSE
          qssbti = + noco%qss/2
       ENDIF
       DO jintsp = 1,iintsp
          IF (jintsp.EQ.1) THEN
             qssbtj = - noco%qss/2
          ELSE
             qssbtj = + noco%qss/2
          ENDIF

          nc = 0                                    ! maybe IF (iintsp.EQ
          IF ( noco%l_noco .AND. (n_size.GT.1) ) THEN
             !--->       for EV-parallelization & noco ( see comments at top )
             lapw%nv_tot = lapw%nv(1) + lapw%nv(2)
             IF (noco%l_ss)  CALL juDFT_error("ev-|| & spin-spiral !",calledby ="hssphn")
          ELSE
             lapw%nv_tot = lapw%nv(iintsp)
          ENDIF

          !
          !$OMP  DO SCHEDULE(DYNAMIC,1)
          DO  kii =  n_rank, lapw%nv_tot-1, n_size
210
             ki = MOD(kii,lapw%nv(iintsp)) + 1
211 212 213 214 215 216 217 218 219 220 221 222 223
             nc = nc + 1
             !$          nc= 1+ (kii-n_rank)/n_size
             iii = nc*(nc-1)/2 * n_size - (nc-1)*(n_size - n_rank - 1)
             !            ii = nc*(nc+1)/2 * n_size -  nc   *(n_size - n_rank - 1)

             IF (noco%l_ss.OR.noco%l_constr.OR.l_socfirst) THEN
                kjmax = lapw%nv(jintsp)
             ELSE
                kjmax = ki
             ENDIF
             ski = (/lapw%k1(ki,iintsp),lapw%k2(ki,iintsp),lapw%k3(ki,iintsp)/) + qssbti
             !--->       legendre polynomials
             DO kj = 1,kjmax
224
                plegend(kj,1) = DOT_PRODUCT(gk(kj,:,jintsp),gk(ki,:,iintsp))
225
                IF (l_socfirst) THEN
226
                    cross_k(kj,1)=gk(ki,2,jintsp)*gk(kj,3,iintsp)- gk(ki,3,jintsp)*gk(kj,2,iintsp)
227 228 229 230
                   cross_k(kj,2)=gk(ki,3,jintsp)*gk(kj,1,iintsp)- gk(ki,1,jintsp)*gk(kj,3,iintsp)
                   cross_k(kj,3)=gk(ki,1,jintsp)*gk(kj,2,iintsp)- gk(ki,2,jintsp)*gk(kj,1,iintsp)
                ENDIF
             END DO
231
             DO l = 1,MAXVAL(atoms%lmax) - 1
232 233 234 235 236 237 238 239 240 241 242 243 244
                plegend(:,l+1) = fleg1(l)*plegend(:,1)*plegend(:,l) - fleg2(l)*plegend(:,l-1)
                IF (l_socfirst) THEN
                   dplegend(:,l+1)=REAL(l+1)*plegend(:,l)+ plegend(:,1)*dplegend(:,l)
                ENDIF
             END DO
             !--->       loop over equivalent atoms
             n1 = 0
             DO n = 1,atoms%ntype

                IF (noco%l_noco) THEN
                   !--->          pk non-collinear
                   !--->             set up the spinors of this atom within global
                   !--->             spin-coordinateframe
245
                   CALL hsmt_spinor(isp,n, noco, input,chi, chi11, chi21, chi22,l_socfirst,&
246 247 248 249 250 251 252 253 254 255 256 257
                        isigma,isigma_x,isigma_y,isigma_z,chi11so,chi21so,chi22so,angso,chj,cross_k)
                ENDIF
                !---> pk non-collinear
                n0 = n1 + 1
                n1 = n1 + atoms%neq(n)
                rph(:,1) = 0.0
                cph(:,1) = 0.0
                DO nn = n0,n1
                   tnn = tpi_const*atoms%taual(:,nn)
                   !--->             set up phase factors
                   DO kj = 1,kjmax
                      rph(kj,1) = rph(kj,1) +&
258
                           COS(DOT_PRODUCT(ski-(/lapw%k1(kj,jintsp),lapw%k2(kj,jintsp),lapw%k3(kj,jintsp)/)+qssbtj,tnn))
259

260 261 262 263 264 265
                      IF (.NOT.sym%invs) THEN
                         !--->                if the system does not posses inversion symmetry
                         !--->                the complex part of the exponential is needed.
                         cph(kj,1) = cph(kj,1) +&
                              SIN(DOT_PRODUCT((/lapw%k1(kj,jintsp),lapw%k2(kj,jintsp),lapw%k3(kj,jintsp)/)+qssbtj-ski,tnn))
                      ENDIF
266 267 268 269 270
                   END DO
                END DO

                !--->          update overlap and l-diagonal hamiltonian matrix
                DO  l = 0,atoms%lmax(n)
271
                   IF (noco%l_constr.OR.l_socfirst) THEN
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
                      fjkiln = fj(ki,l,n,isp)
                      gjkiln = gj(ki,l,n,isp)
                   ELSE
                      fjkiln = fj(ki,l,n,iintsp)
                      gjkiln = gj(ki,l,n,iintsp)
                   ENDIF
                   !
                   w1 = 0.5 * ( usdus%uds(l,n,isp)*usdus%dus(l,n,isp) + &
                        usdus%us(l,n,isp)*usdus%duds(l,n,isp) )
                   apw_lo1 = fl2p1(l) * 0.5 * atoms%rmt(n)**2 * ( gjkiln * w1 +&
                        fjkiln * usdus%us(l,n,isp) * usdus%dus(l,n,isp) )
                   apw_lo2 = fl2p1(l) * 0.5 * atoms%rmt(n)**2 * ( fjkiln * w1 +&
                        gjkiln * usdus%uds(l,n,isp) * usdus%duds(l,n,isp) )
                   !
                   ddnln =  usdus%ddn(l,n,isp)
                   elall = el(l,n,isp)

                   IF ( noco%l_noco .AND. (.NOT. noco%l_ss) ) THEN
                      !--->             pk non-collinear
291
                      IF (noco%l_constr.OR.l_socfirst) THEN
292 293 294 295
                         DO kj = 1,ki
                            fct  = plegend(kj,l)*fl2p1(l)*&
                                 ( fjkiln*fj(kj,l,n,isp) + gjkiln*gj(kj,l,n,isp)*ddnln )

296 297
                            bbwa(kj) = CMPLX(rph(kj,1),cph(kj,1))*fct
                            aawa(kj) = CMPLX(rph(kj,1),cph(kj,1)) * ( &
298 299
                                 fct*elall + plegend(kj,l)*fl2p1bt(l)*&
                                 ( fjkiln*gj(kj,l,n,isp) + gjkiln*fj(kj,l,n,isp) ) )
300 301 302 303 304
                            IF (input%l_useapw) THEN
                               capw1 = CMPLX(rph(kj,1),cph(kj,1))*plegend(kj,l)&
                                    * ( apw_lo1 * fj(kj,l,n,isp) + apw_lo2 * gj(kj,l,n,isp) )
                               aawa(kj) = aawa(kj) + capw1
                            ENDIF
305 306 307 308 309 310
                         ENDDO
                      ELSE
                         DO kj = 1,ki
                            fct  = plegend(kj,l)*fl2p1(l)*&
                                 ( fjkiln*fj(kj,l,n,jintsp) + gjkiln*gj(kj,l,n,jintsp)*ddnln )

311 312
                            bbwa(kj) = CMPLX(rph(kj,1),cph(kj,1))*fct
                            aawa(kj) = CMPLX(rph(kj,1),cph(kj,1)) * (&
313 314
                                 fct*elall + plegend(kj,l)*fl2p1bt(l)*&
                                 ( fjkiln*gj(kj,l,n,jintsp) + gjkiln*fj(kj,l,n,jintsp) ) )
315 316 317 318 319
                            IF (input%l_useapw) THEN
                               capw1 = CMPLX(rph(kj,1),cph(kj,1))*plegend(kj,l)&
                                    * ( apw_lo1 * fj(kj,l,n,jintsp) + apw_lo2 * gj(kj,l,n,jintsp) )
                               aawa(kj) = aawa(kj) + capw1
                            ENDIF
320 321 322 323 324
                         ENDDO
                      ENDIF
                      !+||
                      IF ( kii+1.LE.lapw%nv(1) ) THEN
                         !--->                spin-up spin-up part
325 326
                         CALL CPP_BLAS_caxpy(ki,chi11,bbwa,1,hamOvlp%b_c(iii+1),1)
                         CALL CPP_BLAS_caxpy(ki,chi11,aawa,1,hamOvlp%a_c(iii+1),1)
327 328 329 330 331 332
                         !--->                spin-down spin-up part, upper triangle.
                         !--->                the help array is used to allow vectorization on
                         !--->                Cray PVP systems. it is mapped onto the hamiltonian
                         !--->                matrix after the setup is complete.
                         DO kj = 1,ki - 1
                            ii = iii + kj
333 334
                            aahlp(ii)=aahlp(ii)+CONJG(aawa(kj))*chi21
                            bbhlp(ii)=bbhlp(ii)+CONJG(bbwa(kj))*chi21
335 336 337 338 339 340 341 342 343
                         END DO
                      ENDIF
                      IF ( (kii+1.GT.lapw%nv(1)).OR.(n_size.EQ.1) ) THEN
                         IF (n_size.EQ.1) THEN
                            ii = (lapw%nv(1)+atoms%nlotot+ki-1)*(lapw%nv(1)+atoms%nlotot+ki)/2
                         ELSE
                            ii = iii
                         ENDIF
                         !--->                spin-down spin-up part, lower triangle
344 345
                         CALL CPP_BLAS_caxpy(ki,chi21,bbwa,1,hamOvlp%b_c(ii+1),1)
                         CALL CPP_BLAS_caxpy(ki,chi21,aawa,1,hamOvlp%a_c(ii+1),1)
346 347
                         !--->                spin-down spin-down part
                         ii = ii + lapw%nv(1)+atoms%nlotot
348 349
                         CALL CPP_BLAS_caxpy(ki,chi22,bbwa,1,hamOvlp%b_c(ii+1),1)
                         CALL CPP_BLAS_caxpy(ki,chi22,aawa,1,hamOvlp%a_c(ii+1),1)
350 351 352 353 354 355 356 357 358
                      ENDIF
                      !-||
                      !--->                when fj and gj are available for both local spins
                      !--->                (isp), add the contribution from the constraint
                      !--->                B-field.
                      IF (noco%l_constr .AND. (isp .EQ. 2)) THEN
                         DO nsp = 1,input%jspins
                            IF (nsp.EQ.1) THEN
                               DO kj = 1,lapw%nv(1)
359 360
                                  aawa(kj) = (-0.5)*CMPLX(noco%b_con(1,n),noco%b_con(2,n))*&
                                       CMPLX(rph(kj,1),cph(kj,1))*&
361 362 363 364 365 366 367 368
                                       plegend(kj,l)*fl2p1(l)*(&
                                       + fj(ki,l,n,2)*fj(kj,l,n,1)*uun21(l,n)&
                                       + fj(ki,l,n,2)*gj(kj,l,n,1)*udn21(l,n)&
                                       + gj(ki,l,n,2)*fj(kj,l,n,1)*dun21(l,n)&
                                       + gj(ki,l,n,2)*gj(kj,l,n,1)*ddn21(l,n))
                               ENDDO
                            ELSE
                               DO kj = 1,lapw%nv(1)
369 370
                                  aawa(kj) = (-0.5)*CMPLX(noco%b_con(1,n),-noco%b_con(2,n))*&
                                       CMPLX(rph(kj,1),cph(kj,1))*&
371 372 373 374 375 376 377 378 379 380
                                       plegend(kj,l)*fl2p1(l)*(&
                                       + fj(ki,l,n,1)*fj(kj,l,n,2)*uun21(l,n)&
                                       + fj(ki,l,n,1)*gj(kj,l,n,2)*dun21(l,n)&
                                       + gj(ki,l,n,1)*fj(kj,l,n,2)*udn21(l,n)&
                                       + gj(ki,l,n,1)*gj(kj,l,n,2)*ddn21(l,n))
                               ENDDO
                            ENDIF
                            !--->                  spin-up spin-up part
                            ii = (ki-1)*(ki)/2
                            DO kj = 1,ki
381
                               hamOvlp%a_c(ii+kj) = hamOvlp%a_c(ii+kj) + aawa(kj)*chj(nsp,1,1,n)
382 383 384 385 386
                            ENDDO
                            !--->                  spin-down spin-down part
                            ii = (lapw%nv(1)+atoms%nlotot+ki-1)*(lapw%nv(1)+atoms%nlotot+ki)/2 + &
                                 lapw%nv(1)+atoms%nlotot
                            DO kj = 1,ki
387
                               hamOvlp%a_c(ii+kj) = hamOvlp%a_c(ii+kj) + aawa(kj)*chj(nsp,2,2,n)
388 389 390 391
                            ENDDO
                            !--->                  spin-down spin-up part
                            ii = (lapw%nv(1)+atoms%nlotot+ki-1)*(lapw%nv(1)+atoms%nlotot+ki)/2
                            DO kj = 1,lapw%nv(1)
392
                               hamOvlp%a_c(ii+kj) = hamOvlp%a_c(ii+kj) + aawa(kj)*chj(nsp,2,1,n)
393 394 395 396 397 398 399 400 401 402 403
                            ENDDO
                         ENDDO
                      ENDIF

                      !                 Add spin-orbit coupling
                      IF (isp.EQ.2) THEN
                         IF ((l.GT.0).AND.l_socfirst) THEN

                            DO j1 = 1,input%jspins
                               DO j2 = 1,input%jspins
                                  DO kj = 1,lapw%nv(1)
404
                                     aawa(kj)=CMPLX(rph(kj,1),cph(kj,1))*(&
405 406 407 408 409 410 411 412 413 414 415
                                          + fj(ki,l,n,j1)*fj(kj,l,n,j2)*rsoc%rsopp(n,l,j1,j2)&
                                          + fj(ki,l,n,j1)*gj(kj,l,n,j2)*rsoc%rsopdp(n,l,j1,j2)&
                                          + gj(ki,l,n,j1)*fj(kj,l,n,j2)*rsoc%rsoppd(n,l,j1,j2)&
                                          + gj(ki,l,n,j1)*gj(kj,l,n,j2)*rsoc%rsopdpd(n,l,j1,j2))&
                                          *dplegend(kj,l)*fl2p1(l)*angso(kj,j1,j2)
                                  ENDDO
                                  IF (n_size.EQ.1) THEN

                                     !--->                  spin-up spin-up part
                                     ii = (ki-1)*(ki)/2
                                     DO kj = 1,ki
416
                                        hamOvlp%a_c(ii+kj) = hamOvlp%a_c(ii+kj) + aawa(kj)*chi11so(j1,j2)
417 418 419 420 421
                                     ENDDO
                                     !--->                  spin-down spin-down part
                                     ii = (lapw%nv(1)+atoms%nlotot+ki-1)*(lapw%nv(1)+atoms%nlotot+ki)/2 +&
                                          lapw%nv(1)+atoms%nlotot
                                     DO kj = 1,ki
422
                                        hamOvlp%a_c(ii+kj) = hamOvlp%a_c(ii+kj) + aawa(kj)*chi22so(j1,j2)
423 424 425 426
                                     ENDDO
                                     !--->                  spin-down spin-up part
                                     ii = (lapw%nv(1)+atoms%nlotot+ki-1)*(lapw%nv(1)+atoms%nlotot+ki)/2
                                     DO kj = 1,lapw%nv(1)
427
                                        hamOvlp%a_c(ii+kj) = hamOvlp%a_c(ii+kj) + aawa(kj)*chi21so(j1,j2)
428 429 430 431 432 433
                                     ENDDO

                                  ELSE  ! eigenvalue parallelization

                                     IF ( kii+1.LE.lapw%nv(1) ) THEN
                                        !--->                    spin-up spin-up part
434
                                        CALL CPP_BLAS_caxpy(ki,chi11so(j1,j2),aawa,1, hamOvlp%a_c(iii+1),1)
435 436 437 438

                                        !--->                    spin-down spin-up part, upper triangle.
                                        DO kj = 1,ki - 1
                                           ii = iii + kj
439
                                           aahlp(ii) = aahlp(ii) + CONJG(aawa(kj))*chi21so(j2,j1)
440 441 442 443 444
                                        END DO
                                     ENDIF
                                     IF  (kii+1.GT.lapw%nv(1)) THEN
                                        ii = iii
                                        !--->                    spin-down spin-up part, lower triangle
445
                                        CALL CPP_BLAS_caxpy(ki,chi21so(j1,j2),aawa,1, hamOvlp%a_c(ii+1),1)
446 447
                                        !--->                    spin-down spin-down part
                                        ii = ii + lapw%nv(1)+atoms%nlotot
448
                                        CALL CPP_BLAS_caxpy(ki,chi22so(j1,j2),aawa,1, hamOvlp%a_c(ii+1),1)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
                                     ENDIF

                                  ENDIF ! eigenvalue par.

                               ENDDO ! j2
                            ENDDO    ! j1
                         ENDIF       ! ( l > 0 ) & socfirst
                      ENDIF          ! (isp = 2)
                      !               End spin-orbit
                   ELSEIF ( noco%l_noco .AND. noco%l_ss ) THEN
                      IF ( iintsp.EQ.2 .AND. jintsp.EQ.1 ) THEN
                         kjmax = lapw%nv(1)
                      ELSE
                         kjmax = ki
                      ENDIF
                      DO kj = 1,kjmax
                         fct  = plegend(kj,l)*fl2p1(l)* ( fjkiln*fj(kj,l,n,jintsp) +&
                              gjkiln*gj(kj,l,n,jintsp)*ddnln )

468 469
                         bbwa(kj) = CMPLX(rph(kj,1),cph(kj,1))*fct
                         aawa(kj) = CMPLX(rph(kj,1),cph(kj,1)) * ( &
470 471 472 473 474 475 476
                              fct*elall + plegend(kj,l)*fl2p1bt(l)*&
                              ( fjkiln*gj(kj,l,n,jintsp) + gjkiln*fj(kj,l,n,jintsp) ) )
                      ENDDO
                      IF ( iintsp.EQ.1 .AND. jintsp.EQ.1 ) THEN
                         !--->                   spin-up spin-up part
                         ii = (ki-1)*(ki)/2
                         DO kj = 1,ki
477 478
                            hamOvlp%b_c(ii+kj) = hamOvlp%b_c(ii+kj) + bbwa(kj)*chi11
                            hamOvlp%a_c(ii+kj) = hamOvlp%a_c(ii+kj) + aawa(kj)*chi11
479 480 481 482 483 484
                         ENDDO
                      ELSEIF ( iintsp.EQ.2 .AND. jintsp.EQ.2 ) THEN
                         !--->                   spin-down spin-down part
                         ii = (lapw%nv(1)+atoms%nlotot+ki-1)*(lapw%nv(1)+atoms%nlotot+ki)/2 +&
                              lapw%nv(1)+atoms%nlotot
                         DO kj = 1,ki
485 486
                            hamOvlp%b_c(ii+kj) = hamOvlp%b_c(ii+kj) + bbwa(kj)*chi22
                            hamOvlp%a_c(ii+kj) = hamOvlp%a_c(ii+kj) + aawa(kj)*chi22
487 488 489 490 491
                         ENDDO
                      ELSE
                         !--->                   spin-down spin-up part
                         ii = (lapw%nv(1)+atoms%nlotot+ki-1)*(lapw%nv(1)+atoms%nlotot+ki)/2
                         DO kj = 1,lapw%nv(1)
492 493
                            hamOvlp%b_c(ii+kj) = hamOvlp%b_c(ii+kj) + bbwa(kj)*chi21
                            hamOvlp%a_c(ii+kj) = hamOvlp%a_c(ii+kj) + aawa(kj)*chi21
494 495 496 497
                         ENDDO
                      ENDIF
                      !--->             pk non-collinear
                   ELSE
498 499 500 501
                      IF (l_real) THEN
                         DO kj = 1,ki
                            fct  = plegend(kj,l)*fl2p1(l)*&
                                 ( fjkiln*fj(kj,l,n,jintsp) + gjkiln*gj(kj,l,n,jintsp)*ddnln )
502

503
                            ij = iii + kj
504 505
                            hamOvlp%b_r(ij) = hamOvlp%b_r(ij) + rph(kj,1) * fct
                            hamOvlp%a_r(ij) = hamOvlp%a_r(ij) + rph(kj,1) * ( fct * elall + plegend(kj,l) * fl2p1bt(l) *&
506 507 508 509 510
                                 ( fjkiln*gj(kj,l,n,jintsp) + gjkiln*fj(kj,l,n,jintsp) ) )
                            !+APW
                            IF (input%l_useapw) THEN
                               apw1 = rph(kj,1) * plegend(kj,l)  * &
                                    ( apw_lo1 * fj(kj,l,n,iintsp) + apw_lo2 * gj(kj,l,n,iintsp) )
511
                               hamOvlp%a_r(ij) = hamOvlp%a_r(ij) + apw1
512 513 514 515 516 517 518 519 520
                            ENDIF
                            !-APW
                         ENDDO
                      ELSE
                         DO kj = 1,ki
                            fct  = plegend(kj,l)*fl2p1(l)*&
                                 ( fjkiln*fj(kj,l,n,jintsp) + gjkiln*gj(kj,l,n,jintsp)*ddnln )

                            ij = iii + kj
521 522
                            hamOvlp%b_c(ij) = hamOvlp%b_c(ij) + CMPLX(rph(kj,1),cph(kj,1))*fct
                            hamOvlp%a_c(ij) = hamOvlp%a_c(ij) + CMPLX(rph(kj,1),cph(kj,1)) * (fct*elall + plegend(kj,l)*fl2p1bt(l) *&
523 524 525 526 527
                                 ( fjkiln*gj(kj,l,n,jintsp) + gjkiln*fj(kj,l,n,jintsp) ) )
                            IF (input%l_useapw) THEN

                               capw1 = CMPLX(rph(kj,1),cph(kj,1))*plegend(kj,l)&
                                    * ( apw_lo1 * fj(kj,l,n,iintsp) + apw_lo2 * gj(kj,l,n,iintsp) )
528
                               hamOvlp%a_c(ij) = hamOvlp%a_c(ij) + capw1
529 530 531
                            ENDIF
                         END DO
                      ENDIF
532 533 534
                   ENDIF

                   !--->          end loop over l
535
                ENDDO
536 537

                !--->       end loop over atom types (ntype)
538
             ENDDO
539 540 541

             !--->    end loop over ki

542
          ENDDO
543 544 545 546
          !$OMP END DO
          !---> end loops over interstitial spins
       ENDDO ! jintsp = 1,iintsp
    ENDDO   ! iintsp = 1,nintsp
547
    DEALLOCATE(plegend)
548
    IF (l_socfirst) DEALLOCATE(dplegend,cross_k)
549
    DEALLOCATE(rph,cph)
550 551 552 553 554 555 556 557 558 559 560
    !$OMP END PARALLEL


    !---> pk non-collinear
    IF ( noco%l_noco .AND. (.NOT. noco%l_ss) ) THEN
       !--->    map the hamiltonian help array onto the hamitonian matrix
       IF (n_size.EQ.1) THEN
          DO ki = 1,lapw%nv(1)
             ii = (ki-1)*(ki)/2
             DO kj = 1,ki-1
                ij = (lapw%nv(1)+atoms%nlotot+kj-1)*(lapw%nv(1)+atoms%nlotot+kj)/2 + ki
561 562
                hamOvlp%a_c(ij) = hamOvlp%a_c(ij) + aahlp(ii+kj)
                hamOvlp%b_c(ij) = hamOvlp%b_c(ij) + bbhlp(ii+kj)
563 564 565 566
             ENDDO
          ENDDO

       ELSE
567
#ifdef CPP_MPI
568 569
          CALL mingeselle(SUB_COMM,n_size,n_rank,lapw%nv, aahlp, .FALSE.,aa_rDummy,hamOvlp%a_c)
          CALL mingeselle(SUB_COMM,n_size,n_rank,lapw%nv, bbhlp, .FALSE.,aa_rDummy,hamOvlp%b_c)
570
#endif
571 572 573 574 575 576 577 578
       ENDIF
    ENDIF



    RETURN
  END SUBROUTINE hsmt_sph
END MODULE m_hsmt_sph