abcof3.F90 7.51 KB
Newer Older
1 2
MODULE m_abcof3
CONTAINS
3
  SUBROUTINE abcof3(input,atoms,sym,jspin, cell, bkpt,lapw,&
4
       usdus,oneD,a,b,bascof_lo)
5 6 7 8 9 10 11 12 13 14 15 16 17 18
    !     ************************************************************
    !     subroutine constructs the a,b coefficients of the linearized
    !     m.t. wavefunctions for each band and atom.       c.l. fu
    !     ************************************************************
#include "cpp_double.h"

    USE m_constants, ONLY : tpi_const
    USE m_setabc1locdn1
    USE m_sphbes
    USE m_dsphbs
    USE m_abclocdn1
    USE m_ylm
    USE m_types
    IMPLICIT NONE
19
    TYPE(t_input),INTENT(IN)   :: input
20 21 22 23 24 25 26 27 28 29 30 31
    TYPE(t_usdus),INTENT(IN)   :: usdus
    TYPE(t_lapw),INTENT(IN)   :: lapw
    TYPE(t_oneD),INTENT(IN)   :: oneD
    TYPE(t_sym),INTENT(IN)    :: sym
    TYPE(t_cell),INTENT(IN)   :: cell
    TYPE(t_atoms),INTENT(IN)  :: atoms
    !     ..
    !     .. Scalar Arguments ..
    INTEGER, INTENT (IN) :: jspin 

    !     .. Array Arguments ..
    REAL,    INTENT (IN) :: bkpt(3)
32 33 34
    COMPLEX, INTENT (OUT):: a(:,0:,:)!(dimension%nvd,0:dimension%lmd,atoms%nat)
    COMPLEX, INTENT (OUT):: b(:,0:,:)!(dimension%nvd,0:dimension%lmd,atoms%nat)
    COMPLEX, INTENT (OUT):: bascof_lo(3,-atoms%llod:atoms%llod,4*atoms%llod+2,atoms%nlod,atoms%nat)
35
    !     .. Local Scalars ..
36
    COMPLEX phase,c_0,c_1,c_2
37 38 39 40 41 42
    REAL const,df,r1,s,tmk,wronk
    INTEGER i,j,k,l,ll1,lm ,n,nap,natom,nn,iatom,jatom,lmp,mp
    INTEGER inv_f,ilo,nvmax,lo,n_ldau,inap,iintsp
    INTEGER nk_lo_sv,nk_lo,m
    !     ..
    !     .. Local Arrays ..
43 44
    INTEGER kvec(2*(2*atoms%llod+1),atoms%nlod,atoms%nat  )
    INTEGER nbasf0(atoms%nlod,atoms%nat),nkvec(atoms%nlod,atoms%nat)
45
    REAL dfj(0:atoms%lmaxd),fj(0:atoms%lmaxd),fk(3),fkp(3),fkr(3)
46
    REAL alo1(atoms%nlod,atoms%ntype),blo1(atoms%nlod,atoms%ntype),clo1(atoms%nlod,atoms%ntype)
47
    COMPLEX ylm( (atoms%lmaxd+1)**2 )
48
    LOGICAL enough(atoms%nat),apw(0:atoms%lmaxd,atoms%ntype)
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63


    !     
    const = 2 * tpi_const/sqrt(cell%omtil)
    !
    a         = cmplx(0.0,0.0)
    b         = cmplx(0.0,0.0)
    bascof_lo = cmplx(0.0,0.0)
    !+APW_LO
    DO n = 1, atoms%ntype
       DO l = 0,atoms%lmax(n)
          apw(l,n) = .false.
          DO lo = 1,atoms%nlo(n)
             IF (atoms%l_dulo(lo,n)) apw(l,n) = .true.
          ENDDO
64 65
          IF ((input%l_useapw).AND.(atoms%lapw_l(n).GE.l)) apw(l,n) = .false.

66 67 68 69 70 71 72 73 74
       ENDDO
       DO lo = 1,atoms%nlo(n)
          IF (atoms%l_dulo(lo,n)) apw(atoms%llo(lo,n),n) = .true.
       ENDDO
    ENDDO
    !+APW_LO
    !
    iintsp = 1
 
75
    CALL setabc1locdn1(jspin, atoms,lapw, sym,usdus,enough,nkvec,kvec,&
76 77
         nbasf0,alo1,blo1,clo1)

Daniel Wortmann's avatar
Daniel Wortmann committed
78
    nvmax=lapw%nv(jspin)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    !---> loop over lapws
    DO  k = 1,nvmax
       !calculate k+G
       fk(1) = bkpt(1) + lapw%k1(k,jspin)
       fk(2) = bkpt(2) + lapw%k2(k,jspin)
       fk(3) = bkpt(3) + lapw%k3(k,jspin)

       !dotirp(f,g,bbmat) calculates the scalar product of f,g in reciprocal space
       s=dot_product(fk,matmul(fk,cell%bbmat))
       s = sqrt(s) ! s=|k+G|

       !--->   loop over atom types
       natom = 0
       DO  n = 1,atoms%ntype
          !calculate R_mt(itype)*|k+G|
          r1 = atoms%rmt(n)*s

          !compute sph. bessel function at r1 up to order lmax(n) stored in fj(0:lmax(n))
          CALL sphbes(atoms%lmax(n),r1, fj)

          !compute derivative of sph. bessel function at r1 up to oder lmax(n) stored in dfj(0:lmax(n))
          CALL dsphbs(atoms%lmax(n),r1,fj, dfj)

          !   ----> construct a and b coefficients
          DO  l = 0,atoms%lmax(n)
             !calculate |k+G|*d/dx j_l(r1)
             df = s*dfj(l)

             wronk = usdus%uds(l,n,jspin)*usdus%dus(l,n,jspin)-usdus%us(l,n,jspin)*usdus%duds(l,n,jspin) !Wronski determinante
             IF (apw(l,n)) THEN
                fj(l) = 1.0*const * fj(l)/usdus%us(l,n,jspin)
Matthias Redies's avatar
Matthias Redies committed
110
                dfj(l) = 0.0
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
             ELSE
                dfj(l) = const* (usdus%dus(l,n,jspin)*fj(l)-df*usdus%us(l,n,jspin))/wronk
                fj(l) = const* (df*usdus%uds(l,n,jspin)-fj(l)*usdus%duds(l,n,jspin))/wronk
             ENDIF
          enddo
          !   ----> loop over equivalent atoms
          DO  nn = 1,atoms%neq(n)
             natom = natom + 1
             !invsat(natom) is 0 if atom natom can't be mapped via inversion symmetrie
             !              is 1 if atom natom can   be mapped via inversion symmetrie and is parent atom
             !              is 2 if atom natom can   be mapped via inversion symmetrie and is second atom

             IF ((atoms%invsat(natom).EQ.0) .OR. (atoms%invsat(natom).EQ.1)) THEN
                tmk = tpi_const* dot_product(fk(:),atoms%taual(:,natom))
                phase = cmplx(cos(tmk),sin(tmk))
                IF (oneD%odi%d1) THEN
                   inap = oneD%ods%ngopr(natom)
                   !                nap = ods%ngopr(natom)
                   !               inap = ods%invtab(nap)
                ELSE
                   nap = atoms%ngopr(natom)
                   inap = sym%invtab(nap)
                END IF
                DO  j = 1,3
                   fkr(j) = 0.
                   DO  i = 1,3
                      IF (oneD%odi%d1) THEN
                         fkr(j) = fkr(j) + fk(i)*oneD%ods%mrot(i,j,inap)
                      ELSE
                         fkr(j) = fkr(j) + fk(i)*sym%mrot(i,j,inap)
                      END IF
                   enddo
                enddo
                !transform fkr from reciprocal internal into reciprocal cartesian coordinates
                fkp=matmul(fkr,cell%bmat)
                !       ----> generate spherical harmonics at fkp up to order lmax(n) stored in ylm(1:(lmax+1)**2)
                CALL ylm4(atoms%lmax(n),fkp,ylm)
                !       ----> loop over l,m
                DO  l = 0,atoms%lmax(n)
                   ll1 = l* (l+1)
                   DO  m = -l,l
                      lm = ll1 + m
                      c_0 = conjg(ylm(lm+1))*phase
                      c_1 = c_0 *  fj(l)
                      c_2 = c_0 * dfj(l)

                      a(k,lm,natom) = c_1
                      b(k,lm,natom) = c_2

                   enddo
                enddo
                IF (.NOT.enough(natom)) THEN
                   CALL abclocdn1(atoms,sym, const,phase,ylm,n,natom,k,s,nvmax,&
                        nbasf0,alo1,blo1,clo1,kvec(1,1,natom), nkvec,enough,bascof_lo )

                ENDIF
             ENDIF    ! invsatom == ( 0 v 1 )
          enddo    ! loop over equivalent atoms
       enddo       ! loop over atom types
    enddo          ! loop over lapws


    iatom = 0
    DO n = 1,atoms%ntype
       DO nn = 1,atoms%neq(n)
          iatom = iatom + 1
          IF (atoms%invsat(iatom).EQ.1) THEN
             jatom = sym%invsatnr(iatom)
             DO ilo = 1,atoms%nlo(n)
                l = atoms%llo(ilo,n)
                DO m = -l,l
                   inv_f = (-1.0)**(m+l)
                   DO i = 1,3
                      bascof_lo(i,m,:,ilo,jatom) = inv_f * conjg(  bascof_lo(i,-m,:,ilo,iatom))
                   ENDDO
                ENDDO
             ENDDO
             DO l = 0,atoms%lmax(n)
                ll1 = l* (l+1)
                DO m =-l,l
                   lm  = ll1 + m
                   lmp = ll1 - m
                   inv_f = (-1.0)**(m+l)
                   DO k = 1,nvmax
                      a(k,lm,jatom) = inv_f *conjg(a(k,lmp,iatom))
                   ENDDO
                   DO k = 1,nvmax
                      b(k,lm,jatom) = inv_f *conjg(b(k,lmp,iatom))
                   ENDDO
                ENDDO
             ENDDO
          ENDIF
       ENDDO
    ENDDO

  END SUBROUTINE abcof3
END MODULE m_abcof3