pldngen.f90 13.8 KB
Newer Older
1 2 3 4 5 6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7 8
MODULE m_pldngen

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
!**********************************************************************
!     This subroutine generates the charge and magetization densities
!     (mx,my,mz) and writes them to the files cdn, mdnx, mdny, mdnz.
!     These files are needed to generate plots of the density.
!
!    i) The components of the hermitian density matrix (rho_11, rho_22,
!     rho_21) are reloaded from the file rhomat_inp.
!    ii) The density matrix in fouriertransformed to real space.
!    iii) The charge and magnetization density (n, mx, my, mz) are
!     calculated on the real space mesh.
!    iv) n, mx, my, and mz are Fouriertransformed and stored in terms
!     of stars.
!
!     Philipp Kurz 99/10/29
!**********************************************************************
24 25 26

CONTAINS

27
SUBROUTINE pldngen(mpi,sym,stars,atoms,sphhar,vacuum,&
28
                   cell,input,noco,oneD,sliceplot)
29 30 31 32 33 34 35 36 37 38 39 40 41

          !******** ABBREVIATIONS ***********************************************
          !     ifft3    : size of the 3d real space mesh
          !     ifft2    : size of the 2d real space mesh
          !     rpw      : first diagonal components of the interstitial density
          !                matrix
          !                later charge and mag. density (n, mx, my, mz)
          !                all stored in terms of 3d-stars
          !     ris      : first componets of the density matrix
          !                later charge and mag. density (n, mx, my, mz)
          !                all stored on real space mesh
          !**********************************************************************

42 43 44 45 46 47 48 49 50 51 52 53 54
   USE m_juDFT
   USE m_constants
   USE m_cdn_io
   USE m_loddop
   USE m_wrtdop
   USE m_qfix
   USE m_fft2d
   USE m_fft3d
   USE m_types
   USE m_rotdenmat 

   IMPLICIT NONE

55
   TYPE(t_mpi),INTENT(IN)    :: mpi
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
   TYPE(t_sym),INTENT(IN)    :: sym
   TYPE(t_stars),INTENT(IN)  :: stars
   TYPE(t_vacuum),INTENT(IN) :: vacuum
   TYPE(t_atoms),INTENT(IN)  :: atoms
   TYPE(t_sphhar),INTENT(IN) :: sphhar
   TYPE(t_input),INTENT(IN)  :: input
   TYPE(t_cell),INTENT(IN)   :: cell
   TYPE(t_oneD),INTENT(IN)    :: oneD
   TYPE(t_noco),INTENT(IN)   :: noco
   TYPE(t_sliceplot),INTENT(IN):: sliceplot

   ! Local type instances
   TYPE(t_input)  :: inp
   TYPE(t_potden) :: den

   ! Local Scalars
   INTEGER :: nrhomfile=26   
73
   INTEGER iden,ivac,ifft2,ifft3,archiveType
74
   INTEGER imz,ityp,iri,ilh,imesh,lh,iq2,iq3,iter
75
   REAL cdnup,cdndown,chden,mgden,theta,phi,zero,rho_11,rziw,fermiEnergyTemp
76 77 78 79 80 81 82 83 84 85 86 87 88 89
   REAL rho_22,rho_21r,rho_21i,rhotot,mx,my,mz,fix,vz_r,vz_i
   COMPLEX czero
   CHARACTER*8 dop,iop,name(10)

   ! Local Arrays
   !---> off-diagonal part of the density matrix
   COMPLEX, ALLOCATABLE :: cdom(:),cdomvz(:,:),cdomvxy(:,:,:)
   COMPLEX, ALLOCATABLE :: qpw(:,:),rhtxy(:,:,:,:)
   REAL,    ALLOCATABLE :: rht(:,:,:),rho(:,:,:,:)
   REAL,    ALLOCATABLE :: rvacxy(:,:,:,:),ris(:,:),fftwork(:)

   !---> for testing: output of offdiag. output density matrix. to plot the
   !---> offdiag. part of the output density matrix, that part has to be
   !---> written the file rhomt21 in cdnmt.
90 91 92
   LOGICAL :: l_fmpl2, l_qfix
   REAL    :: cdn11, cdn22
   COMPLEX :: cdn21
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
   COMPLEX, ALLOCATABLE :: rho21(:,:,:)
   !---> end of test part

   zero = 0.0 ; czero = CMPLX(0.0,0.0)
   ifft3 = 27*stars%mx1*stars%mx2*stars%mx3
   ifft2 = 9*stars%mx1*stars%mx2

   ALLOCATE (qpw(stars%ng3,4),rhtxy(vacuum%nmzxyd,stars%ng2-1,2,4),&
             cdom(stars%ng3),cdomvz(vacuum%nmzd,2),cdomvxy(vacuum%nmzxyd,stars%ng2-1,2),&
             ris(0:27*stars%mx1*stars%mx2*stars%mx3-1,4),fftwork(0:27*stars%mx1*stars%mx2*stars%mx3-1),&
             rvacxy(0:9*stars%mx1*stars%mx2-1,vacuum%nmzxyd,2,4),&
             rho(atoms%jmtd,0:sphhar%nlhd,atoms%ntype,4),rht(vacuum%nmzd,2,4) )

   !---> initialize arrays for the density matrix
   rho(:,:,:,:) = zero ; qpw(:,:) = czero ; cdom(:) = czero
   IF (input%film) THEN
      cdomvz(:,:) = czero ;    rhtxy(:,:,:,:) = czero
      cdomvxy(:,:,:) = czero ; rht(:,:,:) = zero
   END IF

   IF (input%jspins .NE. 2) THEN
      WRITE (6,*) 'This is the non-collinear version of the flapw-'
      WRITE (6,*) 'program. It can only perform spin-polarized'
      WRITE (6,*) 'calculations.'
      CALL juDFT_error("jspins not equal 2",calledby = "pldngen",hint=&
                       "This is the non-collinear version of the flapw-"//&
                       ' PROGRAM. It can ONLY perform spin-polarized '//&
                       'calculations.')
   END IF

   !---> reload the density matrix from file rhomat_inp
124 125
   archiveType = CDN_ARCHIVE_TYPE_CDN1_const
   IF (noco%l_noco) archiveType = CDN_ARCHIVE_TYPE_NOCO_const
126
   CALL den%init(stars,atoms,sphhar,vacuum,noco,input%jspins,POTDEN_TYPE_DEN)
127 128 129
   IF (.NOT.sliceplot%slice) THEN
      CALL readDensity(stars,vacuum,atoms,cell,sphhar,input,sym,oneD,archiveType,CDN_INPUT_DEN_const,&
                       0,fermiEnergyTemp,l_qfix,den)
130
   ELSE
131 132
      CALL readDensity(stars,vacuum,atoms,cell,sphhar,input,sym,oneD,archiveType,CDN_INPUT_DEN_const,&
                       0,fermiEnergyTemp,l_qfix,den,'cdn_slice')
133
   END IF
134 135 136 137 138 139 140 141
   rho(:,0:,1:,:input%jspins) = den%mt(:,0:,1:,:input%jspins)
   qpw(1:,:input%jspins) = den%pw(1:,:input%jspins)
   rht(1:,1:,:input%jspins) = den%vacz(1:,1:,:input%jspins)
   rhtxy(1:,1:,1:,:input%jspins) = den%vacxy(1:,1:,1:,:input%jspins)
   IF(noco%l_noco) THEN
      cdom = den%pw(:,3)
      cdomvz(:,:) = CMPLX(den%vacz(:,:,3),den%vacz(:,:,4))
      cdomvxy = den%vacxy(:,:,:,3)
142
   END IF
143 144

   IF (.NOT. sliceplot%slice) THEN
145
      CALL den%init(stars,atoms,sphhar,vacuum,noco,input%jspins,POTDEN_TYPE_DEN)
146 147 148 149 150 151 152 153 154 155 156
      den%iter = iter
      den%mt(:,0:,1:,:input%jspins) = rho(:,0:,1:,:input%jspins)
      den%pw(1:,:input%jspins) = qpw(1:,:input%jspins)
      den%vacz(1:,1:,:input%jspins) = rht(1:,1:,:input%jspins)
      den%vacxy(1:,1:,1:,:input%jspins) = rhtxy(1:,1:,1:,:input%jspins)
      IF(noco%l_noco) THEN
         den%pw(:,3) = cdom
         den%vacz(:,:,3) = REAL(cdomvz(:,:))
         den%vacz(:,:,4) = AIMAG(cdomvz(:,:))
         den%vacxy(:,:,:,3) = cdomvxy
      END IF
157
      CALL qfix(mpi,stars,atoms,sym,vacuum,sphhar,input,cell,oneD,den,noco%l_noco,.FALSE.,.true.,fix)
158 159 160 161 162 163 164 165 166
      rho(:,0:,1:,:input%jspins) = den%mt(:,0:,1:,:input%jspins)
      qpw(1:,:input%jspins) = den%pw(1:,:input%jspins)
      rht(1:,1:,:input%jspins) = den%vacz(1:,1:,:input%jspins)
      rhtxy(1:,1:,1:,:input%jspins) = den%vacxy(1:,1:,1:,:input%jspins)
      IF(noco%l_noco) THEN
         cdom = den%pw(:,3)
         cdomvz(:,:) = CMPLX(den%vacz(:,:,3),den%vacz(:,:,4))
         cdomvxy = den%vacxy(:,:,:,3)
      END IF
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
   END IF

   !---> for testing: read offdiag. output density matrix
   INQUIRE (file= 'rhomt21', exist= l_fmpl2)
   IF (l_fmpl2) THEN
      ALLOCATE( rho21(atoms%jmtd,0:sphhar%nlhd,atoms%ntype) )
      OPEN (26,file='rhomt21',form='unformatted',status='unknown')
      READ (26) rho21
      CLOSE (26)
   END IF
   !---> end of test output

   !---> calculate the charge and magnetization density in the muffin tins
   DO ityp = 1,atoms%ntype
      DO ilh = 0,sphhar%nlh(atoms%ntypsy(ityp))
         DO iri = 1,atoms%jri(ityp)
            IF (.NOT. l_fmpl2) THEN 
               cdnup   = rho(iri,ilh,ityp,1)
               cdndown = rho(iri,ilh,ityp,2)
               theta = noco%beta(ityp)
               phi   = noco%alph(ityp)
               chden  = cdnup + cdndown
               mgden  = cdnup - cdndown
               rho(iri,ilh,ityp,1) = chden
               rho(iri,ilh,ityp,2) = mgden*COS(phi)*SIN(theta)
               rho(iri,ilh,ityp,3) = mgden*SIN(phi)*SIN(theta)
               rho(iri,ilh,ityp,4) = mgden*COS(theta)
            ELSE 
               !--->            for testing: output of offdiag. output density matrix
               cdn11 = rho(iri,ilh,ityp,1)
               cdn22 = rho(iri,ilh,ityp,2)
               cdn21 = rho21(iri,ilh,ityp)
               CALL rot_den_mat(noco%alph(ityp),noco%beta(ityp),cdn11,cdn22,cdn21)
               rho(iri,ilh,ityp,1) = cdn11 + cdn22
               rho(iri,ilh,ityp,2) = 2*REAL(cdn21)
               rho(iri,ilh,ityp,3) = 2*AIMAG(cdn21)
               rho(iri,ilh,ityp,4) = cdn11 - cdn22
               !--->            end of test part
            END IF
         END DO
      END DO
   END DO

   IF (l_fmpl2) THEN
      DEALLOCATE( rho21 )
   END IF

   !---> fouriertransform the diagonal part of the density matrix
   !---> in the interstitial, qpw, to real space (ris)
   DO iden = 1,2
      CALL fft3d(ris(0,iden),fftwork,qpw(1,iden),stars,1)
   END DO
   !---> fouriertransform the off-diagonal part of the density matrix
   CALL fft3d(ris(0,3),ris(0,4),cdom(1),stars,+1)

   !---> calculate the charge and magnetization density on the
   !---> real space mesh
   DO imesh = 0,ifft3-1
      rho_11  = ris(imesh,1)
      rho_22  = ris(imesh,2)
      rho_21r = ris(imesh,3)
      rho_21i = ris(imesh,4)
      rhotot  = rho_11 + rho_22
      mx      =  2*rho_21r
      my      = -2*rho_21i
      mz      = (rho_11-rho_22)

      ris(imesh,1) = rhotot
      ris(imesh,2) = mx
      ris(imesh,3) = my
      ris(imesh,4) = mz
   END DO

   !---> Fouriertransform the density matrix back to reciprocal space
   DO iden = 1,4
      fftwork=zero
      CALL fft3d(ris(0,iden),fftwork,qpw(1,iden),stars,-1)
   END DO

   !---> fouriertransform the diagonal part of the density matrix
   !---> in the vacuum, rz & rxy, to real space (rvacxy)
   IF (input%film) THEN
      DO iden = 1,2
         DO ivac = 1,vacuum%nvac
            DO imz = 1,vacuum%nmzxyd
               rziw = 0.0
               CALL fft2d(stars,rvacxy(0,imz,ivac,iden),fftwork,rht(imz,ivac,iden),&
                          rziw,rhtxy(imz,1,ivac,iden),vacuum%nmzxyd,1)
            END DO
         END DO
      END DO
      !--->    fouriertransform the off-diagonal part of the density matrix
      DO ivac = 1,vacuum%nvac
         DO imz = 1,vacuum%nmzxyd
            rziw = 0.0
            vz_r = REAL(cdomvz(imz,ivac))
            vz_i = AIMAG(cdomvz(imz,ivac))
            CALL fft2d(stars,rvacxy(0,imz,ivac,3),rvacxy(0,imz,ivac,4),&
                       vz_r,vz_i,cdomvxy(imz,1,ivac),vacuum%nmzxyd,1)
         END DO
      END DO

      !--->    calculate the four components of the matrix potential on
      !--->    real space mesh
      DO ivac = 1,vacuum%nvac
         DO imz = 1,vacuum%nmzxyd
            DO imesh = 0,ifft2-1
               rho_11  = rvacxy(imesh,imz,ivac,1)
               rho_22  = rvacxy(imesh,imz,ivac,2)
               rho_21r = rvacxy(imesh,imz,ivac,3)
               rho_21i = rvacxy(imesh,imz,ivac,4)
               rhotot  = rho_11 + rho_22
               mx      =  2*rho_21r
               my      = -2*rho_21i
               mz      = (rho_11-rho_22)

               rvacxy(imesh,imz,ivac,1) = rhotot
               rvacxy(imesh,imz,ivac,2) = mx
               rvacxy(imesh,imz,ivac,3) = my
               rvacxy(imesh,imz,ivac,4) = mz
            END DO
         END DO
         DO imz = vacuum%nmzxyd+1,vacuum%nmzd
            rho_11  = rht(imz,ivac,1)
            rho_22  = rht(imz,ivac,2)
            rho_21r = REAL(cdomvz(imz,ivac))
            rho_21i = AIMAG(cdomvz(imz,ivac))
            rhotot  = rho_11 + rho_22
            mx      =  2*rho_21r
            my      = -2*rho_21i
            mz      = (rho_11-rho_22)

            rht(imz,ivac,1) = rhotot
            rht(imz,ivac,2) = mx
            rht(imz,ivac,3) = my
            rht(imz,ivac,4) = mz
         END DO
      END DO
      !--->    Fouriertransform the matrix potential back to reciprocal space
      DO iden = 1,4
         DO ivac = 1,vacuum%nvac
            DO imz = 1,vacuum%nmzxyd
               fftwork=zero
               CALL fft2d(stars,rvacxy(0,imz,ivac,iden),fftwork,rht(imz,ivac,iden),&
                          rziw,rhtxy(imz,1,ivac,iden),vacuum%nmzxyd,-1)
            END DO
         END DO
      END DO
   END IF

   !---> save charge density to file cdn
   inp=input
   inp%jspins=1

321
   CALL den%init(stars,atoms,sphhar,vacuum,noco,inp%jspins,POTDEN_TYPE_DEN)
322 323 324 325 326
   den%iter = iter
   den%mt(:,0:,1:,1:1) = rho(:,0:,1:,1:1)
   den%pw(1:,1:1) = qpw(1:,1:1)
   den%vacz(1:,1:,1:1) = rht(1:,1:,1:1)
   den%vacxy(1:,1:,1:,1:1) = rhtxy(1:,1:,1:,1:1)
327
   IF(noco%l_noco) THEN
328
      den%pw(:,3) = cdom
329 330
      den%vacz(:,:,3) = REAL(cdomvz(:,:))
      den%vacz(:,:,4) = AIMAG(cdomvz(:,:))
331 332
      den%vacxy(:,:,:,3) = cdomvxy
   END IF
333 334

   CALL writeDensity(stars,vacuum,atoms,cell,sphhar,inp,sym,oneD,CDN_ARCHIVE_TYPE_CDN_const,CDN_INPUT_DEN_const,&
335
                     0,-1.0,0.0,.FALSE.,den)
336 337

   !---> save mx to file mdnx
338 339 340 341 342 343
   den%mt(:,0:,1:,1) = rho(:,0:,1:,2)
   den%pw(1:,1) = qpw(1:,2)
   den%vacz(1:,1:,1) = rht(1:,1:,2)
   den%vacxy(1:,1:,1:,1) = rhtxy(1:,1:,1:,2)
   CALL writeDensity(stars,vacuum,atoms,cell,sphhar,inp,sym,oneD,CDN_ARCHIVE_TYPE_CDN_const,CDN_INPUT_DEN_const,&
                     0,-1.0,0.0,.FALSE.,den,'mdnx')
344 345

   !---> save my to file mdny
346 347 348 349 350 351
   den%mt(:,0:,1:,1) = rho(:,0:,1:,3)
   den%pw(1:,1) = qpw(1:,3)
   den%vacz(1:,1:,1) = rht(1:,1:,3)
   den%vacxy(1:,1:,1:,1) = rhtxy(1:,1:,1:,3)
   CALL writeDensity(stars,vacuum,atoms,cell,sphhar,inp,sym,oneD,CDN_ARCHIVE_TYPE_CDN_const,CDN_INPUT_DEN_const,&
                     0,-1.0,0.0,.FALSE.,den,'mdny')
352 353

   !---> save mz to file mdnz
354 355 356 357 358 359
   den%mt(:,0:,1:,1) = rho(:,0:,1:,4)
   den%pw(1:,1) = qpw(1:,4)
   den%vacz(1:,1:,1) = rht(1:,1:,4)
   den%vacxy(1:,1:,1:,1) = rhtxy(1:,1:,1:,4)
   CALL writeDensity(stars,vacuum,atoms,cell,sphhar,inp,sym,oneD,CDN_ARCHIVE_TYPE_CDN_const,CDN_INPUT_DEN_const,&
                     0,-1.0,0.0,.FALSE.,den,'mdnz')
360 361 362 363 364 365

   DEALLOCATE (qpw,rhtxy,cdom,cdomvz,cdomvxy,ris,fftwork,rvacxy,rho,rht)

END SUBROUTINE pldngen

END MODULE m_pldngen