cdngen.F90 20.9 KB
Newer Older
1 2 3 4 5
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------
6 7 8 9 10 11 12 13
MODULE m_cdngen

USE m_juDFT

CONTAINS

SUBROUTINE cdngen(eig_id,mpi,input,banddos,sliceplot,vacuum,&
                  dimension,kpts,atoms,sphhar,stars,sym,obsolete,&
14
                  enpara,cell,noco,jij,vTot,results,oneD,coreSpecInput,&
15
                  inIter,inDen,outDen)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

   !*****************************************************
   !    Charge density generator
   !    calls cdnval to generate the valence charge and the
   !    core routines for the core contribution
   !*****************************************************

   USE m_constants
   USE m_umix
   USE m_prpqfftmap
   USE m_cdnval
   USE m_cdn_io
   USE m_wrtdop
   USE m_cdntot
   USE m_cdnovlp
   USE m_qfix
   USE m_rwnoco
   USE m_cored
   USE m_coredr
   USE m_m_perp
   USE m_types
   USE m_xmlOutput
38
#ifdef CPP_MPI
39 40
   USE m_mpi_bc_potden
   USE m_mpi_bc_coreden
41
#endif
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
   IMPLICIT NONE

   ! Type instance arguments
   TYPE(t_results),INTENT(INOUT)    :: results
   TYPE(t_mpi),INTENT(IN)           :: mpi
   TYPE(t_dimension),INTENT(IN)     :: dimension
   TYPE(t_oneD),INTENT(IN)          :: oneD
   TYPE(t_enpara),INTENT(INOUT)     :: enpara
   TYPE(t_obsolete),INTENT(IN)      :: obsolete
   TYPE(t_banddos),INTENT(IN)       :: banddos
   TYPE(t_sliceplot),INTENT(IN)     :: sliceplot
   TYPE(t_input),INTENT(IN)         :: input
   TYPE(t_vacuum),INTENT(IN)        :: vacuum
   TYPE(t_noco),INTENT(IN)          :: noco
   TYPE(t_jij),INTENT(IN)           :: jij
   TYPE(t_sym),INTENT(IN)           :: sym
   TYPE(t_stars),INTENT(IN)         :: stars
   TYPE(t_cell),INTENT(IN)          :: cell
   TYPE(t_kpts),INTENT(IN)          :: kpts
   TYPE(t_sphhar),INTENT(IN)        :: sphhar
   TYPE(t_atoms),INTENT(IN)         :: atoms
   TYPE(t_coreSpecInput),INTENT(IN) :: coreSpecInput
65
   TYPE(t_potden),INTENT(IN)        :: vTot
66
   TYPE(t_potden),INTENT(INOUT)     :: inDen,outDen
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

   !Scalar Arguments
   INTEGER, INTENT (IN)             :: eig_id
   INTEGER, INTENT (IN)             :: inIter

   ! Local type instances
   TYPE(t_noco) :: noco_new

   !Local Scalars
   REAL fix,qtot,scor,seig,smom,stot,sval,dummy
   REAL slmom,slxmom,slymom,sum,thetai,phii,fermiEnergyTemp
   INTEGER iter,ivac,j,jspin,jspmax,k,n,nt,ieig,ikpt
   INTEGER  ityp,ilayer,urec,itype,iatom,archiveType
   LOGICAL l_relax_any,exst,n_exist,l_qfix, l_enpara
   LOGICAL, PARAMETER :: l_st=.FALSE.

   !Local Arrays
   REAL stdn(atoms%ntype,dimension%jspd),svdn(atoms%ntype,dimension%jspd),alpha_l(atoms%ntype)
   REAL rh(dimension%msh,atoms%ntype,dimension%jspd),qint(atoms%ntype,dimension%jspd)
   REAL tec(atoms%ntype,DIMENSION%jspd),rhTemp(dimension%msh,atoms%ntype,dimension%jspd)
   REAL chmom(atoms%ntype,dimension%jspd),clmom(3,atoms%ntype,dimension%jspd)
   INTEGER,ALLOCATABLE :: igq_fft(:)
   REAL   ,ALLOCATABLE :: qvac(:,:,:,:),qvlay(:,:,:,:,:)
   CHARACTER(LEN=20)   :: attributes(4)

   !pk non-collinear (start)
   REAL    rhoint,momint,alphdiff(atoms%ntype)
   INTEGER igq2_fft(0:stars%kq1_fft*stars%kq2_fft-1)
   COMPLEX,ALLOCATABLE :: qa21(:)
   !pk non-collinear (end)

   iter = inIter
99
   CALL outDen%init(stars,atoms,sphhar,vacuum,oneD,DIMENSION%jspd,.FALSE.,POTDEN_TYPE_DEN)
100 101
   archiveType = CDN_ARCHIVE_TYPE_CDN1_const
   IF(noco%l_noco) archiveType = CDN_ARCHIVE_TYPE_NOCO_const
102

103 104 105 106 107 108 109 110 111 112
   IF (mpi%irank.EQ.0) THEN
      INQUIRE(file='enpara',exist=l_enpara)
      IF (l_enpara) OPEN (40,file ='enpara',form = 'formatted',status ='unknown')
   ENDIF
   ALLOCATE (outDen%cdom(stars%ng3),outDen%cdomvz(vacuum%nmzd,2))
   ALLOCATE (outDen%cdomvxy(vacuum%nmzxyd,oneD%odi%n2d-1,2))
   ALLOCATE (qa21(atoms%ntype))
   ALLOCATE (qvac(dimension%neigd,2,kpts%nkpt,dimension%jspd))
   ALLOCATE (qvlay(dimension%neigd,vacuum%layerd,2,kpts%nkpt,dimension%jspd))
   ALLOCATE (igq_fft(0:stars%kq1_fft*stars%kq2_fft*stars%kq3_fft-1))
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127
   !initialize density arrays with zero
   qa21(:) = cmplx(0.0,0.0)
   qvac(:,:,:,:) = 0.0 
   qvlay(:,:,:,:,:) = 0.0
   outDen%mt(:,:,:,:) = 0.0
   outDen%pw(:,:) = cmplx(0.0,0.0)
   outDen%cdom(:) =  cmplx(0.0,0.0)
   IF (input%film) THEN
      outDen%vacz(:,:,:) = 0.0
      outDen%cdomvz(:,:) = cmplx(0.0,0.0)
      outDen%vacxy(:,:,:,:) = cmplx(0.0,0.0)
      outDen%cdomvxy(:,:,:) = cmplx(0.0,0.0)
   END IF
   outDen%iter = iter
128
        
129 130 131 132 133 134 135
   !Set up pointer for backtransformation of from g-vector in
   !positive domain fof carge density fftibox into stars
   !In principle this can also be done in main program once.
   !It is done here to save memory.
   CALL prp_qfft_map(stars,sym, input, igq2_fft,igq_fft)

   !LDA+U: initialise density-matrix if needed
136
   ALLOCATE (outDen%mmpMat(-lmaxU_const:lmaxU_const,-lmaxU_const:lmaxU_const,MAX(1,atoms%n_u),input%jspins))
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
   outDen%mmpMat(:,:,:,:) = CMPLX(0.0,0.0)


   !in a non-collinear calcuation where the off-diagonal part of
   !density matrix in the muffin-tins is calculated, the a- and
   !b-coef. for both spins are needed at once. Thus, cdnval is only
   !called once and both spin directions are calculated in a single
   !go.
   IF (mpi%irank.EQ.0) CALL openXMLElementNoAttributes('valenceDensity')

   jspmax = input%jspins
   IF (noco%l_mperp) jspmax = 1
   DO jspin = 1,jspmax
      CALL timestart("cdngen: cdnval")
      CALL cdnval(eig_id,&
                  mpi,kpts,jspin,sliceplot,noco, input,banddos,cell,atoms,enpara,stars, vacuum,dimension,&
153
                  sphhar,sym,obsolete,igq_fft,vTot%mt,vTot%vacz(:,:,jspin),oneD,coreSpecInput,&
154 155 156
                  outDen%mmpMat(-lmaxU_const:,-lmaxU_const:,:,jspin),results, outDen%pw,outDen%vacxy,outDen%mt,outDen%vacz,&
                  outDen%cdom,outDen%cdomvz,outDen%cdomvxy,qvac,qvlay,qa21, chmom,clmom)
      CALL timestop("cdngen: cdnval")
157
!-fo
158 159 160
   END DO

   ! lda+u
161
   IF ((atoms%n_u.GT.0).and.(mpi%irank.EQ.0)) CALL u_mix(input,atoms,inDen%mmpMat,outDen%mmpMat)
162

163
!+t3e
164
   IF (mpi%irank.EQ.0) THEN
165
!-t3e
166 167 168
      IF (l_enpara) CLOSE (40)
      CALL cdntot(stars,atoms,sym, vacuum,input,cell,oneD, outDen%pw,outDen%mt,outDen%vacz,.TRUE., qtot,dummy)
      CALL closeXMLElement('valenceDensity')
169
!---> changes
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
   END IF ! mpi%irank = 0
   IF (input%kcrel.EQ.0) THEN
      results%seigc = 0.

      ! Generate input file ecore for subsequent GW calculation
      ! 11.2.2004 Arno Schindlmayr
      IF ((input%gw.eq.1 .or. input%gw.eq.3).AND.(mpi%irank.EQ.0)) THEN
         OPEN (15,file='ecore',status='unknown', action='write',form='unformatted')
      END IF

      rh = 0.0
      tec = 0.0
      qint = 0.0
      IF (input%frcor) THEN
         IF (mpi%irank.EQ.0) THEN
            CALL readCoreDensity(input,atoms,dimension,rh,tec,qint)
         END IF
187
#ifdef CPP_MPI
188
         CALL mpi_bc_coreDen(mpi,atoms,input,dimension,rh,tec,qint)
189
#endif
190 191 192 193 194 195 196
      END IF

      DO jspin = 1,input%jspins
         IF ((input%jspins.EQ.2).AND.(mpi%irank.EQ.0)) THEN
            DO n = 1,atoms%ntype
               svdn(n,jspin) = outDen%mt(1,0,n,jspin)/ (sfp_const*atoms%rmsh(1,n)*atoms%rmsh(1,n))
            END DO
197 198
         END IF

199 200 201 202 203
         !block 1 unnecessary for slicing: begin
         IF (.NOT.sliceplot%slice) THEN

            !add in core density
            IF (mpi%irank.EQ.0) THEN
204
               CALL cored(input,jspin,atoms,outDen%mt,dimension,sphhar,vTot%mt(:,0,:,jspin), qint,rh,tec,seig)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
               rhTemp(:,:,jspin) = rh(:,:,jspin)
               results%seigc = results%seigc + seig
               IF (input%jspins.EQ.2) THEN
                  DO n = 1,atoms%ntype
                     stdn(n,jspin) = outDen%mt(1,0,n,jspin)/ (sfp_const*atoms%rmsh(1,n)*atoms%rmsh(1,n))
                  END DO
               END IF
            END IF  ! mpi%irank = 0

            !add core tail charge to outDen%pw
            IF ((noco%l_noco).AND.(mpi%irank.EQ.0)) THEN
               !pk non-collinear (start)
               !add the coretail-charge to the constant interstitial
               !charge (star 0), taking into account the direction of
               !magnetisation of this atom
               IF (jspin .EQ. 2) THEN
221
                  DO ityp = 1,atoms%ntype
222 223 224 225 226 227 228 229 230 231
                     rhoint = (qint(ityp,1) + qint(ityp,2)) /cell%volint/input%jspins/2.0
                     momint = (qint(ityp,1) - qint(ityp,2)) /cell%volint/input%jspins/2.0
                     !rho_11
                     outDen%pw(1,1) = outDen%pw(1,1) + rhoint + momint*cos(noco%beta(ityp))
                     !rho_22
                     outDen%pw(1,2) = outDen%pw(1,2) + rhoint - momint*cos(noco%beta(ityp))
                     !real part rho_21
                     outDen%cdom(1) = outDen%cdom(1) + cmplx(0.5*momint *cos(noco%alph(ityp))*sin(noco%beta(ityp)),0.0)
                     !imaginary part rho_21
                     outDen%cdom(1) = outDen%cdom(1) + cmplx(0.0,-0.5*momint *sin(noco%alph(ityp))*sin(noco%beta(ityp)))
232 233
                  END DO
               END IF
234 235 236 237 238 239 240 241 242
               !pk non-collinear (end)

            ELSE IF (input%ctail) THEN
               CALL cdnovlp(mpi,sphhar,stars,atoms,sym, dimension,vacuum,&
                            cell, input,oneD,l_st, jspin,rh(:,:,jspin),&
                            outDen%pw,outDen%vacxy,outDen%mt,outDen%vacz)
            ELSE IF (mpi%irank.EQ.0) THEN
               DO ityp = 1,atoms%ntype
                  outDen%pw(1,jspin) = outDen%pw(1,jspin) + qint(ityp,jspin)/input%jspins/cell%volint
243
               END DO
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
            END IF
         !block 1 unnecessary for slicing: end
         END IF ! .NOT.sliceplot%slice

      END DO ! loop over spins
      IF (mpi%irank.EQ.0) THEN
         CALL writeCoreDensity(input,atoms,dimension,rhTemp,tec,qint)
      END IF
      IF ((input%gw.eq.1 .or. input%gw.eq.3).AND.(mpi%irank.EQ.0)) CLOSE(15)
   ELSE ! input%kcrel.EQ.0
      !relativistic core implementation : kcrel.eq.1
      results%seigc = 0.
      IF ((input%jspins.EQ.2).AND.(mpi%irank.EQ.0)) THEN
         DO jspin = 1,input%jspins
            DO n = 1,atoms%ntype
               svdn(n,jspin) = outDen%mt(1,0,n,jspin)/ (sfp_const*atoms%rmsh(1,n)*atoms%rmsh(1,n))
260
            END DO
261 262 263 264 265 266
         END DO
      END IF
      !block 1 unnecessary for slicing: begin
      IF (.NOT.sliceplot%slice) THEN
         !add in core density
         IF (mpi%irank.EQ.0) THEN
267
            CALL coredr(input,atoms,seig, outDen%mt,dimension,sphhar,vTot%mt(:,0,:,:),qint,rh)
268 269 270 271
            results%seigc = results%seigc + seig
            IF (input%jspins.EQ.2) THEN
               DO jspin = 1,input%jspins
                  DO n = 1,atoms%ntype
272
                     stdn(n,jspin) = outDen%mt(1,0,n,jspin)/ (sfp_const*atoms%rmsh(1,n)*atoms%rmsh(1,n))
273 274 275
                  END DO
               END DO
            END IF
276
         END IF
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
         IF ((noco%l_noco).AND.(mpi%irank.EQ.0)) THEN
            !pk non-collinear (start)
            !add the coretail-charge to the constant interstitial
            !charge (star 0), taking into account the direction of
            !magnetisation of this atom
            DO ityp = 1,atoms%ntype
               rhoint = (qint(ityp,1) + qint(ityp,2)) /cell%volint/input%jspins/2.0
               momint = (qint(ityp,1) - qint(ityp,2)) /cell%volint/input%jspins/2.0
               !rho_11
               outDen%pw(1,1) = outDen%pw(1,1) + rhoint + momint*cos(noco%beta(ityp))
               !rho_22
               outDen%pw(1,2) = outDen%pw(1,2) + rhoint - momint*cos(noco%beta(ityp))
               !real part rho_21
               outDen%cdom(1) = outDen%cdom(1) + cmplx(0.5*momint *cos(noco%alph(ityp))*sin(noco%beta(ityp)),0.0)
               !imaginary part rho_21
               outDen%cdom(1) = outDen%cdom(1) + cmplx(0.0,-0.5*momint *sin(noco%alph(ityp))*sin(noco%beta(ityp)))
            END DO
            !pk non-collinear (end)
         ELSE
            DO jspin = 1,input%jspins
               IF (input%ctail) THEN
299
!+gu hope this works as well
300 301 302 303 304 305 306 307 308
                  CALL cdnovlp(mpi,sphhar,stars,atoms,sym,dimension,vacuum,&
                               cell,input,oneD,l_st,jspin,rh(1,1,jspin),&
                               outDen%pw,outDen%vacxy,outDen%mt,outDen%vacz)
               ELSE IF (mpi%irank.EQ.0) THEN
                  DO ityp = 1,atoms%ntype
                     outDen%pw(1,jspin) = outDen%pw(1,jspin) + qint(ityp,jspin)/input%jspins/cell%volint
                  END DO
               END IF
            END DO
309
         END IF
310 311
      !block 1 unnecessary for slicing: end
      END IF ! .NOT.sliceplot%slice
312
! end relativistic core
313 314 315 316
   END IF ! input%kcrel.EQ.0

   IF (mpi%irank.EQ.0) THEN
      !block 2 unnecessary for slicing: begin
317
      IF (.NOT.sliceplot%slice) THEN
318
         CALL openXMLElementNoAttributes('allElectronCharges')
319 320
         CALL qfix(stars,atoms,sym,vacuum, sphhar,input,cell,oneD,&
                   outDen%pw,outDen%vacxy,outDen%mt,outDen%vacz,.TRUE.,.true.,fix)
321
         CALL closeXMLElement('allElectronCharges')
322
         !pk non-collinear (start)
323
         IF (noco%l_noco) THEN
324
            !fix also the off-diagonal part of the density matrix
325
            outDen%cdom(:stars%ng3) = fix*outDen%cdom(:stars%ng3)
326 327 328 329
            IF (input%film) THEN
               outDen%cdomvz(:,:) = fix*outDen%cdomvz(:,:)
               outDen%cdomvxy(:,:,:) = fix*outDen%cdomvxy(:,:,:)
            END IF
330
         END IF
331
         !pk non-collinear (end)
332

333 334
         !spin densities at the nucleus
         !and magnetic moment in the spheres
335 336 337
         IF (input%jspins.EQ.2) THEN
            WRITE (6,FMT=8000)
            WRITE (16,FMT=8000)
338
            DO n = 1,atoms%ntype
339 340 341 342 343
               sval = svdn(n,1) - svdn(n,input%jspins)
               stot = stdn(n,1) - stdn(n,input%jspins)
               scor = stot - sval
               WRITE (6,FMT=8010) n,stot,sval,scor,svdn(n,1),stdn(n,1)
               WRITE (16,FMT=8010) n,stot,sval,scor,svdn(n,1),stdn(n,1)
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
            END DO
            IF (noco%l_mperp) THEN
               ! angles in nocoinp file are (alph-alphdiff)
               iatom = 1
               DO n = 1,atoms%ntype
                  IF (noco%l_ss) THEN
                     alphdiff(n)= 2.*pi_const*(noco%qss(1)*atoms%taual(1,iatom) + &
                                               noco%qss(2)*atoms%taual(2,iatom) + &
                                               noco%qss(3)*atoms%taual(3,iatom) )
                  ELSE
                     alphdiff(n)= 0.
                  END IF
                  iatom= iatom + atoms%neq(n)
               END DO
            END IF
359 360
            WRITE (6,FMT=8020)
            WRITE (16,FMT=8020)
361
            noco_new = noco
362
            CALL openXMLElement('magneticMomentsInMTSpheres',(/'units'/),(/'muBohr'/))
363
            DO n = 1, atoms%ntype
364 365 366
               smom = chmom(n,1) - chmom(n,input%jspins)
               WRITE (6,FMT=8030) n,smom, (chmom(n,j),j=1,input%jspins)
               WRITE (16,FMT=8030) n,smom, (chmom(n,j),j=1,input%jspins)
367
               attributes = ''
368 369 370 371
               WRITE(attributes(1),'(i0)') n
               WRITE(attributes(2),'(f15.10)') smom
               WRITE(attributes(3),'(f15.10)') chmom(n,1)
               WRITE(attributes(4),'(f15.10)') chmom(n,2)
372 373 374
               CALL writeXMLElementFormPoly('magneticMoment',(/'atomType      ','moment        ','spinUpCharge  ',&
                                                               'spinDownCharge'/),&
                                            attributes,reshape((/8,6,12,14,6,15,15,15/),(/4,2/)))
375
               IF (noco%l_mperp) THEN
376 377 378
                  !calculate the perpendicular part of the local moment
                  !and relax the angle of the local moment or calculate
                  !the constraint B-field.
379
                  CALL m_perp(atoms,n,noco_new,vTot%mt(:,0,:,:),chmom,qa21,alphdiff)
380 381
               END IF
            END DO
382
            CALL closeXMLElement('magneticMomentsInMTSpheres')
383

384 385
            !save the new nocoinp file if the dierctions of the local
            !moments are relaxed or a constraint B-field is calculated.
386 387 388
            l_relax_any = .false.
            iatom = 1
            DO itype = 1,atoms%ntype
389 390
               l_relax_any = l_relax_any.OR.noco%l_relax(itype)
            END DO
391 392 393
            IF (l_relax_any.OR.noco%l_constr) THEN
               IF (.not. noco%l_mperp) THEN
                  CALL juDFT_error ("(l_relax_any.OR.noco).AND.(.NOT. )" ,calledby ="cdngen")
394 395 396 397 398 399 400 401 402 403 404 405 406 407
               END IF
               DO itype = 1, atoms%ntype
                  IF (noco%l_ss) THEN
                     noco_new%alph(itype) = noco%alph(itype) - alphdiff(itype)
                     DO WHILE (noco_new%alph(n) > +pi_const)
                        noco_new%alph(n)= noco_new%alph(n) - 2.*pi_const
                     END DO
                     DO WHILE (noco_new%alph(n) < -pi_const)
                        noco_new%alph(n)= noco_new%alph(n) + 2.*pi_const
                     END DO
                  ELSE
                     noco_new%alph(itype) = noco%alph(itype)
                  END IF
               END DO
408 409 410 411 412

               OPEN (24,file='nocoinp',form='formatted', status='old')
               REWIND (24)
               CALL rw_noco_write(atoms,jij,noco_new, input)
               CLOSE (24)
413
            END IF
414 415

            IF (noco%l_soc) THEN
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
               thetai = noco%theta
               phii   = noco%phi
               WRITE (6,FMT=9020)
               WRITE (16,FMT=9020)
               CALL openXMLElement('orbitalMagneticMomentsInMTSpheres',(/'units'/),(/'muBohr'/))
               DO n = 1, atoms%ntype
                  IF (noco%l_noco) THEN
                     thetai = noco%beta(n)
                     phii =   noco%alph(n)
                  END IF

                  ! magn. moment(-)
                  slxmom = clmom(1,n,1)+clmom(1,n,2)
                  slymom = clmom(2,n,1)+clmom(2,n,2)
                  slmom =  clmom(3,n,1)+clmom(3,n,2)

                  ! rotation: orbital moment || spin moment (extended to incude phi - hopefully)
                  slmom   = cos(thetai)*slmom + sin(thetai)* (cos(phii)*slxmom + sin(phii)*slymom)
                  clmom(3,n,1) = cos(thetai)*clmom(3,n,1) + &
                                 sin(thetai)*(cos(phii)*clmom(1,n,1) + sin(phii)*clmom(2,n,1))
                  clmom(3,n,2) = cos(thetai)*clmom(3,n,2) + &
                                 sin(thetai)*(cos(phii)*clmom(1,n,2) + sin(phii)*clmom(2,n,2))

                  WRITE (6,FMT=8030) n,slmom,(clmom(3,n,j),j=1,2)
                  WRITE (16,FMT=8030) n,slmom,(clmom(3,n,j),j=1,2)
                  attributes = ''
                  WRITE(attributes(1),'(i0)') n
                  WRITE(attributes(2),'(f15.10)') slmom
                  WRITE(attributes(3),'(f15.10)') clmom(3,n,1)
                  WRITE(attributes(4),'(f15.10)') clmom(3,n,2)
                  CALL writeXMLElementFormPoly('orbMagMoment',(/'atomType      ','moment        ','spinUpCharge  ',&
                                                                'spinDownCharge'/),&
                                               attributes,reshape((/8,6,12,14,6,15,15,15/),(/4,2/)))
               END DO
               CALL closeXMLElement('orbitalMagneticMomentsInMTSpheres')
451 452
            END IF
         END IF
453 454 455 456 457 458 459 460 461 462 463 464 465
      !block 2 unnecessary for slicing: end
      END IF ! .NOT.sliceplot%slice

      9020 FORMAT (/,/,10x,'orb. magnetic moments in the spheres:',/,10x,&
                   'type',t22,'moment',t33,'spin-up',t43,'spin-down')
      8000 FORMAT (/,/,10x,'spin density at the nucleus:',/,10x,'type',t25,&
                   'input%total',t42,'valence',t65,'core',t90,&
                   'majority valence and input%total density',/)
      8010 FORMAT (i13,2x,3e20.8,5x,2e20.8)
      8020 FORMAT (/,/,2x,'-->  magnetic moments in the spheres:',/,2x,&
                   'mm -->   type',t22,'moment',t33,'spin-up',t43,'spin-down')
      8030 FORMAT (2x,'--> mm',i8,2x,3f12.5)

466 467
      IF (sliceplot%slice) THEN
         OPEN (20,file='cdn_slice',form='unformatted',status='unknown')
468
         CALL wrtdop(stars,vacuum,atoms,sphhar, input,sym, 20, iter,outDen%mt,outDen%pw,outDen%vacz,outDen%vacxy)
469
         IF (noco%l_noco) THEN
470
            WRITE (20) (outDen%cdom(k),k=1,stars%ng3)
471
            IF (input%film) THEN
472 473
               WRITE (20) ((outDen%cdomvz(j,ivac),j=1,vacuum%nmz),ivac=1,vacuum%nvac)
               WRITE (20) (((outDen%cdomvxy(j,k-1,ivac),j=1,vacuum%nmzxy),k=2,oneD%odi%nq2) ,ivac=1,vacuum%nvac)
474 475
            END IF
         END IF
476
         CLOSE(20) 
477
         CALL juDFT_end("slice OK")
478
      END IF
479

480
      CALL writeDensity(stars,vacuum,atoms,cell,sphhar,input,sym,oneD,archiveType,&
481
                        CDN_OUTPUT_DEN_const,0,results%last_distance,results%ef,.FALSE.,iter,&
482
                        outDen%mt,outDen%pw,outDen%vacz,outDen%vacxy,outDen%cdom,outDen%cdomvz,outDen%cdomvxy)
483 484 485 486 487 488 489 490 491 492
   ENDIF ! mpi%irank.EQ.0

#ifdef CPP_MPI
   CALL mpi_bc_potden(mpi,stars,sphhar,atoms,input,vacuum,oneD,noco,outDen)
#endif

   DEALLOCATE (qvac,qvlay,qa21)
   DEALLOCATE (igq_fft)

   IF (sliceplot%slice) CALL juDFT_end("sliceplot%slice OK",mpi%irank)
493

494
   RETURN
495

496
END SUBROUTINE cdngen
497

498
END MODULE m_cdngen