cdnval.F90 46.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
MODULE m_cdnval
  use m_juDFT
CONTAINS
  SUBROUTINE cdnval(eig_id, mpi,kpts,jspin,sliceplot,noco, input,banddos,cell,atoms,enpara,stars,&
       vacuum,dimension, sphhar, sym,obsolete, igq_fft,vr, vz, oneD, n_mmp,results, qpw,rhtxy,&
       rho,rht,cdom,cdomvz,cdomvxy,qa21, chmom,clmom)
    !
    !     ***********************************************************
    !         this subroutin is a modified version of cdnval.F.
    !         it calculates a layer charge distribution and an orbital
    !         composition for each state in a film.
    !         this information is written in the  'ek_orbcomp'  file
    !                                    Yu.Koroteev  01.12.2003
    !     ***********************************************************
    !     flapw7 valence density generator
    !                                         c.l.fu
    !     zelec used to calculate ne - 6.12.95 r.pentcheva
    !
    !     changed subroutine to allow parallel writing of vacdos&dosinp
    !     used temporary direct access file 84,tmp_dos to store data used
    !     in cdninf
    !     call of cdninf changed, sympsi is called from cdnval now
    !     look for 'ifdef CPP_MPI' -blocks!               d.wortmann 6.5.99
    !
    !******** ABBREVIATIONS ************************************************
    !     nbands   : number of bands in the energy window
    !     noccbd   : number of occupied bands
    !     slice    : when set to .true. the charge density of a enery range
    !                (slice) or a single state is calculated
    !     e1s,e2s  : (used if slice) energy range for the slice. if both
    !                are set to 0.0 the charge density of the band nr. nnne
    !                is calculated
    !     pallst   : (used if slice) if set to .true. bands above the
    !                Fermi-Energy are taken into account
    !     nnne     : (used if slice) number of the band of which the charge
    !                density is calculated if e1s and e2s are 0.0
    !     kk       : (used if slice) if set to 0 all k-points are used to
    !                calculate the charge density of the slice, otherwise
    !                only k-points kk is taken into account
    !     nslibd   : number of bands in slice
    !     ener     : band energy averaged over all bands and k-points,
    !                wheighted with the l-like charge of each atom type
    !     sqal     : l-like charge of each atom type. sum over all k-points
    !                and bands
    !***********************************************************************
    !
47
    USE m_eig66_io,ONLY: write_dos
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    USE m_radfun
    USE m_radflo
    USE m_rhomt
    USE m_rhonmt
    USE m_rhomtlo
    USE m_rhonmtlo
    USE m_mcdinit
    USE m_sphpts
    USE m_points
    USE m_sympsi
    USE m_enpara, ONLY : w_enpara,mix_enpara
    USE m_eparas      ! energy parameters and partial charges
    USE m_qal21       ! off-diagonal part of partial charges
    USE m_abcof
    USE m_topulay
    USE m_nmat        ! calculate density matrix for LDA + U
    USE m_vacden
    USE m_nstm3
    USE m_pwden
    USE m_forcea8
    USE m_forcea12
    USE m_forcea21
    USE m_checkdop    ! check continuity of density on MT radius R
    USE m_int21       ! integrate (spin) off-diagonal radial functions
    USE m_int21lo     ! -"- for u_lo
    USE m_rhomt21     ! calculate (spin) off-diagonal MT-density coeff's
    USE m_rhonmt21    ! -"-                       non-MT-density coeff's
75
    USE m_cdnmt       ! calculate the density and orbital moments etc.
76 77 78 79 80 81 82 83 84 85 86 87
    USE m_orbmom      ! coeffd for orbital moments
    USE m_qmtsl       ! These subroutines divide the input%film into vacuum%layers
    USE m_qintsl      ! (slabs) and intergate the DOS in these vacuum%layers
    USE m_slabdim     ! (mt + interstitial)
    USE m_slabgeom    ! (written by Yu.Koroteev, 2003/2004)
    USE m_orbcomp     ! calculate corbital composition (like p_x,p_y,p_z)
    USE m_Ekwritesl   ! and write to file.
    USE m_abcrot2
    USE m_doswrite
    USE m_cylpts
    USE m_cdnread, ONLY : cdn_read0, cdn_read
#ifdef CPP_MPI
88
    USE m_mpi_col_den ! collect density data from parallel nodes
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    USE m_mpi_col_dos ! collect DOS data from parallel nodes
#endif
    USE m_types
    IMPLICIT NONE
    TYPE(t_results),INTENT(INOUT)   :: results
    TYPE(t_mpi),INTENT(IN)   :: mpi
    TYPE(t_dimension),INTENT(IN)   :: dimension
    TYPE(t_oneD),INTENT(IN)   :: oneD
    TYPE(t_enpara),INTENT(INOUT)   :: enpara
    TYPE(t_obsolete),INTENT(IN)   :: obsolete
    TYPE(t_banddos),INTENT(IN)   :: banddos
    TYPE(t_sliceplot),INTENT(IN)   :: sliceplot
    TYPE(t_input),INTENT(IN)   :: input
    TYPE(t_vacuum),INTENT(IN)   :: vacuum
    TYPE(t_noco),INTENT(IN)   :: noco
    TYPE(t_sym),INTENT(IN)   :: sym
    TYPE(t_stars),INTENT(IN)   :: stars
    TYPE(t_cell),INTENT(IN)   :: cell
    TYPE(t_kpts),INTENT(IN)   :: kpts
    TYPE(t_sphhar),INTENT(IN)   :: sphhar
    TYPE(t_atoms),INTENT(IN)   :: atoms
    !     .. Scalar Arguments ..
    INTEGER, INTENT (IN) :: eig_id,jspin

    !     .. Array Arguments ..
    COMPLEX, INTENT(INOUT) :: qpw(stars%n3d,dimension%jspd)
    COMPLEX, INTENT(INOUT) :: rhtxy(vacuum%nmzxyd,oneD%odi%n2d-1,2,dimension%jspd)
    COMPLEX, INTENT(INOUT) :: cdom(stars%n3d)
    COMPLEX, INTENT(INOUT) :: cdomvz(vacuum%nmzd,2)
    COMPLEX, INTENT(INOUT) :: cdomvxy(vacuum%nmzxyd,oneD%odi%n2d-1,2)
    COMPLEX, INTENT(INOUT) :: qa21(atoms%ntypd)
    INTEGER, INTENT (IN) :: igq_fft(0:stars%kq1d*stars%kq2d*stars%kq3d-1)
    REAL, INTENT    (IN) :: vz(vacuum%nmzd,2)
    REAL, INTENT    (IN) :: vr(atoms%jmtd,0:sphhar%nlhd,atoms%ntypd,dimension%jspd)
    REAL, INTENT   (OUT) :: chmom(atoms%ntypd,dimension%jspd),clmom(3,atoms%ntypd,dimension%jspd)
    REAL, INTENT (INOUT) :: rho(atoms%jmtd,0:sphhar%nlhd,atoms%ntypd,dimension%jspd)
    REAL, INTENT (INOUT) :: rht(vacuum%nmzd,2,dimension%jspd)
    COMPLEX, INTENT(INOUT) :: n_mmp(-3:3,-3:3,atoms%n_u)

#ifdef CPP_MPI
    INCLUDE 'mpif.h'
#endif
    !     .. Local Scalars ..
    TYPE(t_lapw):: lapw
    INTEGER :: llpd
    REAL wk,wronk,sign,emcd_lo,emcd_up
    INTEGER i,ie,iv,ivac,j,k,l,l1,lh ,n,ilo,isp,nat,&
                 nbands,noded,nodeu,noccbd,nslibd,na,&
                 ikpt,npd ,jsp_start,jsp_end,ispin
    INTEGER  skip_t,skip_tt
    INTEGER n_size,i_rec,n_rank ,ncored,n_start,n_end,noccbd_l
    COMPLEX,parameter:: czero=(0.0,0.0)
    LOGICAL l_fmpl,l_mcd,l_evp,l_orbcomprot
    !     ...Local Arrays ..
    REAL :: qis(dimension%neigd,kpts%nkptd,dimension%jspd)
    REAL :: qvac(dimension%neigd,2,kpts%nkptd,dimension%jspd)
    REAL :: qvlay(dimension%neigd,vacuum%layerd,2,kpts%nkptd,dimension%jspd)
    INTEGER n_bands(0:dimension%neigd),ncore(atoms%ntypd)
    REAL    cartk(3),bkpt(3),xp(3,dimension%nspd),e_mcd(atoms%ntypd,input%jspins,dimension%nstd)
    REAL    ello(atoms%nlod,atoms%ntypd,dimension%jspd),evac(2,dimension%jspd)
    REAL    epar(0:atoms%lmaxd,atoms%ntypd,dimension%jspd),evdu(2,dimension%jspd)
    REAL    eig(dimension%neigd)
    REAL    vz0(2)
    REAL    uuilon(atoms%nlod,atoms%ntypd),duilon(atoms%nlod,atoms%ntypd)
    REAL    ulouilopn(atoms%nlod,atoms%nlod,atoms%ntypd)

    INTEGER, PARAMETER :: n2max_nstm3=13
156

157 158 159 160 161
    INTEGER nsld,nsl
    !
    INTEGER, ALLOCATABLE :: nmtsl(:,:),nslat(:,:)
    REAL,    ALLOCATABLE :: zsl(:,:),volsl(:)
    REAL,    ALLOCATABLE :: volintsl(:)
162 163
    REAL,    ALLOCATABLE :: qintsl(:,:),qmtsl(:,:)
    REAL,    ALLOCATABLE :: orbcomp(:,:,:),qmtp(:,:)
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    !-new_sl
    !-dw
    INTEGER, ALLOCATABLE :: gvac1d(:),gvac2d(:) ,kveclo(:)
    INTEGER, ALLOCATABLE :: jsym(:),ksym(:)

#if ( !defined(CPP_INVERSION) || defined(CPP_SOC) )
    COMPLEX, ALLOCATABLE :: z(:,:)
#else
    REAL,    ALLOCATABLE :: z(:,:)
#endif
    REAL,    ALLOCATABLE :: aclo(:,:,:),acnmt(:,:,:,:,:)
    REAL,    ALLOCATABLE :: bclo(:,:,:),bcnmt(:,:,:,:,:)
    REAL,    ALLOCATABLE :: cclo(:,:,:,:),ccnmt(:,:,:,:,:),we(:)
    REAL,    ALLOCATABLE :: f(:,:,:,:),g(:,:,:,:),flo(:,:,:,:)
    REAL,    ALLOCATABLE :: uloulopn(:,:,:,:),uloulopn21(:,:,:)
    REAL,    ALLOCATABLE :: uu(:,:,:),dd(:,:,:),du(:,:,:)
    REAL,    ALLOCATABLE :: uunmt(:,:,:,:),ddnmt(:,:,:,:)
    REAL,    ALLOCATABLE :: dunmt(:,:,:,:),udnmt(:,:,:,:),sqlo(:,:,:)
    REAL,    ALLOCATABLE :: qal(:,:,:,:),sqal(:,:,:),ener(:,:,:)
    REAL,    ALLOCATABLE :: svac(:,:),pvac(:,:),mcd(:,:,:)
    REAL,    ALLOCATABLE :: enerlo(:,:,:),qmat(:,:,:,:)
    COMPLEX, ALLOCATABLE :: acof(:,:,:,:),bcof(:,:,:,:),ccof(:,:,:,:,:)
    COMPLEX, ALLOCATABLE :: acoflo(:,:,:,:),bcoflo(:,:,:,:)
    COMPLEX, ALLOCATABLE :: cveccof(:,:,:,:,:),f_a12(:,:)
    COMPLEX, ALLOCATABLE :: e1cof(:,:,:),e2cof(:,:,:),f_a21(:,:)
    COMPLEX, ALLOCATABLE :: f_b4(:,:),f_b8(:,:)
    COMPLEX, ALLOCATABLE :: aveccof(:,:,:,:),bveccof(:,:,:,:)
    COMPLEX, ALLOCATABLE :: uloulop21(:,:,:)
    COMPLEX, ALLOCATABLE :: uunmt21(:,:,:),ddnmt21(:,:,:)
    COMPLEX, ALLOCATABLE :: dunmt21(:,:,:),udnmt21(:,:,:)
    COMPLEX, ALLOCATABLE :: qstars(:,:,:,:),m_mcd(:,:,:,:)
    TYPE (t_orb),  ALLOCATABLE :: orb(:,:,:,:)
    TYPE (t_orbl), ALLOCATABLE :: orbl(:,:,:,:)
    TYPE (t_orblo),ALLOCATABLE :: orblo(:,:,:,:,:)
    TYPE (t_mt21), ALLOCATABLE :: mt21(:,:)
    TYPE (t_lo21), ALLOCATABLE :: lo21(:,:)
    TYPE (t_usdus):: usdus
    !     ..
    !     ..
    llpd=(atoms%lmaxd*(atoms%lmaxd+3))/2
    !---> l_fmpl is meant as a switch to to a plot of the full magnet.
    !---> density without the atomic sphere approximation for the magnet.
    !---> density. It is not completely implemented (lo's missing).
    l_fmpl = .false.
    IF (noco%l_mperp) THEN
       !--->    when the off-diag. part of the desinsity matrix, i.e. m_x and
       !--->    m_y, is calculated inside the muffin-tins (l_mperp = T), cdnval
       !--->    is called only once. therefore, several spin loops have been
       !--->    added. if l_mperp = F, these loops run only from jspin - jspin.
       jsp_start = 1
       jsp_end   = 2
       ALLOCATE ( mt21(0:atoms%lmaxd,atoms%ntypd),lo21(atoms%nlod,atoms%ntypd) )  ! Deallocation at end of subroutine
       ALLOCATE ( uloulopn21(atoms%nlod,atoms%nlod,atoms%ntypd) )
       ALLOCATE ( uloulop21(atoms%nlod,atoms%nlod,atoms%ntypd) )
       ALLOCATE ( qmat(0:3,atoms%ntypd,dimension%neigd,4) )
       IF (l_fmpl) THEN
          ALLOCATE ( uunmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
          ALLOCATE ( ddnmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
          ALLOCATE ( dunmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
          ALLOCATE ( udnmt21((atoms%lmaxd+1)**2,sphhar%nlhd,atoms%ntypd) )
       ELSE
          ALLOCATE ( uunmt21(1,1,1),ddnmt21(1,1,1) )
          ALLOCATE ( dunmt21(1,1,1),udnmt21(1,1,1) )
       ENDIF
    ELSE
       jsp_start = jspin
       jsp_end   = jspin
       ALLOCATE ( mt21(1,1),lo21(1,1),uunmt21(1,1,1) )
       ALLOCATE ( ddnmt21(1,1,1),dunmt21(1,1,1),udnmt21(1,1,1) )
       ALLOCATE ( uloulopn21(1,1,1),uloulop21(1,1,1),qmat(1,1,1,1) )
    ENDIF
    !
236
    !---> if l_mperp = F, these variables are only needed for one spin
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    !---> at a time, otherwise for both spins:
    !
    ALLOCATE ( f(atoms%jmtd,2,0:atoms%lmaxd,jsp_start:jsp_end) )      ! Deallocation before mpi_col_den
    ALLOCATE ( g(atoms%jmtd,2,0:atoms%lmaxd,jsp_start:jsp_end) )
    ALLOCATE (   usdus%us(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE (  usdus%uds(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE (  usdus%dus(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%duds(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%ddn(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( lapw%k1(dimension%nvd,dimension%jspd),lapw%k2(dimension%nvd,dimension%jspd),lapw%k3(dimension%nvd,dimension%jspd) )   ! Deallocation at end of subroutine
    ALLOCATE ( jsym(dimension%neigd),ksym(dimension%neigd) )
    ALLOCATE ( gvac1d(dimension%nv2d),gvac2d(dimension%nv2d) )
    ALLOCATE (  usdus%ulos(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%dulos(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%uulon(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( usdus%dulon(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
253
    ALLOCATE ( usdus%uloulopn(atoms%nlod,atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    ALLOCATE ( uu(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( dd(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( du(0:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( uunmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( ddnmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( dunmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( udnmt(0:llpd,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( qal(0:3,atoms%ntypd,dimension%neigd,jsp_start:jsp_end) )
    ALLOCATE ( sqal(0:3,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( ener(0:3,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE (   sqlo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( enerlo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end) )
    ALLOCATE ( svac(2,jsp_start:jsp_end) )
    ALLOCATE ( pvac(2,jsp_start:jsp_end) )
    ALLOCATE ( qstars(vacuum%nstars,dimension%neigd,vacuum%layerd,2) )
    !
    ! --> Initializations
    !
    uu(:,:,:) = 0.0 ; dd(:,:,:) = 0.0 ; du(:,:,:) = 0.0
    IF (noco%l_mperp) THEN
274 275
       mt21(:,:)%uu = czero ; mt21(:,:)%ud = czero
       mt21(:,:)%du = czero ; mt21(:,:)%dd = czero
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
       lo21(:,:)%uulo = czero ; lo21(:,:)%ulou = czero
       lo21(:,:)%dulo = czero ; lo21(:,:)%ulod = czero
       uloulop21(:,:,:) = czero
    ENDIF
    uunmt(:,:,:,:) = 0.0 ; ddnmt(:,:,:,:) = 0.0
    udnmt(:,:,:,:) = 0.0 ; dunmt(:,:,:,:) = 0.0
    IF (l_fmpl) THEN
       IF (.not.noco%l_mperp)  CALL juDFT_error("for fmpl set noco%l_mperp = T!" ,calledby ="cdnval")
       uunmt21(:,:,:) = czero ; ddnmt21(:,:,:) = czero
       udnmt21(:,:,:) = czero ; dunmt21(:,:,:) = czero
    ENDIF
    svac(:,:) = 0.0 ; pvac(:,:) = 0.0
    sqal(:,:,:) = 0.0 ; ener(:,:,:) = 0.0
    !+soc
    IF (noco%l_soc) THEN
       ALLOCATE ( orb(0:atoms%lmaxd,-atoms%lmaxd:atoms%lmaxd,atoms%ntypd,jsp_start:jsp_end) )   ! Deallocation at end of subroutine
       ALLOCATE ( orbl(atoms%nlod,-atoms%llod:atoms%llod,atoms%ntypd,jsp_start:jsp_end)     )
       ALLOCATE ( orblo(atoms%nlod,atoms%nlod,-atoms%llod:atoms%llod,atoms%ntypd,jsp_start:jsp_end))
       orb(:,:,:,:)%uu = 0.0 ; orb(:,:,:,:)%dd = 0.0
       orb(:,:,:,:)%uum = czero ; orb(:,:,:,:)%uup = czero
       orb(:,:,:,:)%ddm = czero ; orb(:,:,:,:)%ddp = czero
       orbl(:,:,:,:)%uulo = 0.0 ; orbl(:,:,:,:)%dulo = 0.0
       orbl(:,:,:,:)%uulom = czero ; orbl(:,:,:,:)%uulop = czero
       orbl(:,:,:,:)%dulom = czero ; orbl(:,:,:,:)%dulop = czero
       orblo(:,:,:,:,:)%z = 0.0
       orblo(:,:,:,:,:)%p = czero ; orblo(:,:,:,:,:)%m = czero
    ELSE
       ALLOCATE ( orb(0:0,-atoms%lmaxd:-atoms%lmaxd,1,jsp_start:jsp_end) )
       ALLOCATE ( orbl(1,-atoms%llod:-atoms%llod,1,jsp_start:jsp_end) )
       ALLOCATE ( orblo(1,1,-atoms%llod:-atoms%llod,1,jsp_start:jsp_end) )
    ENDIF
    !+for
    IF (input%l_f) THEN
       ALLOCATE ( f_a12(3,atoms%ntypd),f_a21(3,atoms%ntypd) )           ! Deallocation at end of subroutine
       ALLOCATE ( f_b4(3,atoms%ntypd),f_b8(3,atoms%ntypd) )
       f_b4(:,:) = czero  ; f_a12(:,:) = czero
       f_b8(:,:) = czero  ; f_a21(:,:) = czero
    ELSE
       ALLOCATE ( f_b8(1,1) )
    ENDIF
    !
    INQUIRE (file='mcd_inp',exist=l_mcd)
    IF (l_mcd) THEN
       OPEN (23,file='mcd_inp',STATUS='old',FORM='formatted')
       READ (23,*) emcd_lo,emcd_up
       CLOSE (23)
       ALLOCATE ( m_mcd(dimension%nstd,(3+1)**2,3*atoms%ntypd,2) )           ! Deallocation at end of subroutine
       ALLOCATE ( mcd(3*atoms%ntypd,dimension%nstd,dimension%neigd) )
       IF (.not.banddos%dos) WRITE (*,*) 'For mcd-spectra set banddos%dos=T!'
    ELSE
       ALLOCATE ( m_mcd(1,1,1,1),mcd(1,1,1) )
    ENDIF
328

329 330 331 332 333 334 335 336 337 338 339 340 341
    ALLOCATE ( kveclo(atoms%nlotot) )

    IF (mpi%irank==0) WRITE (6,FMT=8000) jspin
    IF (mpi%irank==0) WRITE (16,FMT=8000) jspin
8000 FORMAT (/,/,10x,'valence density: spin=',i2)

    CALL cdn_read0(&
         eig_id,&
         mpi%irank,mpi%isize,jspin,dimension%jspd,&
         noco%l_noco,&
         ello,evac,epar,bkpt,wk,n_bands,n_size)!keep

    !+lo
342
    !---> if local orbitals are used, the eigenvector has a higher
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    !---> dimension then nvd
    ALLOCATE ( aclo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end), &
         ! Deallocated at end of subroutine&
         bclo(atoms%nlod,atoms%ntypd,jsp_start:jsp_end),&
         cclo(atoms%nlod,atoms%nlod,atoms%ntypd,jsp_start:jsp_end),&
         acnmt(0:atoms%lmaxd,atoms%nlod,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end), &
         bcnmt(0:atoms%lmaxd,atoms%nlod,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end), &
         ccnmt(atoms%nlod,atoms%nlod,sphhar%nlhd,atoms%ntypd,jsp_start:jsp_end) )
    aclo(:,:,:) = 0.0 ; bclo(:,:,:) = 0.0 ; ccnmt(:,:,:,:,:) = 0.0
    acnmt(:,:,:,:,:)=0.0 ; bcnmt(:,:,:,:,:)=0.0 ; cclo(:,:,:,:)=0.0

    skip_tt = dot_product(enpara%skiplo(:atoms%ntype,jspin),atoms%neq(:atoms%ntype))
    IF (noco%l_soc.OR.noco%l_noco)  skip_tt = 2 * skip_tt
    !-lo
    !---> set up l-dependent m.t. wavefunctions
    na = 1
    ncored = 0

    ALLOCATE ( flo(atoms%jmtd,2,atoms%nlod,dimension%jspd) )
    DO  n = 1,atoms%ntype
       IF (input%cdinf.AND.mpi%irank==0) WRITE (6,FMT=8001) n
       DO  l = 0,atoms%lmax(n)
          DO ispin = jsp_start,jsp_end
             CALL radfun(&
                  l,n,ispin,epar(l,n,ispin),vr(1,0,n,ispin),atoms,&
                  f(1,1,l,ispin),g(1,1,l,ispin),usdus,&
                  nodeu,noded,wronk)
             IF (input%cdinf.AND.mpi%irank==0) WRITE (6,FMT=8002) l,&
                  epar(l,n,ispin),usdus%us(l,n,ispin),usdus%dus(l,n,ispin),nodeu,&
                  usdus%uds(l,n,ispin),usdus%duds(l,n,ispin),noded,usdus%ddn(l,n,ispin),&
                  wronk
          ENDDO
          IF (noco%l_mperp) THEN
             CALL int_21(&
                  f,g,atoms,n,l,&
                  mt21(l,n)%uun,mt21(l,n)%udn,&
                  mt21(l,n)%dun,mt21(l,n)%ddn)
          ENDIF
       enddo
          IF (l_mcd) THEN
             CALL mcd_init(&
                  atoms,input,dimension,&
                  vr(:,0,:,:),g,f,emcd_up,emcd_lo,n,jspin,&
                  ncore,e_mcd,m_mcd)
             ncored = max(ncore(n),ncored)
          ENDIF
          !
          !--->   generate the extra wavefunctions for the local orbitals,
          !--->   if there are any.
          !
          IF ( atoms%nlo(n) > 0 ) THEN
             DO ispin = jsp_start,jsp_end
395
                CALL radflo(atoms,n,ispin, ello(1,1,ispin),vr(:,0,n,ispin), f(1,1,0,ispin),&
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
                     g(1,1,0,ispin),mpi, usdus, uuilon,duilon,ulouilopn, flo(:,:,:,ispin))
             ENDDO
          END IF

          DO ilo = 1, atoms%nlo(n)
             IF (noco%l_mperp) THEN
                CALL int_21lo(f,g,atoms,n, flo,ilo,&
                     lo21(ilo,n)%uulon,lo21(ilo,n)%dulon,&
                     lo21(ilo,n)%uloun,lo21(ilo,n)%ulodn,&
                     uloulopn21(1,1,n))
             ENDIF
          ENDDO

          na = na + atoms%neq(n)
       enddo
          DEALLOCATE (flo)
8001      FORMAT (1x,/,/,' wavefunction parameters for atom type',i3,':',/,&
               t32,'radial function',t79,'energy derivative',/,t3,'l',t8,&
               'energy',t26,'value',t39,'derivative',t53,'nodes',t68,&
               'value',t81,'derivative',t95,'nodes',t107,'norm',t119,&
               'wronskian')
8002      FORMAT (i3,f10.5,2 (5x,1p,2e16.7,i5),1p,2e16.7)

          IF (input%film) vz0(:) = vz(vacuum%nmz,:)
420

421 422 423 424 425 426 427 428 429 430 431 432
          !+q_sl
          IF ((banddos%ndir.EQ.-3).AND.banddos%dos) THEN
             IF (oneD%odi%d1)  CALL juDFT_error&
                  &        ("layer-resolved feature does not work with 1D",calledby ="cdnval")
             CALL slab_dim(atoms, nsld)
             ALLOCATE ( nmtsl(atoms%ntypd,nsld),nslat(atoms%natd,nsld) )
             ALLOCATE ( zsl(2,nsld),volsl(nsld) )
             ALLOCATE ( volintsl(nsld) )
             CALL slabgeom(&
                  atoms,cell,nsld,&
                  nsl,zsl,nmtsl,nslat,volsl,volintsl)
             !
433 434 435 436
             ALLOCATE ( qintsl(nsld,dimension%neigd))
             ALLOCATE ( qmtsl(nsld,dimension%neigd))
             ALLOCATE ( orbcomp(dimension%neigd,23,atoms%natd) )
             ALLOCATE ( qmtp(dimension%neigd,atoms%natd) )
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
             IF (.not.input%film) qvac(:,:,:,jspin) = 0.0
          ENDIF
          !-q_sl
          !
          !-->   loop over k-points: each can be a separate task
          !
          IF (kpts%nkpt < mpi%isize) THEN
             l_evp = .true.
             IF (l_mcd) THEN
                mcd(:,:,:) = 0.0
             ENDIF
             ener(:,:,:) = 0.0
             sqal(:,:,:) = 0.0
             qal(:,:,:,:) = 0.0
             enerlo(:,:,:) = 0.0
             sqlo(:,:,:) = 0.0
          ELSE
             l_evp = .false.
          ENDIF
          ALLOCATE ( we(dimension%neigd) )
          i_rec = 0 ; n_rank = 0
          DO ikpt = 1,kpts%nkpt
             i_rec = i_rec + 1
             IF ((mod(i_rec-1,mpi%isize).EQ.mpi%irank).OR.l_evp) THEN
                !-t3e
                we=0.0
                !--->    determine number of occupied bands and set weights (we)
                noccbd = 0
                DO  i = 1,dimension%neigd ! nbands
                   we(i) = results%w_iks(n_bands(n_rank)+i,ikpt,jspin)
                   IF (noco%l_noco) we(i) = results%w_iks(i,ikpt,1)
                   IF ((we(i).GE.1.e-8).OR.input%pallst) THEN
                      noccbd = noccbd + 1
                   ELSE
                      we(i)=0.0
                   ENDIF
                enddo
                ! uncomment this so that cdinf plots works for all states
                ! noccbd = neigd
476

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
                !
                ! -> Gu test: distribute ev's among the processors...
                !
                skip_t = skip_tt
                IF (l_evp.AND.(mpi%isize.GT.1)) THEN
                   IF (banddos%dos) THEN
                      noccbd_l = CEILING( real(n_bands(1)) / mpi%isize )
                      n_start = mpi%irank*noccbd_l + 1
                      n_end   = min( (mpi%irank+1)*noccbd_l , n_bands(1) )
                   ELSE
                      noccbd_l = CEILING( real(noccbd) / mpi%isize )
                      n_start = mpi%irank*noccbd_l + 1
                      n_end   = min( (mpi%irank+1)*noccbd_l , noccbd )
                   ENDIF
                   noccbd = n_end - n_start + 1
                   if (noccbd<1) THEN
                      noccbd=0
                   else
                      we(1:noccbd) = we(n_start:n_end)
                   endif
                   IF (n_start > skip_tt) THEN
                      skip_t  = 0
                   ENDIF
                   IF (n_end <= skip_tt) THEN
                      skip_t  = noccbd
                   ENDIF
                   IF ((n_start <= skip_tt).AND.(n_end > skip_tt)) THEN
                      skip_t  = mod(skip_tt,noccbd)
                   ENDIF
                ELSE
                   n_start = 1
                   IF (banddos%dos) THEN
                      noccbd_l = n_bands(1)
                      n_end    = n_bands(1)
                      noccbd   = n_bands(1)
                   ELSE
                      noccbd_l = noccbd
                      n_end    = noccbd
                   ENDIF
                ENDIF
                IF (.not. ALLOCATED(z) ) THEN
                   ALLOCATE ( z(dimension%nbasfcn,dimension%neigd) )
                ELSE
                   z = 0
                END IF
                CALL cdn_read(&
                     eig_id,dimension%nvd,dimension%jspd,mpi%irank,mpi%isize,&
                     ikpt,jspin,dimension%nbasfcn,noco%l_ss,noco%l_noco,&
                     noccbd,n_start,n_end,&
                     lapw%nmat,lapw%nv,ello,evdu,epar,kveclo,&
                     lapw%k1,lapw%k2,lapw%k3,bkpt,wk,nbands,eig,z)
                      !IF (l_evp.AND.(isize.GT.1)) THEN
                      !  eig(1:noccbd) = eig(n_start:n_end)
                      !ENDIF
                      !
                IF (vacuum%nstm.EQ.3.AND.input%film) THEN
                   CALL nstm3(&
                        sym,atoms,vacuum,stars,ikpt,lapw%nv(jspin),&
                        input,jspin,kpts,&
                        cell,wk,lapw%k1(:,jspin),lapw%k2(:,jspin),&
                        evac(1,jspin),vz,vz0,&
                        gvac1d,gvac2d)
                END IF

                IF (noccbd.EQ.0) GO TO 199
                !
                !--->    if slice, only a certain bands are taken into account
                !--->    in order to do this the coresponding eigenvalues, eigenvectors
                !--->    and weights have to be copied to the beginning of the arrays
                !--->    eig, z and we and the number of occupied bands (noccbd) has to
                !--->    changed
                IF (sliceplot%slice) THEN
                   IF (mpi%irank==0) WRITE (16,FMT=*) 'NNNE',sliceplot%nnne
                   IF (mpi%irank==0) WRITE (16,FMT=*) 'sliceplot%kk',sliceplot%kk
                   nslibd = 0
                   IF (input%pallst) we(:nbands) = wk
                   IF (sliceplot%kk.EQ.0) THEN
                      IF (mpi%irank==0) THEN
                         WRITE (16,FMT='(a)') 'ALL K-POINTS ARE TAKEN IN SLICE'
                         WRITE (16,FMT='(a,i2)') ' sliceplot%slice: k-point nr.',ikpt
                      ENDIF
                      DO i = 1,nbands
                         IF (eig(i).GE.sliceplot%e1s .AND. eig(i).LE.sliceplot%e2s) THEN
                            nslibd = nslibd + 1
                            eig(nslibd) = eig(i)
                            we(nslibd) = we(i)
                            z(:,nslibd) = z(:,i)
                         END IF
                      ENDDO
                      IF (mpi%irank==0) WRITE (16,'(a,i3)') ' eigenvalues in sliceplot%slice:',nslibd
                   ELSEIF (sliceplot%kk.EQ.ikpt) THEN
                      IF (mpi%irank==0) WRITE (16,FMT='(a,i2)') ' sliceplot%slice: k-point nr.',ikpt
                      IF ((sliceplot%e1s.EQ.0.0) .AND. (sliceplot%e2s.EQ.0.0)) THEN
                         IF (mpi%irank==0) &
                              WRITE (16,FMT='(a,i5,f10.5)') 'slice: eigenvalue nr.',&
                              sliceplot%nnne,eig(sliceplot%nnne)
                         nslibd = nslibd + 1
                         eig(nslibd) = eig(sliceplot%nnne)
                         we(nslibd) = we(sliceplot%nnne)
                         z(:,nslibd) = z(:,sliceplot%nnne)
                      ELSE
                         DO i = 1,nbands
                            IF (eig(i).GE.sliceplot%e1s .AND. eig(i).LE.sliceplot%e2s) THEN
                               nslibd = nslibd + 1
                               eig(nslibd) = eig(i)
                               we(nslibd) = we(i)
                               z(:,nslibd) = z(:,i)
                            END IF
                         ENDDO
                         IF (mpi%irank==0) &
                              WRITE (16,FMT='(a,i3)')' eigenvalues in sliceplot%slice:',nslibd
                      END IF
                   END IF
                   noccbd = nslibd
                   IF (nslibd.EQ.0) GO TO 199 !200
                END IF ! sliceplot%slice

                !--->    in normal iterations the charge density of the unoccupied
                !--->    does not need to be calculated (in pwden, vacden and abcof)
                IF (banddos%dos.AND. .NOT.(l_evp.AND.(mpi%isize.GT.1)) ) THEN
                   noccbd=nbands
                ENDIF
                !     ----> add in spin-doubling factor
                we(:noccbd) = 2.*we(:noccbd)/input%jspins

                !---> pk non-collinear
                !--->    valence density in the interstitial and vacuum region
604
                !--->    has to be called only once (if jspin=1) in the non-collinear
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
                !--->    case
                !     ----> valence density in the interstitial region
                IF (.NOT.((jspin.EQ.2) .AND. noco%l_noco)) THEN
                   CALL timestart("cdnval: pwden")
                   CALL pwden(&
                        stars,kpts,banddos,oneD,&
                        input,mpi,noco,cell,atoms,sym,ikpt,&
                        jspin,lapw,noccbd,&
                        igq_fft,we,z,&
                        eig,bkpt,&
                        qpw,cdom,qis,results%force,f_b8)
                   CALL timestop("cdnval: pwden")
                ENDIF
                !+new
                !--->    charge of each valence state in this k-point of the SBZ
                !--->    in the layer interstitial region of the film
                !
                IF (banddos%dos.AND.(banddos%ndir.EQ.-3))  THEN
                   IF (.NOT.((jspin.EQ.2) .AND. noco%l_noco)) THEN
                      CALL q_int_sl(&
                           jspin,stars,atoms,sym,&
                           volsl,volintsl,&
                           cell,&
                           z,noccbd,lapw,&
                           nsl,zsl,nmtsl,oneD,&
630
                           qintsl(:,:))
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
                               !
                   ENDIF
                ENDIF
                !-new c
                !--->    valence density in the vacuum region
                IF (input%film) THEN
                   IF (.NOT.((jspin.EQ.2) .AND. noco%l_noco)) THEN
                      call timestart("cdnval: vacden")
                      CALL vacden(&
                                      vacuum,dimension,stars,oneD,&
                                      kpts,input,&
                                      cell,atoms,noco,banddos,&
                                      gvac1d,gvac2d,&
                                      we,ikpt,jspin,vz,vz0,&
                                      noccbd,z,bkpt,lapw,&
                                      evac,eig,&
                                      rhtxy,rht,qvac,qvlay,&
                                      qstars,cdomvz,cdomvxy)
                      call timestop("cdnval: vacden")
                   ENDIF
                   !--->       perform Brillouin zone integration and summation over the
                   !--->       bands in order to determine the vacuum energy parameters.
                   DO ispin = jsp_start,jsp_end
                      DO ivac = 1,vacuum%nvac
                         pvac(ivac,ispin)=pvac(ivac,ispin)+dot_product(eig(:noccbd)*qvac(:noccbd,ivac,ikpt,ispin),we(:noccbd))
                         svac(ivac,ispin)=svac(ivac,ispin)+dot_product(qvac(:noccbd,ivac,ikpt,ispin),we(:noccbd))
                      ENDDO
                   ENDDO
                END IF
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                !--->    valence density in the atomic spheres
                !--->    construct a(tilta) and b(tilta)
                IF (noco%l_mperp) THEN
                   ALLOCATE ( acof(noccbd,0:dimension%lmd,atoms%natd,dimension%jspd),&
                        ! Deallocated before call to sympsi
                        bcof(noccbd,0:dimension%lmd,atoms%natd,dimension%jspd),                &
                        ccof(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd,dimension%jspd) )
                ELSE
                   ALLOCATE ( acof(noccbd,0:dimension%lmd,atoms%natd,jspin:jspin),&
                        bcof(noccbd,0:dimension%lmd,atoms%natd,jspin:jspin),&
                        ccof(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd,jspin:jspin) )
                ENDIF

                DO ispin = jsp_start,jsp_end
                   IF (input%l_f) THEN
                      call timestart("cdnval: to_pulay")
                      ALLOCATE (e1cof(noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
                           ! Deallocated after call to force_a21
                           e2cof(noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
                           acoflo(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd),&
                           bcoflo(-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd),&
                           aveccof(3,noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
                           bveccof(3,noccbd,0:atoms%lmaxd*(atoms%lmaxd+2),atoms%natd),&
                           cveccof(3,-atoms%llod:atoms%llod,noccbd,atoms%nlod,atoms%natd) )

                      CALL to_pulay(atoms,noccbd,sym, lapw, noco,cell,bkpt, z,noccbd,eig,usdus,&
                           kveclo,ispin,oneD, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                           e1cof,e2cof,aveccof,bveccof, ccof(-atoms%llod,1,1,1,ispin),acoflo,bcoflo,cveccof)
                      call timestop("cdnval: to_pulay")
690

691 692
                   ELSE
                      call timestart("cdnval: abcof")
693

694 695 696
                      CALL abcof(atoms,noccbd,sym, cell, bkpt,lapw,noccbd,z, usdus, noco,ispin,kveclo,oneD,&
                           acof(:,0:,:,ispin),bcof(:,0:,:,ispin),ccof(-atoms%llod:,:,:,:,ispin))
                      call timestop("cdnval: abcof")
697

698
                   ENDIF
699

700
                   IF ( atoms%n_u.GT.0 ) THEN
701
                      CALL n_mat(atoms,sym,noccbd,usdus,ispin,we, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
                           ccof(-atoms%llod:,:,:,:,ispin), n_mmp)
                   ENDIF
                   !
                   !--->       perform Brillouin zone integration and summation over the
                   !--->       bands in order to determine the energy parameters for each
                   !--->       atom and angular momentum
                   !
                   IF (.not.sliceplot%slice) THEN
                      CALL eparas(ispin,atoms,noccbd,mpi,ikpt,noccbd,we,eig,ccof,&
                           skip_t,l_evp,acof(:,0:,:,ispin),bcof(:,0:,:,ispin),usdus,&
                           ncore,l_mcd,m_mcd,&
                           enerlo(1,1,ispin),sqlo(1,1,ispin),&
                           ener(0,1,ispin),sqal(0,1,ispin),&
                           qal(0:,:,:,ispin),mcd)

                      IF ( noco%l_mperp .AND. (ispin == jsp_end) ) THEN
                         CALL qal_21(atoms, input,noccbd,we,ccof,&
                              noco,acof,bcof,mt21,lo21,uloulopn21,&
                              qal,qmat)
                      ENDIF
                   ENDIF
                   !
                   !+new
                   !--->    layer charge of each valence state in this k-point of the SBZ
                   !--->    from the mt-sphere region of the film
                   !
                   IF (banddos%dos.AND.(banddos%ndir.EQ.-3))  THEN
                      CALL q_mt_sl(ispin, atoms,noccbd,nsld, ikpt,noccbd,ccof(-atoms%llod,1,1,1,ispin),&
                           skip_t,noccbd, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),usdus,&
731
                           nmtsl,nsl, qmtsl(:,:))
732
                      !
733

734 735 736 737 738 739 740 741
                      INQUIRE (file='orbcomprot',exist=l_orbcomprot)
                      IF (l_orbcomprot) THEN                           ! rotate ab-coeffs
                         CALL abcrot2(atoms, noccbd,&
                              acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                              ccof(-atoms%llod:,:,:,:,ispin))
                      ENDIF

                      CALL orb_comp(ispin,noccbd,atoms,noccbd,usdus,acof(1:,0:,1:,ispin),bcof(1:,0:,1:,ispin),&
742
                           ccof(-atoms%llod:,1:,1:,1:,ispin), orbcomp, qmtp)
743 744 745 746 747 748 749 750
                               !
                   ENDIF
                   !-new
                   !--->          set up coefficients for the spherical and
                   CALL timestart("cdnval: rhomt")
                   CALL rhomt(atoms,we,noccbd, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                        uu(0:,:,ispin),dd(0:,:,ispin),du(0:,:,ispin))
                   CALL timestop("cdnval: rhomt")
751
                   !+soc
752 753 754 755 756 757 758 759 760 761 762
                   IF (noco%l_soc) THEN
                      CALL orbmom(atoms,noccbd, we,acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                           ccof(-atoms%llod:,:,:,:,ispin), orb(0:,-atoms%lmaxd:,:,ispin),orbl(:,-atoms%llod:,:,ispin),&
                           orblo(:,:,-atoms%llod,:,ispin) )
                   ENDIF
                   !     -soc
                   !--->          non-spherical m.t. density
                   CALL timestart("cdnval: rhonmt")
                   CALL rhonmt(atoms,sphhar, we,noccbd,sym, acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                        uunmt(0:,:,:,ispin),ddnmt(0:,:,:,ispin), udnmt(0:,:,:,ispin),dunmt(0:,:,:,ispin))
                   CALL timestop("cdnval: rhonmt")
763 764 765

                   !--->          set up coefficients of the local orbitals and the
                   !--->          flapw - lo cross terms for the spherical and
766 767 768 769 770 771 772 773 774 775
                   !--->          non-spherical mt density
                   CALL timestart("cdnval: rho(n)mtlo")
                   CALL rhomtlo(atoms,&
                        noccbd,we,acof(:,0:,:,ispin),bcof(:,0:,:,ispin),&
                        ccof(-atoms%llod:,:,:,:,ispin),&
                        aclo(:,:,ispin),bclo(:,:,ispin),cclo(:,:,:,ispin))
                            !
                   CALL rhonmtlo(&
                        atoms,sphhar,&
                        noccbd,we,acof(:,0:,:,ispin),&
776
                        bcof(:,0:,:,ispin),ccof(-atoms%llod:,:,:,:,ispin),&
777 778 779 780 781 782
                        acnmt(0:,:,:,:,ispin),bcnmt(0:,:,:,:,ispin),&
                        ccnmt(:,:,:,:,ispin))
                   CALL timestop("cdnval: rho(n)mtlo")
                   !
                   IF (input%l_f) THEN
                   CALL timestart("cdnval: force_a12/21")
783

784 785 786 787 788 789 790 791 792
#ifndef CPP_APW
                      CALL force_a12(atoms,noccbd,sym, dimension,cell,oneD,&
                           we,ispin,noccbd,usdus,acof(:,0:,:,ispin),&
                           bcof(:,0:,:,ispin),e1cof,e2cof, acoflo,bcoflo, results,f_a12)
#endif
                      CALL force_a21(atoms,dimension,noccbd,sym,atoms%nlod*(atoms%nlod+1)/2,&
                           oneD,cell,we,ispin,epar(0:,:,ispin),noccbd,eig,usdus,acof(:,0:,:,ispin),&
                           bcof(:,0:,:,ispin),ccof(-atoms%llod:,:,:,:,ispin), aveccof,bveccof,cveccof,&
                           results,f_a21,f_b4)
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
                      DEALLOCATE (e1cof,e2cof,aveccof,bveccof)
                      DEALLOCATE (acoflo,bcoflo,cveccof)
                   CALL timestop("cdnval: force_a12/21")
                   ENDIF
                   !--->    end loop over ispin
                ENDDO

                IF (noco%l_mperp) THEN
                   CALL rhomt21(atoms, we,noccbd,acof,bcof, ccof,&
                        mt21,lo21,uloulop21)
                   IF (l_fmpl) THEN
                      CALL rhonmt21(atoms,llpd,sphhar, we,noccbd,sym, acof,bcof,&
                           uunmt21,ddnmt21,udnmt21,dunmt21)
                   ENDIF
                ENDIF
809

810 811 812 813 814 815 816 817 818 819
                DEALLOCATE (acof,bcof,ccof)
                         !
199             CONTINUE
                IF ((banddos%dos .OR. banddos%vacdos .OR. input%cdinf)  ) THEN
                   CALL timestart("cdnval: write_info")
                   !
                   !--->    calculate charge distribution of each state (l-character ...)
                   !--->    and write the information to the files dosinp and vacdos
                   !--->    for dos and bandstructure plots
                   !
820

821 822 823 824 825 826 827 828 829 830 831 832
                   !--dw    parallel writing of vacdos,dosinp....
                   !        write data to direct access file first, write to formated file later by PE 0 only!
                   !--dw    since z is no longer an argument of cdninf sympsi has to be called here!
                   !
                   cartk=matmul(bkpt,cell%bmat)
                   IF (banddos%ndir.GT.0) THEN
                      CALL sympsi(bkpt,lapw%nv(jspin),lapw%k1(:,jspin),lapw%k2(:,jspin),&
                           lapw%k3(:,jspin),sym,dimension,nbands,cell, z,eig,noco, ksym,jsym)
                   END IF
                   !
                   !--dw   now write k-point data to tmp_dos
                   !
833 834 835 836
                   call write_dos(eig_id,ikpt,ispin,qal(:,:,:,ispin),qvac(:,:,ikpt,ispin),qis(:,ikpt,ispin),&
                        qvlay(:,:,:,ikpt,ispin),qstars,ksym,jsym,mcd,qintsl,&
                        qmtsl(:,:),qmtp(:,:),orbcomp)
                
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
                   CALL timestop("cdnval: write_info")
                   !-new_sl
                ENDIF

                !--->  end of loop over PE's
                DEALLOCATE (z)
             ENDIF
             !---> end of k-point loop
enddo
             DEALLOCATE (we,f,g,usdus%us,usdus%dus,usdus%duds,usdus%uds,usdus%ddn)
             !+t3e
#ifdef CPP_MPI
             CALL timestart("cdnval: mpi_col_den")
             DO ispin = jsp_start,jsp_end
                CALL mpi_col_den(&!TODO
                     mpi,sphhar,atoms,oneD,&
                     stars,vacuum,vacuum,&
                     input,&
                     noco,noco,l_fmpl,ispin,llpd,&
                     rhtxy(1,1,1,ispin),rht(1,1,ispin),qpw(1,ispin),&
                     ener(0,1,ispin),sqal(0,1,ispin),results(1,1,ispin),&
                     svac(1,ispin),pvac(1,ispin),uu(0,1,ispin),dd(0,1,ispin),&
                     du(0,1,ispin),uunmt(0,1,1,ispin),ddnmt(0,1,1,ispin),&
                     udnmt(0,1,1,ispin),dunmt(0,1,1,ispin),sqlo(1,1,ispin),&
                     aclo(1,1,ispin),bclo(1,1,ispin),cclo(1,1,1,ispin),&
                     acnmt(0,1,1,1,ispin),bcnmt(0,1,1,1,ispin),&
                     ccnmt(1,1,1,1,ispin),enerlo(1,1,ispin),&
                     orb(0,-lmaxd,1,ispin),orbl(1,-llod,1,ispin),&
                     orblo(1,1,-llod,1,ispin),mt21,lo21,uloulop21,&
                     uunmt21,ddnmt21,udnmt21,dunmt21,&
                     cdom,cdomvz,cdomvxy,n_mmp)
             ENDDO
869 870
             CALL timestop("cdnval: mpi_col_den")
#endif
871 872 873 874
             IF (((jspin.eq.input%jspins).OR.noco%l_mperp) .AND. (banddos%dos.or.banddos%vacdos.or.input%cdinf) ) THEN
                call timestart("cdnval: dos")
                IF (mpi%irank==0) THEN
                   CALL doswrite(&
875
                        eig_id,dimension,kpts,atoms,vacuum,&
876 877 878 879 880 881 882
                        input,banddos,&
                        sliceplot,noco,sym,&
                        cell,&
                        l_mcd,ncored,ncore,e_mcd,&
                        results%ef,nsld,oneD)
                   IF (banddos%dos.AND.(banddos%ndir.EQ.-3))  THEN
                      CALL Ek_write_sl(&
883
                           eig_id,dimension,kpts,atoms,vacuum,&
884 885 886 887 888 889 890
                           nsld,input,jspin,&
                           sym,cell,&
                           nsl,nslat)
                   ENDIF
                ENDIF
                call timestop("cdnval: dos")
             ENDIF
891

892 893 894 895 896
             IF (mpi%irank==0) THEN
                CALL cdnmt(&
                             dimension%jspd,atoms,sphhar,llpd,&
                             noco,l_fmpl,jsp_start,jsp_end,&
                             epar,ello,vr(:,0,:,:),uu,du,dd,uunmt,udnmt,dunmt,ddnmt,&
897
                             usdus,usdus%uloulopn,aclo,bclo,cclo,acnmt,bcnmt,ccnmt,&
898 899 900 901
                             orb,orbl,orblo,mt21,lo21,uloulopn21,uloulop21,&
                             uunmt21,ddnmt21,udnmt21,dunmt21,&
                             chmom,clmom,&
                             qa21,rho)
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
                DO ispin = jsp_start,jsp_end
                   WRITE (6,*) 'Energy Parameters for spin:',ispin
                   IF (.not.sliceplot%slice) THEN
                      CALL mix_enpara(&
                                                ispin,atoms,vacuum,obsolete,input,&
                                                enpara,&
                                                vr(:,0,:,:),vz,pvac(1,ispin),&
                                                svac(1,ispin),&
                                                ener(0,1,ispin),sqal(0,1,ispin),&
                                                enerlo(1,1,ispin),&
                                                sqlo(1,1,ispin))
                      CALL w_enpara(&
                                              atoms,jspin,input%film,&
                                              enpara,16)
                   ENDIF
918

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
                   !--->      check continuity of charge density
                   IF (input%cdinf) THEN
                      call timestart("cdnval: cdninf-stuff")

                      WRITE (6,FMT=8210) ispin
8210                  FORMAT (/,5x,'check continuity of cdn for spin=',i2)
                      IF (input%film .AND. .NOT.oneD%odi%d1) THEN
                         !--->             vacuum boundaries
                         npd = min(dimension%nspd,25)
                         CALL points(xp,npd)
                         DO ivac = 1,vacuum%nvac
                            sign = 3. - 2.*ivac
                            DO j = 1,npd
                               xp(3,j) = sign*cell%z1/cell%amat(3,3)
                            ENDDO
                            CALL checkdop(&
                                 xp,npd,0,0,ivac,1,ispin,.true.,dimension,atoms,&
                                 sphhar,stars,sym,&
                                 vacuum,cell,oneD,&
                                 qpw,rho,rhtxy,rht)
                         ENDDO
                      ELSE IF (oneD%odi%d1) THEN
                         !-odim
                         npd = min(dimension%nspd,25)
                         CALL cylpts(xp,npd,cell%z1)
                         CALL checkdop(&
                              xp,npd,0,0,ivac,1,ispin,.true.,dimension,atoms,&
                              sphhar,stars,sym,&
                              vacuum,cell,oneD,&
                              qpw,rho,rhtxy,rht)
                         !+odim
                      END IF
                               !--->          m.t. boundaries
                      nat = 1
                      DO n = 1,atoms%ntype
                         CALL sphpts(xp,dimension%nspd,atoms%rmt(n),atoms%pos(1,atoms%nat))
                         CALL checkdop(&
                              xp,dimension%nspd,n,nat,0,-1,ispin,.true.,&
                              dimension,atoms,sphhar,stars,sym,&
                              vacuum,cell,oneD,&
                              qpw,rho,rhtxy,rht)
                         nat = nat + atoms%neq(n)
                      ENDDO
                      call timestop("cdnval: cdninf-stuff")
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
                   ENDIF
                   !+for
                   !--->      forces of equ. A8 of Yu et al.
                   IF ((input%l_f)) THEN
                      call timestart("cdnval: force_a8")
                      CALL force_a8(atoms,sphhar, ispin, vr,rho,&
                           f_a12,f_a21,f_b4,f_b8,results%force)
                      call timestop("cdnval: force_a8")
                   ENDIF
                            !-for
                ENDDO ! end of loop ispin = jsp_start,jsp_end
             ENDIF ! end of (mpi%irank==0)
             !+t3e
             !Note: no deallocation anymore, we rely on Fortran08 :-)

             IF ((jsp_end.EQ.input%jspins)) THEN
                IF ((banddos%dos.OR.banddos%vacdos).AND.(banddos%ndir/=-2))  CALL juDFT_end("DOS OK")
981

982 983 984 985
                IF (vacuum%nstm.EQ.3)  CALL juDFT_end("VACWAVE OK")
             ENDIF
           END SUBROUTINE cdnval
         END MODULE m_cdnval