inped.F90 27 KB
Newer Older
1
      MODULE m_inped
2
      USE m_juDFT
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
!     *******************************************************
!     read in input parameters
!     modified to include also empty spheres (z=1.e-10)
!     r.p. aug. 1990
!     now includes readin of k-points          * shz Apr.96 *
!     modified to include all exchange correlation potentials
!     and relativistic correction to vxc
!     r.pentcheva dec. 1995
!
!ta+
!     igrd=0: no gradient correction.
!     igrd=1: pw-91. icorr=6.

!     ndvgrd: number of points used to calculate the numerical
!c           derivatives. 6 is biggest and presumably the best.
!     ntimec: if ntime ge ntimec, iteration stops with code=2.
!     distc : distance of convergence in charge criterion.
!     tendfc: read-in in mhtree.
!c            if tendf (total energy diff. in mili-hartree from former
!c            tenrg) becomes less than tendfc, ntime=ntime+1.
!     chng  : charge-negative.
!c             if(ro.lt.chng) ineg=1 and stop.
!ta-
!     *******************************************************
!
      CONTAINS
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        SUBROUTINE inped( &
             & atoms,obsolete,vacuum,&
             & input,banddos,xcpot,sym,&
             & cell,sliceplot,noco,&
             & stars,oneD,jij,hybrid,kpts)
          USE m_rwinp
          USE m_chkmt
          USE m_inpnoco
          USE m_constants
          USE m_types
          USE m_inv3
          USE m_icorrkeys
          USE m_setlomap
          IMPLICIT NONE
          !     ..
          !     .. Scalar Arguments ..
          TYPE(t_atoms),     INTENT(INOUT)::atoms
          TYPE(t_obsolete),  INTENT(INOUT)::obsolete
          TYPE(t_vacuum),    INTENT(INOUT)::vacuum
          TYPE(t_input),     INTENT(INOUT)::input
          TYPE(t_banddos),   INTENT(INOUT)::banddos
          TYPE(t_xcpot),     INTENT(INOUT)::xcpot
          TYPE(t_sym),       INTENT(INOUT)::sym
          TYPE(t_cell),      INTENT(INOUT)::cell
          TYPE(t_sliceplot), INTENT(INOUT)::sliceplot
          TYPE(t_noco),      INTENT(INOUT)::noco
          TYPE(t_stars),     INTENT(INOUT)::stars
          TYPE(t_oneD),      INTENT(INOUT)::oneD
          TYPE(t_jij),       INTENT(INOUT)::jij
          TYPE(t_hybrid),    INTENT(INOUT)::hybrid
          TYPE(t_kpts),      INTENT(INOUT)::kpts

          !     .. Local Scalars ..
          REAL dr,dtild,r,kmax1,dvac1,zp,scale
          INTEGER i,iz,j,n,n1,na,ntst,nn,ios
          LOGICAL l_gga,l_test,l_vca
          CHARACTER(len=2)  :: str_up,str_do
          CHARACTER(len=4)  :: namex
          CHARACTER(len=12) :: relcor
          !     ..
          !     .. Local Arrays ..
          CHARACTER(3) noel(atoms%ntypd)
          CHARACTER(8) llr(0:1)
          CHARACTER(11) pmod(0:1)
          INTEGER  jri1(atoms%ntypd),lmax1(atoms%ntypd)
          REAL    rmt1(atoms%ntypd),dx1(atoms%ntypd)
          REAL    a1(3),a2(3),a3(3)

          !     ..
          !     .. Data statements ..
          DATA llr(0)/'absolute'/,llr(1)/'floating'/
          DATA pmod(0)/'not printed'/,pmod(1)/'printed    '/
          !

          a1(:) = 0
          a2(:) = 0
          a3(:) = 0

          na = 0

          CALL rw_inp('r',atoms,obsolete,vacuum,input,stars,sliceplot,banddos,&
               cell,sym,xcpot,noco,jij,oneD,hybrid,kpts, noel,namex,relcor,a1,a2,a3,scale)

          input%l_core_confpot=.TRUE. !this is the former CPP_CORE switch!
          input%l_useapw=.FALSE.      !this is the former CPP_APW switch!
94
          atoms%lapw_l(:) = -1
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
          !---> pk non-collinear
          !---> read the angle information from nocoinf
          noco%qss(:) = 0.0
          IF (noco%l_noco) THEN
             CALL inpnoco(atoms,input,vacuum,jij,noco)
          ELSE
             noco%l_ss = .FALSE.
             noco%l_mperp = .FALSE.
             noco%l_constr = .FALSE.
             noco%mix_b = 0.0
             jij%thetaJ = 0.0
             jij%nmagn=1
             noco%l_relax(:) = .FALSE.
             jij%l_magn(:) = .FALSE.
             noco%alph(:) = 0.0
             noco%beta(:) = 0.0
             noco%b_con(:,:) = 0.0
          ENDIF
          !---> pk non-collinear

8010      FORMAT (/,/,4x,10a8,/,/)
          !--->    the menu for namgrp can be found in subroutine spgset
          WRITE (6,FMT=8030) cell%latnam,sym%namgrp,sym%invs,sym%zrfs,sym%invs2,input%jspins
          WRITE (16,FMT=8030) cell%latnam,sym%namgrp,sym%invs,sym%zrfs,sym%invs2,input%jspins
8030      FORMAT (' lattice=',a3,/,' name of space group=',a4,/,' inversion symmetry=   ',l1&
               ,/,' z-reflection symmetry=',l1,/,' vacuum-inversion symm=',l1,/,' jspins=',i1)

          IF (input%film.AND.(sym%invs.OR.sym%zrfs)) THEN
             IF ( (sym%invs.AND.sym%zrfs).NEQV.sym%invs2 ) THEN
                WRITE (6,*) 'Settings of inversion and z-reflection symmetry='
                WRITE (6,*) 'are inconsistent with vacuum-inversion symmetry!'
                CALL juDFT_error("invs, zrfs and invs2 do not match!",calledby ="inped")
             ENDIF
          ENDIF
129

130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
          IF (ALL(a1.EQ.0.)) THEN
             WRITE (6,'(a4,3f10.5,a8,a4)') 'a1 =',a1(:),' latnam=',cell%latnam
             CALL juDFT_error("latnam",calledby ="inped")
          ENDIF
          dtild=a3(3)
          IF (scale.EQ.0.) scale = 1.
          vacuum%dvac = scale*vacuum%dvac
          dtild = scale*dtild
          !+odim
          IF (.NOT.oneD%odd%d1) THEN
             IF ((dtild-vacuum%dvac.LT.0.0).AND.input%film) THEN
                WRITE(6,'(2(a7,f10.5))') 'dtild:',dtild,' dvac:',vacuum%dvac
                CALL juDFT_error("dtild < dvac",calledby="inped")
             ENDIF
          ELSE
             IF (vacuum%dvac.GE.SQRT(a1(1)**2 + a1(2)**2).OR. vacuum%dvac.GE.SQRT(a2(1)**2 + a2(2)**2)) THEN
                CALL juDFT_error("one-dim: dvac >= amat(1,1) or amat(2,2)" ,calledby ="inped")
             END IF
          ENDIF
          !-odim
          vacuum%nvac = 2
          IF (sym%zrfs .OR. sym%invs) vacuum%nvac = 1
          IF (oneD%odd%d1) vacuum%nvac = 1
          cell%z1 = vacuum%dvac/2
          vacuum%nmz = vacuum%nmzd
          vacuum%delz = 25.0/vacuum%nmz
          IF (oneD%odd%d1) vacuum%delz = 20.0/vacuum%nmz
          IF (vacuum%nmz>vacuum%nmzd)  CALL juDFT_error("nmzd",calledby ="inped")
          vacuum%nmzxy = vacuum%nmzxyd
          IF (vacuum%nmzxy>vacuum%nmzxyd)  CALL juDFT_error("nmzxyd",calledby ="inped")
          a1(:) = scale*a1(:)
          a2(:) = scale*a2(:)
          a3(:) = scale*a3(:)
          WRITE (6,FMT=8050) scale
          WRITE (16,FMT=8050) scale
8050      FORMAT (' unit cell scaled by    ',f10.6)
          WRITE (6,FMT=8060) cell%z1
          WRITE (16,FMT=8060) cell%z1
8060      FORMAT (' the vacuum begins at z=',f10.6)
          WRITE (6,FMT=8070) dtild/2.
          WRITE (16,FMT=8070) dtild/2.
8070      FORMAT (' dtilda/2=              ',f10.6)
          !     set up bravais matrices of real and reciprocal lattices
          cell%amat(:,1) = a1(:)
          cell%amat(:,2) = a2(:)
          cell%amat(:,3) = a3(:)
          CALL inv3(cell%amat,cell%bmat,cell%omtil)
          cell%bmat(:,:) = tpi_const*cell%bmat(:,:)
          cell%bbmat=MATMUL(cell%bmat,TRANSPOSE(cell%bmat))
          cell%omtil = ABS(cell%omtil)

          IF (input%film .AND. .NOT.oneD%odd%d1) THEN
             cell%vol = cell%omtil/cell%amat(3,3)*vacuum%dvac
             cell%area = cell%omtil/cell%amat(3,3)
             !-odim
          ELSEIF (oneD%odd%d1) THEN
             cell%area = tpi_const*cell%amat(3,3)
             cell%vol = pi_const*(vacuum%dvac**2)*cell%amat(3,3)/4.
             !+odim
          ELSE
             cell%vol = cell%omtil
             cell%area = cell%amat(1,1)*cell%amat(2,2)-cell%amat(1,2)*cell%amat(2,1)
             IF (cell%area.LT.1.0e-7) THEN
                IF (cell%latnam.EQ.'any') THEN
                   cell%area = 1.
                ELSE
                   CALL juDFT_error("area = 0",calledby ="inped")
                ENDIF
             ENDIF
          ENDIF
201

202

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
          WRITE (6,FMT=8080)
8080      FORMAT (/,/,1x,'bravais matrices of real and reciprocal lattices', /)
          DO i = 1,3
             WRITE (6,FMT=8090) (cell%amat(i,j),j=1,3), (cell%bmat(i,j),j=1,3)
          ENDDO
8090      FORMAT (3x,3f10.6,3x,3f10.6)
          WRITE (6,FMT=8100) cell%omtil,cell%vol,cell%area
8100      FORMAT (/,4x,'the volume of the unit cell omega-tilda=',f12.6,/, 10x,'the volume of the unit cell omega=',&
               f12.6,/,2x, 'the area of the two-dimensional unit cell=',f12.6)
          WRITE (6,FMT=8120) namex,relcor
8120      FORMAT (1x,'exchange-correlation: ',a4,2x,a12,1x,'correction')
          xcpot%icorr = -99

          !     l91: lsd(igrd=0) with dsprs=1.d-19 in pw91.
          IF (namex.EQ.'exx ') xcpot%icorr = icorr_exx
          IF (namex.EQ.'hf  ') xcpot%icorr = icorr_hf
          IF (namex.EQ.'l91 ') xcpot%icorr = -1
          IF (namex.EQ.'x-a ') xcpot%icorr =  0
          IF (namex.EQ.'wign') xcpot%icorr =  1
          IF (namex.EQ.'mjw')  xcpot%icorr =  2
          IF (namex.EQ.'hl')   xcpot%icorr =  3
          IF (namex.EQ.'bh')   xcpot%icorr =  3
          IF (namex.EQ.'vwn')  xcpot%icorr =  4
          IF (namex.EQ.'pz')   xcpot%icorr =  5
          IF (namex.EQ.'pw91') xcpot%icorr =  6
          !     pbe: easy_pbe [Phys.Rev.Lett. 77, 3865 (1996)]
          !     rpbe: rev_pbe [Phys.Rev.Lett. 80, 890 (1998)]
          !     Rpbe: Rev_pbe [Phys.Rev.B 59, 7413 (1999)]
          IF (namex.EQ.'pbe')  xcpot%icorr =  7
          IF (namex.EQ.'rpbe') xcpot%icorr =  8
          IF (namex.EQ.'Rpbe') xcpot%icorr =  9
          IF (namex.EQ.'wc')   xcpot%icorr = 10
          !     wc: Wu & Cohen, [Phys.Rev.B 73, 235116 (2006)]
          IF (namex.EQ.'PBEs') xcpot%icorr = 11
          !     PBEs: PBE for solids ( arXiv:0711.0156v2 )
          IF (namex.EQ.'pbe0') xcpot%icorr = icorr_pbe0
          !     hse: Heyd, Scuseria, Ernzerhof, JChemPhys 118, 8207 (2003)
          IF (namex.EQ.'hse ') xcpot%icorr = icorr_hse
          IF (namex.EQ.'vhse') xcpot%icorr = icorr_vhse
          ! local part of HSE
          IF (namex.EQ.'lhse') xcpot%icorr = icorr_hseloc

          IF (xcpot%icorr == -99) THEN
             WRITE(6,*) 'Name of XC-potential not recognized. Use one of:'
             WRITE(6,*) 'x-a,wign,mjw,hl,bh,vwn,pz,l91,pw91,pbe,rpbe,Rpbe,wc,PBEs,pbe0,hf,hse,lhse'
             CALL juDFT_error("Wrong name of XC-potential!",calledby="inped")
          ENDIF
          xcpot%igrd = 0
          IF (xcpot%icorr.GE.6) xcpot%igrd = 1
          input%krla = 0
          IF (relcor.EQ.'relativistic') THEN
             input%krla = 1
             IF (xcpot%igrd.EQ.1) THEN
                WRITE(6,'(18a,a4)') 'Use XC-potential: ',namex
                WRITE(6,*) 'only without relativistic corrections !'
                CALL juDFT_error ("relativistic corrections + GGA not implemented" ,calledby ="inped")
             ENDIF
          ENDIF
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
          IF (xcpot%icorr.EQ.0) WRITE(6,*) 'WARNING: using X-alpha for XC!'
          IF (xcpot%icorr.EQ.1) WRITE(6,*) 'INFO   : using Wigner  for XC!'
          IF ((xcpot%icorr.EQ.2).AND.(namex.NE.'mjw')) WRITE(6,*) 'CAUTION: using MJW(BH) for XC!'

          !+guta
          IF ((xcpot%icorr.EQ.-1).OR.(xcpot%icorr.GE.6)) THEN


             obsolete%ndvgrd = MAX(obsolete%ndvgrd,3)
             IF ((xcpot%igrd.NE.0).AND.(xcpot%igrd.NE.1)) THEN
                WRITE (6,*) 'selecting l91 or pw91 as XC-Potental you should'
                WRITE (6,*) ' have 2 lines like this in your inp-file:'
                WRITE (6,*) 'igrd=1,lwb=F,ndvgrd=4,idsprs=0,chng= 1.000E-16'
                WRITE (6,*) 'iggachk=1,idsprs0=1,idsprsl=1,idsprsi=1,idsprsv=1'
                CALL juDFT_error("igrd =/= 0 or 1",calledby ="inped")
             ENDIF

             !        iggachk: removed; triggered via idsprs (see below)
             !                 idsprs-0(mt,l=0),-l(nmt),-i(interstitial),-v(vacuum)
             !                 enable to make gga partially enactive if corresponding
             !                 idsprs set to be zero.


             WRITE (16,FMT=8122) xcpot%igrd,obsolete%lwb,obsolete%ndvgrd,0,obsolete%chng
             WRITE (16,'(/)')
             WRITE (6,FMT=8122) xcpot%igrd,obsolete%lwb,obsolete%ndvgrd,0,obsolete%chng
             WRITE (6,'(/)')
8122         FORMAT ('igrd=',i1,',lwb=',l1,',ndvgrd=',i1,',idsprs=',i1, ',chng=',d10.3)

          ENDIF
          !-guta
          !     specification of atoms
          IF (atoms%ntype.GT.atoms%ntypd) THEN
             WRITE (6,FMT='(a)') 'ntype > ntypd !!!'
             WRITE (16,FMT='(a)') 'ntype > ntypd !!!'
             CALL juDFT_error("ntypd",calledby ="inped")
          END IF
          cell%volint = cell%vol

          DO  n = 1,atoms%ntype
             IF (TRIM(ADJUSTL(noel(n))).NE.TRIM(ADJUSTL(namat_const(atoms%nz(n))))) THEN
                CALL trans(namat_const(n),str_up,str_do)
                IF ( (TRIM(ADJUSTL(noel(n))).NE.TRIM(ADJUSTL(str_up))) .OR.&
                     &        (TRIM(ADJUSTL(noel(n))).NE.TRIM(ADJUSTL(str_do))) ) THEN
                   WRITE(16,*) 'Element ',noel(n),' does not match Z = ',atoms%nz(n)
                   WRITE( 6,*) 'Element ',noel(n),' does not match Z = ',atoms%nz(n)
                   CALL juDFT_warn ("Element name and nuclear number do not match!" ,calledby ="inped")
                ENDIF
             ENDIF
             WRITE (6,8140) noel(n),atoms%nz(n),atoms%ncst(n),atoms%lmax(n),atoms%jri(n),atoms%rmt(n),atoms%dx(n)
             WRITE (16,8140) noel(n),atoms%nz(n),atoms%ncst(n),atoms%lmax(n),atoms%jri(n),atoms%rmt(n),atoms%dx(n)
8140         FORMAT (a3,i3,3i5,2f10.6)
             IF (atoms%jri(n)>atoms%jmtd)  CALL juDFT_error("jmtd",calledby ="inped")
             atoms%zatom(n) = atoms%nz(n)
             IF (atoms%nz(n).EQ.0) atoms%zatom(n) = 1.e-10
             !
             ! check for virtual crystal approximation
             !
             l_vca = .FALSE.
             INQUIRE (file="vca.in", exist=l_vca)
             IF (l_vca) THEN
                OPEN (17,file='vca.in',form='formatted')
                DO nn = 1, n
                   READ (17,*,IOSTAT=ios) ntst,zp
                   IF (ios /= 0) EXIT
                   IF (ntst == n) THEN
                      atoms%zatom(n) = atoms%zatom(n) + zp
                   ENDIF
                ENDDO
                CLOSE (17)
             ENDIF
             !
             r = atoms%rmt(n)*EXP(atoms%dx(n)* (1-atoms%jri(n)))
             dr = EXP(atoms%dx(n))
             DO i = 1,atoms%jri(n)
                atoms%rmsh(i,n) = r
                r = r*dr
             ENDDO
             atoms%volmts(n) = fpi_const/3.*atoms%rmt(n)**3
             cell%volint = cell%volint - atoms%volmts(n)*atoms%neq(n)

             DO n1 = 1,atoms%neq(n)
                na = na + 1
                IF (na>atoms%natd)  CALL juDFT_error("natd too small",calledby ="inped")
                !
                !--->    the in-plane coordinates refer to the lattice vectors a1 and a2,
                !--->    i.e. they are given in internal units scaled by 'scpos'
                !
                WRITE (6,FMT=8170) (atoms%taual(i,na),i=1,3),1.0
                WRITE (16,FMT=8170) (atoms%taual(i,na),i=1,3),1.0
8170            FORMAT (4f10.6)
                !
                !--->   for films, the z-coordinates are given in absolute values:
                !
                IF (input%film) atoms%taual(3,na) = scale*atoms%taual(3,na)/a3(3)
                !
                ! Transform intern coordinates to cartesian:
                !
                !CALL cotra0(atoms%taual(1,na),atoms%pos(1,na),cell%amat)
                atoms%pos(:,na)=MATMUL(cell%amat,atoms%taual(:,na))
             ENDDO  ! l.o. equivalent atoms (n1)
          ENDDO     ! loop over atom-types (n)

          IF (input%film .AND. .NOT.oneD%odd%d1) THEN
             !Check if setup is roughly centered
             IF (ABS(MAXVAL(atoms%pos(3,:))+MINVAL(atoms%pos(3,:)))>2.0) &
                  CALL juDFT_warn("Film setup not centered", hint= "The z = 0 plane is the center of the film",calledby="inped")
          ENDIF

          !
          !  check muffin tin radii
          !
          l_gga = .FALSE.
          IF (xcpot%icorr.GE.6) l_gga = .TRUE.
          l_test = .TRUE.                  ! only checking, dont use new parameters
          CALL chkmt(atoms,input,vacuum,cell,oneD, l_gga,noel,l_test, kmax1,dtild,dvac1,lmax1,jri1,rmt1,dx1)

          WRITE (6,FMT=8180) cell%volint
8180      FORMAT (13x,' volume of interstitial region=',f12.6)
          atoms%nat = na
          !--->    evaluate cartesian coordinates of positions
          WRITE (6,FMT=8190) atoms%ntype,atoms%nat
8190      FORMAT (/,/,' number of atom types=',i3,/, ' total number of atoms=',i4,/,/,t3,'no.',t10,'type',&
               &       t21,'int.-coord.',t49,'cart.coord.',t76,'rmt',t84, 'jri',t92,'dx',t98,'lmax',/)
          na = 0
          DO  n = 1,atoms%ntype
             DO n1 = 1,atoms%neq(n)
                na = na + 1
                iz = NINT(atoms%zatom(n))
                WRITE (6,FMT=8200) na,namat_const(iz),n, (atoms%taual(i,na),i=1,3), (atoms%pos(i,na),i=1,3),&
                     atoms%rmt(n),atoms%jri(n), atoms%dx(n),atoms%lmax(n)
8200            FORMAT (1x,i3,4x,a2,t12,i3,2x,3f6.2,3x,3f10.6,3x, f10.6,i6,3x,f6.4,3x,i2)
             ENDDO
          ENDDO
          !
          !--->    input various parameters for eigenvalue parts: see intro. to
          !--->    eigen for the various values:
          !--->    lpr=0,form66=f,l_f=f,eonly=f   is an example.
          IF (ALL(obsolete%lpr.NE.(/0,1/))) CALL judft_error("Wrong choice of lpr",calledby="inped")

          !
          !--->    lnonsph(n): max. l for H -setup in each atom type;
          !
          IF (input%l_useapw) THEN

             DO n = 1,atoms%ntype
                !+APW
                atoms%lapw_l(n) = (atoms%lnonsph(n) - MOD(atoms%lnonsph(n),10) )/10
                atoms%lnonsph(n) = MOD(atoms%lnonsph(n),10)
                !-APW
                IF (atoms%lnonsph(n).EQ.0) atoms%lnonsph(n) = atoms%lmax(n)
                atoms%lnonsph(n) = MIN(atoms%lnonsph(n),atoms%lmax(n))
             ENDDO
          ENDIF

          !--->    nwd = number of energy windows; lepr = 0 (1) for energy
          !--->    parameters given on absolute (floating) scale
          WRITE (16,FMT=*) 'nwd=',1,'lepr=',obsolete%lepr
          IF (ALL(obsolete%lepr .NE. (/0,1/))) CALL judft_error("Wrong choice of lepr",calledby="inped")
          WRITE (6,FMT=8320) pmod(obsolete%lpr),obsolete%form66,input%l_f,input%eonly,1,llr(obsolete%lepr)
          WRITE (16,FMT=8320) pmod(obsolete%lpr),obsolete%form66,input%l_f,input%eonly,1,llr(obsolete%lepr)
          WRITE (6,FMT=8330) atoms%ntype, (atoms%lnonsph(n),n=1,atoms%ntype)
          WRITE (16,FMT=8330) atoms%ntype, (atoms%lnonsph(n),n=1,atoms%ntype)
8320      FORMAT (1x,/,/,/,' input of parameters for eigenvalues:',/,t5,&
               &       'eigenvectors are ',a11,/,t5,&
               &       'formatted eigenvector file = ',l1,/,t5,&
               &       'calculate Pulay-forces = ',l1,/,t5,'eigenvalues ',&
               &       'only = ',l1,/,t5,'number of energy windows =',i2,/,t5,&
               &       'energy parameter mode: ',a8,/,/)
8330      FORMAT (t5,'max. l value in wavefunctions for atom type(s) 1 to',&
               &       i3,':',16i3,/, (t59,16i3,/))
          !
          !--->    input information  for each window
          !
          IF (obsolete%lepr.EQ.1) THEN
             WRITE ( 6,'(//,''  Floating energy parameters: relative'',                                    '' window(s):'')')
             WRITE (16,'(//,''  Floating energy parameters: relative'',                                    '' window(s):'')')
          ENDIF
          !--->    energy window

          !--->    for floating energy parameters, the window will be given relative
          !--->    to the highest/lowest energy parameters. a sanity check is made here
          IF (obsolete%lepr.EQ.1) THEN
             input%ellow = MIN( input%ellow , -0.2 )
             input%elup  = MAX( input%elup  ,  0.15 )
          ENDIF
          !
          WRITE (6,FMT=8350) input%ellow,input%elup,input%zelec
          WRITE (16,FMT=8350) input%ellow,input%elup,input%zelec
8350      FORMAT (1x,/,/,' energy window from',f8.3,' to', f8.3,' hartrees; nr. of electrons=',f6.1)
          !--->    input of wavefunction cutoffs: input is a scaled quantity
          !--->    related to the absolute value by rscale (e.g. a muffin-tin
          !--->    radius)
          WRITE (6,FMT=8290) input%rkmax
          WRITE (16,FMT=8290) input%rkmax
8290      FORMAT (1x,/,' wavefunction cutoff =',f10.5)
          !
          IF ((input%tria) .AND. (input%gauss)) THEN
             WRITE (6,FMT='(a)') 'choose: either gaussian or triangular!'
             WRITE (16,FMT='(a)') 'choose: either gaussian or triangular!'
             CALL juDFT_error("integration method",calledby ="inped")
          END IF
          WRITE (6,FMT=8230) input%gauss,input%delgau
          WRITE (6,FMT=8240) input%zelec,input%tkb
8230      FORMAT (/,10x,'gauss-integration is used  =',3x,l1,/,10x, 'gaussian half width        =',f10.5)
8240      FORMAT (/,10x,'number of valence electrons=',f10.5,/,10x, 'temperature broadening     =',f10.5)
          WRITE (6,FMT=*) 'itmax=',input%itmax,' broy_sv=',input%maxiter,' imix=',input%imix
          WRITE (6,FMT=*) 'alpha=',input%alpha,' spinf=',input%spinf
          WRITE (16,FMT=*) 'itmax=',input%itmax,' broy_sv=',input%maxiter,' imix=',input%imix
          WRITE (16,FMT=*) 'alpha=',input%alpha,' spinf=',input%spinf

          IF ((.NOT.sym%invs).AND.input%secvar) THEN
             WRITE(6,*)'The second variation is not implemented in the'
             WRITE(6,*)'complex version of the program.'
             CALL juDFT_error ("second variation not implemented in complex version" ,calledby ="inped")
          ENDIF
478

479 480 481 482 483
          IF ( (input%jspins.EQ.1).AND.(input%kcrel.EQ.1) )  THEN
             WRITE (6,*) 'WARNING : in a non-spinpolarized calculation the'
             WRITE (6,*) 'coupled-channel relativistic coreprogram (kcrel=1)'
             WRITE (6,*) 'makes no sense; **** setting kcrel = 0 ****'
             input%kcrel = 0
484
          ENDIF
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

          WRITE (6,'(a7,l1)') 'swsp = ',input%swsp
          WRITE (6,'(15f6.2)') (atoms%bmu(i),i=1,atoms%ntype)
          IF (vacuum%layers>vacuum%layerd)  CALL juDFT_error("too many layers",calledby ="inped")
          IF (sliceplot%slice) THEN
             input%cdinf = .FALSE.
             WRITE (6,FMT=8390) sliceplot%kk,sliceplot%e1s,sliceplot%e2s
             WRITE (16,FMT=8390) sliceplot%kk,sliceplot%e1s,sliceplot%e2s
          END IF
8390      FORMAT (' slice: k=',i3,' e1s=',f10.6,' e2s=',f10.6)
          !
          ! Check the LO stuff:
          !
          DO n=1,atoms%ntype
             IF (atoms%nlo(n).GE.1) THEN
                IF (input%secvar)          CALL juDFT_error ("LO + sevcar not implemented",calledby ="inped")
                IF (input%isec1<input%itmax)  CALL juDFT_error("LO + Wu not implemented" ,calledby ="inped")
                IF (atoms%nlo(n).GT.atoms%nlod) THEN
                   WRITE (6,*) 'nlo(n) =',atoms%nlo(n),' > nlod =',atoms%nlod
                   CALL juDFT_error("nlo(n)>nlod",calledby ="inped")
                ENDIF
                DO j=1,atoms%nlo(n)
                   IF (.NOT.input%l_useapw) THEN
                      IF (atoms%llo(j,n).LT.0) THEN ! CALL juDFT_error("llo<0 ; compile with DCPP_APW!",calledby="inped")
                         WRITE(6,'(A)') 'Info: l_useapw not set.'
                         WRITE(6,'(A,I2,A,I2,A)') '      LO #',j,' at atom type',n, ' is an e-derivative.'
                      ENDIF
                   ENDIF
                   IF ( (atoms%llo(j,n).GT.atoms%llod).OR.(MOD(-atoms%llod,10)-1).GT.atoms%llod ) THEN
                      WRITE (6,*) 'llo(j,n) =',atoms%llo(j,n),' > llod =',atoms%llod
                      CALL juDFT_error("llo(j,n)>llod",calledby ="inped")
                   ENDIF
                ENDDO
                CALL setlomap(n, input%l_useapw,atoms)
                WRITE (6,*) 'atoms%lapw_l(n) = ',atoms%lapw_l(n)
             ENDIF
521
          ENDDO
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
          !
          ! Check for LDA+U:
          !
          atoms%n_u = 0
          DO  n = 1,atoms%ntype
             IF (atoms%lda_u(n)%l.GE.0)  THEN
                atoms%n_u = atoms%n_u + 1
                IF (atoms%nlo(n).GE.1) THEN
                   DO j = 1, atoms%nlo(n)
                      IF ((ABS(atoms%llo(j,n)).EQ.atoms%lda_u(n)%l) .AND. (.NOT.atoms%l_dulo(j,n)) ) &
                           WRITE (*,*) 'LO and LDA+U for same l not implemented'
                   ENDDO
                ENDIF
             ENDIF
          ENDDO
          IF (atoms%n_u.GT.0) THEN
             IF (input%secvar)          CALL juDFT_error ("LDA+U and sevcar not implemented",calledby ="inped")
             IF (input%isec1<input%itmax)  CALL juDFT_error("LDA+U and Wu not implemented",calledby ="inped")
             IF (noco%l_mperp)         CALL juDFT_error ("LDA+U and l_mperp not implemented",calledby ="inped")
          ENDIF
          !
          !     check all the dos-related switches!
          !
          IF (banddos%ndir.LT.0.AND..NOT.banddos%dos) THEN
             CALL juDFT_error('STOP banddos: the inbuild dos-program  <0 can only be used if dos = true',calledby ="inped")
          ENDIF

          IF (banddos%ndir.LT.0.AND.banddos%dos) THEN
             IF (banddos%e1_dos-banddos%e2_dos.LT.1e-3) THEN
                CALL juDFT_error("STOP banddos: no valid energy window for internal dos-program",calledby ="inped")
             ENDIF
             IF (banddos%sig_dos.LT.0) THEN
                CALL juDFT_error ("STOP DOS: no valid broadening (sig_dos) for internal dos-PROGRAM",calledby ="inped")
             ENDIF
          ENDIF

          IF (banddos%vacdos) THEN
             IF (.NOT. banddos%dos) THEN
                CALL juDFT_error ("STOP DOS: only set vacdos = .true. if dos = .true." ,calledby ="inped")
             ENDIF
             IF (.NOT.vacuum%starcoeff.AND.(vacuum%nstars.NE.1))THEN
                CALL juDFT_error("STOP banddos: if stars = f set vacuum=1" ,calledby ="inped")
             ENDIF
             IF (vacuum%layers.LT.1) THEN
                CALL juDFT_error("STOP DOS: specify layers if vacdos = true" ,calledby ="inped")
             ENDIF
             DO i=1,vacuum%layers
                IF (vacuum%izlay(i,1).LT.1) THEN
                   CALL juDFT_error("STOP DOS: all layers must be at z>0" ,calledby ="inped")

                ENDIF
             ENDDO
          ENDIF

          RETURN
        END SUBROUTINE inped
578
!--------------------------------------------------------------
579
      SUBROUTINE trans(string, str_up,str_do)
580 581 582 583 584 585 586 587 588 589

      IMPLICIT NONE
      CHARACTER(len=2), INTENT(IN)  :: string
      CHARACTER(len=2), INTENT(OUT) :: str_up,str_do

      INTEGER offs,i,n
      CHARACTER(len=2) :: str_in
      CHARACTER(len=1) :: st(2)

      str_up='  ' ; str_do='  ' ; st(:)=' '
590 591 592
      offs = IACHAR('A') - IACHAR('a')
      str_in = TRIM(ADJUSTL(string))
      n = LEN_TRIM(str_in)
593 594
      st = (/(str_in(i:i),i=1,n)/)
      DO i=1,n
595 596
        IF (IACHAR(st(i)) > IACHAR('Z')) THEN ! lowercase
          str_up(i:i) = CHAR( IACHAR(st(i)) + offs)
597 598 599 600 601
        ELSE
          str_up(i:i) = st(i)
        ENDIF
      ENDDO
      DO i=1,n
602
        str_do(i:i) = CHAR( IACHAR(str_up(i:i)) - offs)
603 604 605 606
      ENDDO
      END SUBROUTINE trans

      END MODULE