cdngen.F90 21.7 KB
Newer Older
1 2 3 4 5
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
      MODULE m_cdngen
      use m_juDFT
      CONTAINS
      SUBROUTINE cdngen(eig_id, mpi,input, banddos,sliceplot,vacuum,&
           dimension,kpts, atoms,sphhar,stars,sym,obsolete,&
           enpara, cell, noco,jij, results, oneD)
!
!     *****************************************************
!     Charge density generator
!         calls cdnval to generate the valence charge and the
!         core routines for the core contribution
!     *****************************************************
!
      USE m_constants, ONLY : pi_const,sfp_const
      USE m_umix
      USE m_prpqfftmap
      USE m_cdnval
      USE m_cdn_io
      USE m_pot_io
      USE m_wrtdop
      USE m_cdntot
      USE m_cdnovlp
      USE m_qfix
      USE m_rwnoco
      use m_cored
      use m_coredr
      use m_m_perp
      USE m_types
      USE m_xmlOutput
35
#ifdef CPP_MPI
36 37
      USE m_mpi_bc_pot
      USE m_mpi_bc_coreden
38
#endif
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
      IMPLICIT NONE
      TYPE(t_results),INTENT(INOUT):: results
      TYPE(t_mpi),INTENT(IN)       :: mpi
      TYPE(t_dimension),INTENT(IN) :: dimension
      TYPE(t_oneD),INTENT(IN)      :: oneD
      TYPE(t_enpara),INTENT(INOUT) :: enpara
      TYPE(t_obsolete),INTENT(IN)  :: obsolete
      TYPE(t_banddos),INTENT(IN)   :: banddos
      TYPE(t_sliceplot),INTENT(IN) :: sliceplot
      TYPE(t_input),INTENT(IN)     :: input
      TYPE(t_vacuum),INTENT(IN)    :: vacuum
      TYPE(t_noco),INTENT(IN)      :: noco
      TYPE(t_jij),INTENT(IN)       :: jij
      TYPE(t_sym),INTENT(IN)       :: sym
      TYPE(t_stars),INTENT(IN)     :: stars
      TYPE(t_cell),INTENT(IN)      :: cell
      TYPE(t_kpts),INTENT(IN)      :: kpts
      TYPE(t_sphhar),INTENT(IN)    :: sphhar
      TYPE(t_atoms),INTENT(IN)     :: atoms

!     .. Scalar Arguments ..
      INTEGER, INTENT (IN) :: eig_id
   
!     ..
!     .. Local Scalars ..
      REAL fix,qtot,scor,seig,smom,stot,sval,dummy
      REAL slmom,slxmom,slymom,sum,thetai,phii,fermiEnergyTemp
      INTEGER iter,ivac,j,jspin,jspmax,k,n,nt,ieig,ikpt
      INTEGER  ityp,ilayer,urec,itype,iatom,archiveType
      LOGICAL l_relax_any,exst,n_exist,l_st,l_qfix
      TYPE(t_noco)::noco_new
!     ..
!     .. Local Arrays ..
      REAL stdn(atoms%ntype,dimension%jspd),svdn(atoms%ntype,dimension%jspd),alpha_l(atoms%ntype),&
           rh(dimension%msh,atoms%ntype,dimension%jspd),qint(atoms%ntype,dimension%jspd)
      REAL tec(atoms%ntype,DIMENSION%jspd),rhTemp(dimension%msh,atoms%ntype,dimension%jspd)
      REAL chmom(atoms%ntype,dimension%jspd),clmom(3,atoms%ntype,dimension%jspd)
      INTEGER,ALLOCATABLE :: igq_fft(:)
      REAL   ,ALLOCATABLE :: vz(:,:,:),vr(:,:,:,:)
      REAL   ,ALLOCATABLE :: rht(:,:,:),rho(:,:,:,:)
      REAL   ,ALLOCATABLE :: qvac(:,:,:,:),qvlay(:,:,:,:,:)
      COMPLEX,ALLOCATABLE :: vpw(:,:),vzxy(:,:,:,:)
      COMPLEX,ALLOCATABLE :: qpw(:,:),rhtxy(:,:,:,:)
      COMPLEX,ALLOCATABLE :: n_mmp(:,:,:,:)
      CHARACTER(LEN=20)   :: attributes(4)
!---> pk non-collinear
      REAL    rhoint,momint,alphdiff(atoms%ntype)
      INTEGER igq2_fft(0:stars%kq1_fft*stars%kq2_fft-1)
      COMPLEX,ALLOCATABLE :: cdom(:),cdomvz(:,:),cdomvxy(:,:,:),qa21(:)
!---> pk non-collinear

      LOGICAL   l_enpara
      PARAMETER (l_st=.false.)
   
     
!
! Read Potential and keep only vr(:,0,:,:) and vz
!
      ALLOCATE(vpw(stars%ng3,dimension%jspd),vzxy(vacuum%nmzxyd,oneD%odi%n2d-1,2,dimension%jspd),&
     &       vz(vacuum%nmzd,2,dimension%jspd),vr(atoms%jmtd,0:sphhar%nlhd,atoms%ntype,dimension%jspd))
99

100 101 102 103 104 105 106 107
      IF (mpi%irank.EQ.0) THEN
         CALL readPotential(stars,vacuum,atoms,sphhar,input,sym,POT_ARCHIVE_TYPE_TOT_const,&
                            iter,vr,vpw,vz,vzxy)
      END IF
#ifdef CPP_MPI
      CALL mpi_bc_pot(mpi,stars,sphhar,atoms,input,vacuum,&
                      iter,vr,vpw,vz,vzxy)
#endif
108

109 110 111 112 113 114 115 116 117 118 119 120 121 122
      DEALLOCATE ( vpw,vzxy )
      ALLOCATE ( qpw(stars%ng3,dimension%jspd),rhtxy(vacuum%nmzxyd,oneD%odi%n2d-1,2,dimension%jspd) )
      ALLOCATE ( rho(atoms%jmtd,0:sphhar%nlhd,atoms%ntype,dimension%jspd),rht(vacuum%nmzd,2,dimension%jspd) )
!
! Read in input density
!
      archiveType = CDN_ARCHIVE_TYPE_CDN1_const
      IF(noco%l_noco) archiveType = CDN_ARCHIVE_TYPE_NOCO_const
      IF((.NOT.noco%l_noco).AND.mpi%irank.EQ.0) THEN
         ALLOCATE(cdom(1),cdomvz(1,1),cdomvxy(1,1,1))
         CALL readDensity(stars,vacuum,atoms,cell,sphhar,input,sym,oneD,CDN_ARCHIVE_TYPE_CDN1_const,&
                          CDN_INPUT_DEN_const,0,fermiEnergyTemp,l_qfix,iter,rho,qpw,rht,rhtxy,cdom,cdomvz,cdomvxy)
         DEALLOCATE(cdom,cdomvz,cdomvxy)
      END IF
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
      IF (mpi%irank.EQ.0) THEN
         INQUIRE(file='enpara',exist=l_enpara)
         IF (l_enpara) OPEN (40,file ='enpara',form = 'formatted',status ='unknown')
      ENDIF
      ALLOCATE (cdom(stars%ng3),cdomvz(vacuum%nmzd,2),cdomvxy(vacuum%nmzxyd,oneD%odi%n2d-1,2))
      ALLOCATE (qa21(atoms%ntype))
      ALLOCATE (qvac(dimension%neigd,2,kpts%nkpt,dimension%jspd))
      ALLOCATE (qvlay(dimension%neigd,vacuum%layerd,2,kpts%nkpt,dimension%jspd))
      ALLOCATE (igq_fft(0:stars%kq1_fft*stars%kq2_fft*stars%kq3_fft-1))
!
!
!--->    initialize density arrays with zero
!
         qa21(:) = cmplx(0.0,0.0)
         qvac(:,:,:,:) = 0.0 
         qvlay(:,:,:,:,:) = 0.0
         rho(:,:,:,:) = 0.0
         qpw(:,:) = cmplx(0.0,0.0)
         cdom(:) =  cmplx(0.0,0.0)
         IF (input%film) THEN
            rht(:,:,:) = 0.0
            cdomvz(:,:) = cmplx(0.0,0.0)
            rhtxy(:,:,:,:) = cmplx(0.0,0.0)
            cdomvxy(:,:,:) = cmplx(0.0,0.0)
         END IF
149
        
150 151 152 153 154 155
!--->    Set up pointer for backtransformation of from g-vector in
!        positive domain fof carge density fftibox into stars
!        In principle this can also be done in main program once.
!        It is done here to save memory.
!
         CALL prp_qfft_map(stars,sym, input, igq2_fft,igq_fft)
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        
!
!--->    LDA+U: initialise density-matrix if needed
!
         IF (atoms%n_u.GT.0) THEN
            ALLOCATE (n_mmp(-3:3,-3:3,atoms%n_u,input%jspins))
            n_mmp(:,:,:,:) = cmplx(0.0,0.0)
         ELSE
            ALLOCATE (n_mmp(-3:-3,-3:-3,1,input%jspins))
         ENDIF
         n_mmp = CMPLX(0.0,0.0)

!
!--->    in a non-collinear calcuation where the off-diagonal part of
!        density matrix in the muffin-tins is calculated, the a- and
!        b-coef. for both spins are needed at once. Thus, cdnval is only
!        called once and both spin directions are calculated in a single
!        go.
!
         IF (mpi%irank.EQ.0) CALL openXMLElementNoAttributes('valenceDensity')

         jspmax = input%jspins
         IF (noco%l_mperp) jspmax = 1
         DO jspin = 1,jspmax
            CALL timestart("cdngen: cdnval")
            CALL cdnval(eig_id,&
                        mpi,kpts,jspin,sliceplot,noco, input,banddos,cell,atoms,enpara,stars, vacuum,dimension,&
                        sphhar, sym,obsolete, igq_fft, vr,vz(:,:,jspin), oneD,&
                        n_mmp(-3:,-3:,:,jspin),results, qpw,rhtxy,rho,rht,cdom,cdomvz,cdomvxy,qvac,qvlay,qa21, chmom,clmom)
            CALL timestop("cdngen: cdnval")
187
!-fo
188 189 190 191 192
         END DO
!-lda+U
      IF ((atoms%n_u.GT.0).and.(mpi%irank.EQ.0)) CALL u_mix(atoms,input%jspins,n_mmp)
      DEALLOCATE (n_mmp)
!-lda-U
193
!+t3e
194
      IF (mpi%irank.EQ.0) THEN
195
!-t3e
196
         IF (l_enpara) CLOSE (40)
197

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
         CALL cdntot(stars,atoms,sym, vacuum,input,cell,oneD, qpw,rho,rht,.TRUE., qtot,dummy)
         CALL closeXMLElement('valenceDensity')
!
!---> changes
!
      ENDIF ! mpi%irank = 0
      IF (input%kcrel.EQ.0) THEN
         results%seigc = 0.
!
! Generate input file ecore for subsequent GW calculation
! 11.2.2004 Arno Schindlmayr
!
         IF ((input%gw.eq.1 .or. input%gw.eq.3).AND.(mpi%irank.EQ.0)) THEN
            OPEN (15,file='ecore',status='unknown', action='write',form='unformatted')
         ENDIF

         rh = 0.0
         tec = 0.0
         qint = 0.0
         IF (input%frcor) THEN
            IF (mpi%irank.EQ.0) THEN
               CALL readCoreDensity(input,atoms,dimension,rh,tec,qint)
            END IF
221
#ifdef CPP_MPI
222 223
            CALL mpi_bc_coreDen(mpi,atoms,input,dimension,&
                                rh,tec,qint)
224
#endif
225 226
         END IF

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
         DO jspin = 1,input%jspins
            IF ((input%jspins.EQ.2).AND.(mpi%irank.EQ.0)) THEN
               DO n = 1,atoms%ntype
                  svdn(n,jspin) = rho(1,0,n,jspin)/ (sfp_const*atoms%rmsh(1,n)*atoms%rmsh(1,n))
               END DO
            END IF
!
!     block 1 unnecessary for slicing: begin
            IF (.NOT.sliceplot%slice) THEN
!     ---> add in core density
               IF (mpi%irank.EQ.0) THEN
                  CALL cored(input,jspin,atoms, rho,dimension, sphhar, vr(:,0,:,jspin), qint,rh,tec,seig)
                  rhTemp(:,:,jspin) = rh(:,:,jspin)
                  results%seigc = results%seigc + seig
                  IF (input%jspins.EQ.2) THEN
                     DO  n = 1,atoms%ntype
                        stdn(n,jspin) = rho(1,0,n,jspin)/ (sfp_const*atoms%rmsh(1,n)*atoms%rmsh(1,n))
                     END DO
                  END IF
               END IF  ! mpi%irank = 0
!     ---> add core tail charge to qpw
               IF ((noco%l_noco).AND.(mpi%irank.EQ.0)) THEN
!--->             pk non-collinear
!--->             add the coretail-charge to the constant interstitial
!--->             charge (star 0), taking into account the direction of
!--->             magnetisation of this atom
                  IF (jspin .EQ. 2) THEN
                     DO ityp = 1,atoms%ntype
                        rhoint  = (qint(ityp,1) + qint(ityp,2)) /cell%volint/input%jspins/2.0
                        momint  = (qint(ityp,1) - qint(ityp,2)) /cell%volint/input%jspins/2.0
!--->                   rho_11
                        qpw(1,1) = qpw(1,1) + rhoint + momint*cos(noco%beta(ityp))
!--->                   rho_22
                        qpw(1,2) = qpw(1,2) + rhoint - momint*cos(noco%beta(ityp))
!--->                   real part rho_21
                        cdom(1) = cdom(1) + cmplx(0.5*momint *cos(noco%alph(ityp))*sin(noco%beta(ityp)),0.0)
!--->                   imaginary part rho_21
                        cdom(1) = cdom(1) + cmplx(0.0,-0.5*momint *sin(noco%alph(ityp))*sin(noco%beta(ityp)))
                     END DO
                  END IF
!--->          pk non-collinear
               ELSE IF (input%ctail) THEN
                  CALL cdnovlp(mpi,&
                     sphhar,stars,atoms,sym, dimension,vacuum, cell, input,oneD,l_st, jspin,rh(:,:,jspin), qpw,rhtxy,rho,rht)
               ELSE IF (mpi%irank.EQ.0) THEN
272
                  DO ityp = 1,atoms%ntype
273
                     qpw(1,jspin) = qpw(1,jspin) + qint(ityp,jspin)/input%jspins/cell%volint
274 275
                  END DO
               END IF
276
!     block 1 unnecessary for slicing: end
277
            END IF
278 279
!
         END DO ! loop over spins
280
         IF (mpi%irank.EQ.0) THEN
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
            CALL writeCoreDensity(input,atoms,dimension,rhTemp,tec,qint)
         END IF
         IF ((input%gw.eq.1 .or. input%gw.eq.3).AND.(mpi%irank.EQ.0)) CLOSE(15)
      ELSE
! relativistic core implementation : kcrel.eq.1
         results%seigc = 0.
         IF ((input%jspins.EQ.2).AND.(mpi%irank.EQ.0)) THEN
            DO jspin = 1,input%jspins
               DO n = 1,atoms%ntype
                  svdn(n,jspin) = rho(1,0,n,jspin)/ (sfp_const*atoms%rmsh(1,n)*atoms%rmsh(1,n))
               END DO
            END DO
         END IF
!
!     block 1 unnecessary for slicing: begin
         IF (.NOT.sliceplot%slice) THEN
!     ---> add in core density
           IF (mpi%irank.EQ.0) THEN
            CALL coredr(input,atoms,seig, rho,dimension,sphhar,vr(:,0,:,:),qint,rh)
300 301 302 303
            results%seigc = results%seigc + seig
            IF (input%jspins.EQ.2) THEN
               DO jspin = 1,input%jspins
                  DO n = 1,atoms%ntype
304
                     stdn(n,jspin) = rho(1,0,n,jspin)/ (sfp_const*atoms%rmsh(1,n)*atoms%rmsh(1,n))
305 306 307
                  END DO
               END DO
            END IF
308
           ENDIF
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
            IF ((noco%l_noco).AND.(mpi%irank.EQ.0)) THEN
!---> pk non-collinear
!--->          add the coretail-charge to the constant interstitial
!--->          charge (star 0), taking into account the direction of
!--->          magnetisation of this atom
               DO ityp = 1,atoms%ntype
                  rhoint  = (qint(ityp,1) + qint(ityp,2)) /cell%volint/input%jspins/2.0
                  momint  = (qint(ityp,1) - qint(ityp,2)) /cell%volint/input%jspins/2.0
!--->             rho_11
                  qpw(1,1) = qpw(1,1) + rhoint + momint*cos(noco%beta(ityp))
!--->             rho_22
                  qpw(1,2) = qpw(1,2) + rhoint - momint*cos(noco%beta(ityp))
!--->             real part rho_21
                  cdom(1) = cdom(1) + cmplx(0.5*momint *cos(noco%alph(ityp))*sin(noco%beta(ityp)),0.0)
!--->             imaginary part rho_21
                  cdom(1) = cdom(1) + cmplx(0.0,-0.5*momint *sin(noco%alph(ityp))*sin(noco%beta(ityp)))
               ENDDO
!---> pk non-collinear
            ELSE
               DO jspin = 1,input%jspins
                  IF (input%ctail) THEN
331
!+gu hope this works as well
332 333 334 335 336 337 338 339 340 341
                     CALL cdnovlp(mpi, sphhar,stars,atoms,sym,&
                          dimension,vacuum, cell, input,oneD,l_st, jspin,rh(1,1,jspin), qpw,rhtxy,rho,rht)
                  ELSEIF (mpi%irank.EQ.0) THEN
                     DO ityp = 1,atoms%ntype
                        qpw(1,jspin) = qpw(1,jspin) + qint(ityp,jspin)/input%jspins/cell%volint
                     ENDDO
                  END IF
               END DO
            ENDIF
!     block 1 unnecessary for slicing: end
342 343
         END IF
! end relativistic core
344 345 346
      END IF
      IF (mpi%irank.EQ.0) THEN
!     block 2 unnecessary for slicing: begin
347
      IF (.NOT.sliceplot%slice) THEN
348
         CALL openXMLElementNoAttributes('allElectronCharges')
349
         CALL qfix(stars,atoms,sym,vacuum, sphhar,input,cell,oneD, qpw,rhtxy,rho,rht,.TRUE.,.true., fix)
350
         CALL closeXMLElement('allElectronCharges')
351
!---> pk non-collinear
352
         IF (noco%l_noco) THEN
353 354 355 356 357
            !--->    fix also the off-diagonal part of the density matrix
            cdom(:stars%ng3) = fix*cdom(:stars%ng3)
         IF (input%film) THEN
            cdomvz(:,:) = fix*cdomvz(:,:)
            cdomvxy(:,:,:) = fix*cdomvxy(:,:,:)
358
         END IF
359 360
         ENDIF
!---> pk non-collinear
361

362 363
!     ---> spin densities at the nucleus
!     ---> and magnetic moment in the spheres
364 365 366
         IF (input%jspins.EQ.2) THEN
            WRITE (6,FMT=8000)
            WRITE (16,FMT=8000)
367
            DO  n = 1,atoms%ntype
368 369 370 371 372
               sval = svdn(n,1) - svdn(n,input%jspins)
               stot = stdn(n,1) - stdn(n,input%jspins)
               scor = stot - sval
               WRITE (6,FMT=8010) n,stot,sval,scor,svdn(n,1),stdn(n,1)
               WRITE (16,FMT=8010) n,stot,sval,scor,svdn(n,1),stdn(n,1)
373 374 375 376 377 378 379 380 381 382 383 384 385 386
            enddo
          IF (noco%l_mperp) THEN
              ! angles in nocoinp file are (alph-alphdiff)
              iatom= 1
              DO n= 1,atoms%ntype
                IF (noco%l_ss) THEN
                  alphdiff(n)= 2.*pi_const*(  noco%qss(1)*atoms%taual(1,iatom)&
                       + noco%qss(2)*atoms%taual(2,iatom) + noco%qss(3)*atoms%taual(3,iatom) )
                ELSE
                  alphdiff(n)= 0.
                ENDIF
                iatom= iatom + atoms%neq(n)
              ENDDO
            ENDIF
387 388
            WRITE (6,FMT=8020)
            WRITE (16,FMT=8020)
389
            noco_new=noco
390
            CALL openXMLElement('magneticMomentsInMTSpheres',(/'units'/),(/'muBohr'/))
391
            DO  n = 1,atoms%ntype
392 393 394
               smom = chmom(n,1) - chmom(n,input%jspins)
               WRITE (6,FMT=8030) n,smom, (chmom(n,j),j=1,input%jspins)
               WRITE (16,FMT=8030) n,smom, (chmom(n,j),j=1,input%jspins)
395
               attributes = ''
396 397 398 399
               WRITE(attributes(1),'(i0)') n
               WRITE(attributes(2),'(f15.10)') smom
               WRITE(attributes(3),'(f15.10)') chmom(n,1)
               WRITE(attributes(4),'(f15.10)') chmom(n,2)
400 401 402
               CALL writeXMLElementFormPoly('magneticMoment',(/'atomType      ','moment        ','spinUpCharge  ',&
                                                               'spinDownCharge'/),&
                                            attributes,reshape((/8,6,12,14,6,15,15,15/),(/4,2/)))
403
               IF (noco%l_mperp) THEN
404 405 406 407 408 409
!--->             calculate the perpendicular part of the local moment
!--->             and relax the angle of the local moment or calculate
!--->             the constraint B-field.
                  CALL m_perp(atoms,n,noco_new,vr(:,0,:,:),chmom,qa21,alphdiff)
               ENDIF
            ENDDO
410
            CALL closeXMLElement('magneticMomentsInMTSpheres')
411

412 413
!--->       save the new nocoinp file if the dierctions of the local
!--->       moments are relaxed or a constraint B-field is calculated.
414 415 416
            l_relax_any = .false.
            iatom = 1
            DO itype = 1,atoms%ntype
417 418
              l_relax_any = l_relax_any.OR.noco%l_relax(itype)
            ENDDO
419 420 421
            IF (l_relax_any.OR.noco%l_constr) THEN
               IF (.not. noco%l_mperp) THEN
                  CALL juDFT_error ("(l_relax_any.OR.noco).AND.(.NOT. )" ,calledby ="cdngen")
422 423 424 425 426 427 428 429 430 431 432 433 434 435
               ENDIF
               DO itype = 1,atoms%ntype
                 IF ( noco%l_ss ) THEN
                   noco_new%alph(itype) = noco%alph(itype) - alphdiff(itype)
                   DO WHILE (noco_new%alph(n) > +pi_const)
                     noco_new%alph(n)= noco_new%alph(n) - 2.*pi_const
                   ENDDO
                   DO WHILE (noco_new%alph(n) < -pi_const)
                     noco_new%alph(n)= noco_new%alph(n) + 2.*pi_const
                   ENDDO
                 ELSE
                   noco_new%alph(itype) = noco%alph(itype)
                 ENDIF
               ENDDO
436 437 438 439 440

               OPEN (24,file='nocoinp',form='formatted', status='old')
               REWIND (24)
               CALL rw_noco_write(atoms,jij,noco_new, input)
               CLOSE (24)
441
            ENDIF
442 443

            IF (noco%l_soc) THEN
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
              thetai = noco%theta
              phii   = noco%phi
              WRITE (6,FMT=9020)
              WRITE (16,FMT=9020)
              CALL openXMLElement('orbitalMagneticMomentsInMTSpheres',(/'units'/),(/'muBohr'/))
              DO n = 1,atoms%ntype
                 IF (noco%l_noco) THEN
                   thetai = noco%beta(n)
                   phii =   noco%alph(n)
                 ENDIF
!
! magn. moment(-)
!
                 slxmom = clmom(1,n,1)+clmom(1,n,2)
                 slymom = clmom(2,n,1)+clmom(2,n,2)
                 slmom =  clmom(3,n,1)+clmom(3,n,2)
!
!  rotation: orbital moment || spin moment (extended to incude phi - hopefully)
!
                 slmom   = cos(thetai)*slmom + sin(thetai)* (cos(phii)*slxmom + sin(phii)*slymom)
                 clmom(3,n,1) = cos(thetai)*clmom(3,n,1) + sin(thetai)*&
                      (cos(phii)*clmom(1,n,1) + sin(phii)*clmom(2,n,1))
                 clmom(3,n,2) = cos(thetai)*clmom(3,n,2) + sin(thetai)*&
                      (cos(phii)*clmom(1,n,2) + sin(phii)*clmom(2,n,2))
                 WRITE (6,FMT=8030) n,slmom,(clmom(3,n,j),j=1,2)
                 WRITE (16,FMT=8030) n,slmom,(clmom(3,n,j),j=1,2)
                 attributes = ''
                 WRITE(attributes(1),'(i0)') n
                 WRITE(attributes(2),'(f15.10)') slmom
                 WRITE(attributes(3),'(f15.10)') clmom(3,n,1)
                 WRITE(attributes(4),'(f15.10)') clmom(3,n,2)
                 CALL writeXMLElementFormPoly('orbMagMoment',(/'atomType      ','moment        ','spinUpCharge  ',&
                                                               'spinDownCharge'/),&
                                              attributes,reshape((/8,6,12,14,6,15,15,15/),(/4,2/)))
!                WRITE (16,FMT=8030) n,slxmom,(clmom(1,n,j),j=1,2)
!                WRITE (16,FMT=8030) n,slymom,(clmom(2,n,j),j=1,2)
              END DO
              CALL closeXMLElement('orbitalMagneticMomentsInMTSpheres')
482 483
            END IF
         END IF
484 485 486 487 488 489 490 491 492 493 494 495
!     block 2 unnecessary for slicing: end
      END IF
 9020 FORMAT (/,/,10x,'orb. magnetic moments in the spheres:',/,10x,&
     &       'type',t22,'moment',t33,'spin-up',t43,'spin-down')
 8000 FORMAT (/,/,10x,'spin density at the nucleus:',/,10x,'type',t25,&
     &       'input%total',t42,'valence',t65,'core',t90,&
     &       'majority valence and input%total density',/)
 8010 FORMAT (i13,2x,3e20.8,5x,2e20.8)
 8020 FORMAT (/,/,2x,'-->  magnetic moments in the spheres:',/,2x,&
     &       'mm -->   type',t22,'moment',t33,'spin-up',t43,'spin-down')
 8030 FORMAT (2x,'--> mm',i8,2x,3f12.5)
!
496 497
      IF (sliceplot%slice) THEN
         OPEN (20,file='cdn_slice',form='unformatted',status='unknown')
498
         CALL wrtdop(stars,vacuum,atoms,sphhar, input,sym, 20, iter,rho,qpw,rht,rhtxy)
499
         IF (noco%l_noco) THEN
500
            WRITE (20) (cdom(k),k=1,stars%ng3)
501
            IF (input%film) THEN
502 503 504 505
               WRITE (20) ((cdomvz(j,ivac),j=1,vacuum%nmz),ivac=1,vacuum%nvac)
               WRITE (20) (((cdomvxy(j,k-1,ivac),j=1,vacuum%nmzxy),k=2,oneD%odi%nq2) ,ivac=1,vacuum%nvac)
            ENDIF
         ENDIF
506
         CLOSE(20) 
507
          CALL juDFT_end("slice OK")
508 509
      END IF

510 511 512 513
      CALL writeDensity(stars,vacuum,atoms,cell,sphhar,input,sym,oneD,archiveType,&
                        CDN_OUTPUT_DEN_const,0,results%last_distance,results%ef,.FALSE.,iter,&
                        rho,qpw,rht,rhtxy,cdom,cdomvz,cdomvxy)
      ENDIF
514

515 516
      DEALLOCATE (cdom,cdomvz,cdomvxy,qvac,qvlay,qa21)
      DEALLOCATE (qpw,rhtxy,rho,rht,igq_fft)
517

518
      IF (sliceplot%slice) CALL juDFT_end("sliceplot%slice OK",mpi%irank)
519

520 521 522
      RETURN
      END SUBROUTINE cdngen
      END MODULE m_cdngen