types_enpara.F90 22.4 KB
Newer Older
1 2 3 4 5 6 7
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

MODULE m_types_enpara
8 9 10 11
  USE m_judft
  IMPLICIT NONE
  PRIVATE
  TYPE t_enpara
12
     REAL, ALLOCATABLE CPP_MANAGED   :: el0(:,:,:)
13
     REAL                 :: evac0(2,2)
14
     REAL                 :: evac(2,2)
15 16 17 18 19
     REAL, ALLOCATABLE    :: ello0(:,:,:)
     REAL, ALLOCATABLE    :: el1(:,:,:)
     REAL                 :: evac1(2,2)
     REAL, ALLOCATABLE    :: ello1(:,:,:)
     REAL, ALLOCATABLE    :: enmix(:)
20 21 22 23 24
     INTEGER, ALLOCATABLE :: skiplo(:,:)
     LOGICAL, ALLOCATABLE :: lchange(:,:,:)
     LOGICAL, ALLOCATABLE :: lchg_v(:,:)
     LOGICAL, ALLOCATABLE :: llochg(:,:,:)
     REAL                 :: epara_min
25 26 27 28 29 30 31 32 33 34
     LOGICAL              :: ready ! are the enpara's ok for calculation?
     LOGICAL              :: floating !floating energy parameters are relative to potential
     INTEGER,ALLOCATABLE  :: qn_el(:,:,:)    !>if these are .ne.0 they are understood as
     INTEGER,ALLOCATABLE  :: qn_ello(:,:,:)  !>quantum numbers
   CONTAINS
     PROCEDURE :: init
     PROCEDURE :: update
     PROCEDURE :: read
     PROCEDURE :: write
     PROCEDURE :: mix
35
     PROCEDURE :: calcOutParams
36
  END TYPE t_enpara
37

38

39 40 41 42

  PUBLIC:: t_enpara

CONTAINS
43
  SUBROUTINE init(this,atoms,jspins,l_defaults)
44 45 46 47 48
    USE m_types_setup
    USE m_constants
    CLASS(t_enpara),INTENT(inout):: this
    TYPE(t_atoms),INTENT(IN)     :: atoms
    INTEGER,INTENT(IN)           :: jspins
49
    LOGICAL,INTENT(IN),OPTIONAL  :: l_defaults
50

51
    INTEGER :: n,i,jsp,l
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

    ALLOCATE(this%el0(0:atoms%lmaxd,atoms%ntype,jspins),this%el1(0:atoms%lmaxd,atoms%ntype,jspins))
    ALLOCATE(this%ello0(atoms%nlod,atoms%ntype,jspins),this%ello1(atoms%nlod,atoms%ntype,jspins))
    this%el0=-1E99
    this%ello0=-1E99
    this%evac0=-1E99


    ALLOCATE(this%llochg(atoms%nlod,atoms%ntype,jspins))
    ALLOCATE(this%lchg_v(2,jspins))
    ALLOCATE(this%skiplo(atoms%ntype,jspins))
    ALLOCATE(this%lchange(0:atoms%lmaxd,atoms%ntype,jspins))
    this%llochg=.FALSE.;this%lchg_v=.FALSE.;this%lchange=.FALSE.
    this%skiplo=0
    ALLOCATE(this%enmix(jspins))
    this%enmix=0.0

    this%ready=.FALSE.
    this%floating=.FALSE.

    ALLOCATE(this%qn_el(0:3,atoms%ntype,jspins))
    ALLOCATE(this%qn_ello(atoms%nlod,atoms%ntype,jspins))

75 76 77
    IF (PRESENT(l_defaults)) THEN
       IF (.NOT.l_defaults) RETURN
    ENDIF
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    !Set most simple defaults
    DO jsp=1,jspins
       DO n = 1,atoms%ntype
          IF ( atoms%nz(n) < 3 ) THEN
             this%qn_el(0:3,n,jsp) =  (/1,2,3,4/) 
          ELSEIF ( atoms%nz(n) < 11 ) THEN
             this%qn_el(0:3,n,jsp) =  (/2,2,3,4/) 
          ELSEIF ( atoms%nz(n) < 19 ) THEN
             this%qn_el(0:3,n,jsp) =  (/3,3,3,4/) 
          ELSEIF ( atoms%nz(n) < 31 ) THEN
             this%qn_el(0:3,n,jsp) =  (/4,4,3,4/) 
          ELSEIF ( atoms%nz(n) < 37 ) THEN
             this%qn_el(0:3,n,jsp) =  (/4,4,4,4/) 
          ELSEIF ( atoms%nz(n) < 49 ) THEN
             this%qn_el(0:3,n,jsp) =  (/5,5,4,4/) 
          ELSEIF ( atoms%nz(n) < 55 ) THEN
             this%qn_el(0:3,n,jsp) =  (/5,5,5,4/) 
          ELSEIF ( atoms%nz(n) < 72 ) THEN
             this%qn_el(0:3,n,jsp) =  (/6,6,5,4/) 
          ELSEIF ( atoms%nz(n) < 81 ) THEN
             this%qn_el(0:3,n,jsp) =  (/6,6,5,5/) 
          ELSEIF ( atoms%nz(n) < 87 ) THEN
             this%qn_el(0:3,n,jsp) =  (/6,6,6,5/) 
          ELSE
             this%qn_el(0:3,n,jsp) =  (/7,7,6,5/) 
          ENDIF
          
          DO i = 1, atoms%nlo(n)
106 107 108 109 110 111 112 113 114
             IF (atoms%llo(i,n)<0) THEN
                !llo might not be initialized
                !in this case defaults broken
                this%qn_ello(i,n,jsp) = 0
                this%skiplo(n,jsp) = 0
             ELSE
                this%qn_ello(i,n,jsp) = this%qn_el(atoms%llo(i,n),n,jsp) - 1
                this%skiplo(n,jsp) = this%skiplo(n,jsp) + (2*atoms%llo(i,n)+1)
             ENDIF
115 116 117 118
          ENDDO
       ENDDO
    ENDDO

119 120
    this%evac0=eVac0Default_const

121 122 123 124 125 126 127 128 129 130
  END SUBROUTINE init

  !> This subroutine adjusts the energy parameters to the potential. In particular, it
  !! calculated them in case of qn_el>-1,qn_ello>-1
  !! Before this was done in lodpot.F
  SUBROUTINE update(enpara,mpi,atoms,vacuum,input,v)
    USE m_types_setup
    USE m_types_mpi
    USE m_xmlOutput
    USE m_types_potden
131
    USE m_find_enpara
132 133 134 135 136 137 138 139
    CLASS(t_enpara),INTENT(inout):: enpara
    TYPE(t_mpi),INTENT(IN)      :: mpi
    TYPE(t_atoms),INTENT(IN)    :: atoms
    TYPE(t_input),INTENT(IN)    :: input
    TYPE(t_vacuum),INTENT(IN)   :: vacuum
    TYPE(t_potden),INTENT(IN)   :: v


140
    LOGICAL ::  l_enpara
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    LOGICAL ::  l_done(0:atoms%lmaxd,atoms%ntype,input%jspins)
    LOGICAL ::  lo_done(atoms%nlod,atoms%ntype,input%jspins)
    REAL    ::  vbar,vz0,rj
    INTEGER ::  n,jsp,l,ilo,j,ivac
    CHARACTER(LEN=20)    :: attributes(5)

    IF (mpi%irank  == 0) CALL openXMLElement('energyParameters',(/'units'/),(/'Htr'/))

    l_done = .FALSE.;lo_done=.FALSE.
    DO jsp = 1,input%jspins
       !$OMP PARALLEL DO DEFAULT(none) &
       !$OMP SHARED(atoms,enpara,jsp,l_done,mpi,v,lo_done) &
       !$OMP PRIVATE(n,l,ilo)
       !! First calculate energy paramter from quantum numbers if these are given...
       !! l_done stores the index of those energy parameter updated
       DO n = 1, atoms%ntype
          DO l = 0,3
158
             IF( enpara%qn_el(l,n,jsp).ne.0)THEN 
159
                l_done(l,n,jsp) = .TRUE.
160
                enpara%el0(l,n,jsp)=find_enpara(.FALSE.,l,n,jsp,enpara%qn_el(l,n,jsp),atoms,mpi,v%mt(:,0,n,jsp))
161 162 163 164 165 166 167 168 169 170 171
                IF( l .EQ. 3 ) THEN
                   enpara%el0(4:,n,jsp) = enpara%el0(3,n,jsp)
                   l_done(4:,n,jsp) = .TRUE.
                END IF
             ELSE 
                l_done(l,n,jsp) = .FALSE.
             END IF
          ENDDO ! l
          ! Now for the lo's
          DO ilo = 1, atoms%nlo(n)
             l = atoms%llo(ilo,n)
172
             IF( enpara%qn_ello(ilo,n,jsp).NE.0) THEN
173
                lo_done(ilo,n,jsp) = .TRUE.
174
                enpara%ello0(ilo,n,jsp)=find_enpara(.TRUE.,l,n,jsp,enpara%qn_ello(ilo,n,jsp),atoms,mpi,v%mt(:,0,n,jsp))
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
             ELSE
                lo_done(ilo,n,jsp) = .FALSE.
             ENDIF
          ENDDO
       ENDDO ! n
       !$OMP END PARALLEL DO

       !!   Now check for floating energy parameters (not for those with l_done=T)
       IF (enpara%floating) THEN
          types_loop: DO n = 1,atoms%ntype 
             !
             !--->    determine energy parameters if lepr=1. the reference energy
             !--->    is the value of the l=0 potential at approximately rmt/4.
             !
             j = atoms%jri(n) - (LOG(4.0)/atoms%dx(n)+1.51)
             rj = atoms%rmt(n)*EXP(atoms%dx(n)* (j-atoms%jri(n)))
             vbar = v%mt(j,0,n,jsp)/rj
             IF (mpi%irank.EQ.0) THEN
                WRITE ( 6,'('' spin'',i2,'', atom type'',i3,'' ='',f12.6,''   r='',f8.5)') jsp,n,vbar,rj
             ENDIF
             DO l = 0,atoms%lmax(n)
                IF ( .NOT.l_done(l,n,jsp) ) THEN
                   enpara%el0(l,n,jsp) = vbar + enpara%el0(l,n,jsp)
                END IF
             ENDDO
             IF (atoms%nlo(n).GE.1) THEN
                DO ilo = 1,atoms%nlo(n)
                   IF ( .NOT. lo_done(ilo,n,jsp) ) THEN
                      enpara%ello0(ilo,n,jsp) = vbar + enpara%ello0(ilo,n,jsp)
                      !+apw+lo
                      IF (atoms%l_dulo(ilo,n)) THEN
                         enpara%ello0(ilo,n,jsp) = enpara%el0(atoms%llo(ilo,n),n,jsp)
                      ENDIF
                      !-apw+lo
                   END IF
                END DO
             ENDIF
          END DO types_loop
       ENDIF
       IF (input%film) THEN
215 216 217 218

          INQUIRE (file ='enpara',exist= l_enpara)
          IF(l_enpara) enpara%evac0(:,jsp) = enpara%evac(:,jsp)

219 220
          !--->    vacuum energy parameters: for floating: relative to potential
          !--->    at vacuum-interstitial interface (better for electric field)
221

222 223 224 225 226 227 228 229
          DO ivac = 1,vacuum%nvac
             vz0 = 0.0
             IF (enpara%floating) THEN
                vz0 = v%vacz(1,ivac,jsp)
                IF (mpi%irank.EQ.0) THEN
                   WRITE ( 6,'('' spin'',i2,'', vacuum   '',i3,'' ='',f12.6)') jsp,ivac,vz0 
                ENDIF
             ENDIF
230
             enpara%evac(ivac,jsp) = enpara%evac0(ivac,jsp) + vz0
231
             IF (.NOT.l_enpara) THEN
232
                enpara%evac(ivac,jsp) = v%vacz(vacuum%nmz,ivac,jsp) + enpara%evac0(ivac,jsp)
233 234 235 236 237 238 239
             END IF
             IF (mpi%irank.EQ.0) THEN
                attributes = ''
                WRITE(attributes(1),'(i0)') ivac
                WRITE(attributes(2),'(i0)') jsp
                WRITE(attributes(3),'(f16.10)') v%vacz(1,ivac,jsp)
                WRITE(attributes(4),'(f16.10)') v%vacz(vacuum%nmz,ivac,jsp)
240
                WRITE(attributes(5),'(f16.10)') enpara%evac(ivac,jsp)
241 242 243 244 245
                CALL writeXMLElementForm('vacuumEP',(/'vacuum','spin  ','vzIR  ','vzInf ','value '/),&
                     attributes(1:5),RESHAPE((/6+4,4,4,5,5+13,8,1,16,16,16/),(/5,2/)))
             END IF
          ENDDO
          IF (vacuum%nvac.EQ.1) THEN
246
             enpara%evac(2,jsp) = enpara%evac(1,jsp)
247 248 249 250
          END IF
       END IF
    END DO

251
!    enpara%ready=(ALL(enpara%el0>-1E99).AND.ALL(enpara%ello0>-1E99))
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    enpara%epara_min=MIN(MINVAL(enpara%el0),MINVAL(enpara%ello0))
    
    IF (mpi%irank  == 0) CALL closeXMLElement('energyParameters')
  END SUBROUTINE update

  SUBROUTINE READ(enpara,atoms,jspins,film,l_required)
    USE m_types_setup
    IMPLICIT NONE
    CLASS(t_enpara),INTENT(INOUT):: enpara
    INTEGER, INTENT (IN)        :: jspins
    TYPE(t_atoms),INTENT(IN)    :: atoms
    LOGICAL,INTENT(IN)          :: film,l_required

    INTEGER :: n,l,lo,skip_t,io_err,jsp
    logical :: l_exist

    INQUIRE(file="enpara",exist=l_exist)
    IF (.NOT.l_exist.AND.l_required) CALL juDFT_error("No enpara file found")
    IF (.NOT.l_exist) RETURN

    OPEN(40,file="enpara",form="formatted",status="old")

    DO jsp=1,jspins

       !-->  first line contains mixing parameter!

       READ (40,FMT ='(48x,f10.6)',END=200) enpara%enmix(jsp)
       READ (40,*)                       ! skip next line
       IF (enpara%enmix(jsp).EQ.0.0) enpara%enmix(jsp) = 1.0
       WRITE (6,FMT=8001) jsp
       WRITE (6,FMT=8000)
       skip_t = 0
       DO n = 1,atoms%ntype
          READ (40,FMT=8040,END=200) (enpara%el0(l,n,jsp),l=0,3),&
               (enpara%lchange(l,n,jsp),l=0,3),enpara%skiplo(n,jsp)    
          WRITE (6,FMT=8140) n,(enpara%el0(l,n,jsp),l=0,3),&
               (enpara%lchange(l,n,jsp),l=0,3),enpara%skiplo(n,jsp)    
          !
          !--->    energy parameters for the local orbitals
          !
          IF (atoms%nlo(n).GE.1) THEN
             skip_t = skip_t + enpara%skiplo(n,jsp) * atoms%neq(n)
             READ (40,FMT=8039,END=200)  (enpara%ello0(lo,n,jsp),lo=1,atoms%nlo(n))
             READ (40,FMT=8038,END=200) (enpara%llochg(lo,n,jsp),lo=1,atoms%nlo(n))
             WRITE (6,FMT=8139)          (enpara%ello0(lo,n,jsp),lo=1,atoms%nlo(n))
             WRITE (6,FMT=8138)         (enpara%llochg(lo,n,jsp),lo=1,atoms%nlo(n))
          ELSEIF (enpara%skiplo(n,jsp).GT.0) THEN
             WRITE (6,*) "for atom",n," no LO's were specified"
             WRITE (6,*) 'but skiplo was set to',enpara%skiplo 
             CALL juDFT_error("No LO's but skiplo",calledby ="enpara",&
                  hint="If no LO's are set skiplo must be 0 in enpara")
          END IF
          !Integer values mean we have to set the qn-arrays
          enpara%qn_el(:,n,jsp)=0
          DO l=0,3
             IF (enpara%el0(l,n,jsp)==NINT(enpara%el0(l,n,jsp))) enpara%qn_el(l,n,jsp)=NINT(enpara%el0(l,n,jsp))
          ENDDO
          enpara%qn_ello(:,n,jsp)=0
          DO l=1,atoms%nlo(n)
             IF (enpara%ello0(l,n,jsp)==NINT(enpara%ello0(l,n,jsp))) enpara%qn_ello(l,n,jsp)=NINT(enpara%ello0(l,n,jsp))
          ENDDO
          !
          !--->    set the energy parameters with l>3 to the value of l=3
          !
          enpara%el0(4:,n,jsp) = enpara%el0(3,n,jsp)
       ENDDO   ! atoms%ntype

       IF (film) THEN
          enpara%lchg_v = .TRUE.
          READ (40,FMT=8050,END=200) enpara%evac0(1,jsp),enpara%lchg_v(1,jsp),enpara%evac0(2,jsp)
          WRITE (6,FMT=8150)         enpara%evac0(1,jsp),enpara%lchg_v(1,jsp),enpara%evac0(2,jsp)
       ENDIF
       IF (atoms%nlod.GE.1) THEN               
          WRITE (6,FMT=8090) jsp,skip_t
          WRITE (6,FMT=8091) 
       END IF
    END DO

330
    enpara%evac(:,:) = enpara%evac0(:,:)
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    CLOSE(40)
    ! input formats

8038 FORMAT (14x,60(l1,8x))
8039 FORMAT (8x,60f9.5)
8040 FORMAT (8x,4f9.5,9x,4l1,9x,i3)
8050 FORMAT (19x,f9.5,9x,l1,15x,f9.5)

    ! output formats

8138 FORMAT (' --> change   ',60(l1,8x))
8139 FORMAT (' --> lo ',60f9.5)
8140 FORMAT (' -->',i3,1x,4f9.5,' change: ',4l1,' skiplo: ',i3)
8150 FORMAT ('  vacuum parameter=',f9.5,' change: ',l1, ' second vacuum=',f9.5)
8001 FORMAT ('READING enpara for spin: ',i1)
8000 FORMAT (/,' energy parameters:',/,t10,'s',t20, 'p',t30,'d',t37,'higher l - - -')
8090 FORMAT ('Spin: ',i1,' -- ',i3,'eigenvalues')
8091 FORMAT ('will be skipped for energyparameter computation')

    RETURN

200 WRITE (6,*) 'the end of the file enpara has been reached while'
    WRITE (6,*) 'reading the energy-parameters.'
    WRITE (6,*) 'possible reason: energy parameters have not been'
    WRITE (6,*) 'specified for all atom types.'
    WRITE (6,FMT='(a,i4)') 'the actual number of atom-types is: ntype=',atoms%ntype
    CALL juDFT_error ("unexpected end of file enpara reached while reading")
  END SUBROUTINE read


  SUBROUTINE WRITE(enpara, atoms,jspins,film)

    ! write enpara-file
    !
    USE m_types_setup
    IMPLICIT NONE
    CLASS(t_enpara),INTENT(IN) :: enpara
    INTEGER, INTENT (IN) :: jspins
    LOGICAL,INTENT(IN)   :: film
    TYPE(t_atoms),INTENT(IN) :: atoms

    INTEGER n,l,lo,jspin
374
    REAL el0Temp(0:3), ello0Temp(1:atoms%nlod)
375 376 377 378 379 380 381 382 383

    OPEN(unit=40,file="enpara",form="formatted",status="replace")

    DO jspin=1,jspins
       WRITE (40,FMT=8035) jspin,enpara%enmix(jspin)
       WRITE (40,FMT=8036)
8035   FORMAT (5x,'energy parameters          for spin ',i1,' mix=',f10.6)
8036   FORMAT (t6,'atom',t15,'s',t24,'p',t33,'d',t42,'f')
       DO n = 1,atoms%ntype
384 385 386 387 388
          el0Temp(0:3) = enpara%el0(0:3,n,jspin)
          DO l = 0, 3
             IF (enpara%qn_el(l,n,jspin).NE.0) el0Temp(l) =  REAL(enpara%qn_el(l,n,jspin))
          END DO
          WRITE (6,FMT=8040)  n, (el0Temp(l),l=0,3),&
389
               &                          (enpara%lchange(l,n,jspin),l=0,3),enpara%skiplo(n,jspin)
390
          WRITE (40,FMT=8040) n, (el0Temp(l),l=0,3),&
391 392 393
               &                          (enpara%lchange(l,n,jspin),l=0,3),enpara%skiplo(n,jspin)
          !--->    energy parameters for the local orbitals
          IF (atoms%nlo(n).GE.1) THEN
394 395 396 397 398
             ello0Temp(1:atoms%nlo(n)) = enpara%ello0(1:atoms%nlo(n),n,jspin)
             DO lo = 1, atoms%nlo(n)
                IF (enpara%qn_ello(lo,n,jspin).NE.0) ello0Temp(lo) = enpara%qn_ello(lo,n,jspin)
             END DO
             WRITE (6,FMT=8039) (ello0Temp(lo),lo=1,atoms%nlo(n))
399
             WRITE (6,FMT=8038) (enpara%llochg(lo,n,jspin),lo=1,atoms%nlo(n))
400
             WRITE (40,FMT=8039) (ello0Temp(lo),lo=1,atoms%nlo(n))
401 402 403 404 405 406 407 408 409
             WRITE (40,FMT=8038) (enpara%llochg(lo,n,jspin),lo=1,atoms%nlo(n))
          END IF

       ENDDO
8038   FORMAT (' --> change   ',60(l1,8x))
8039   FORMAT (' --> lo ',60f9.5)
8040   FORMAT (' -->',i3,1x,4f9.5,' change: ',4l1,' skiplo: ',i3)

       IF (film) THEN
410 411
          WRITE (40,FMT=8050) enpara%evac(1,jspin),enpara%lchg_v(1,jspin),enpara%evac(2,jspin)
          WRITE (6,FMT=8050)  enpara%evac(1,jspin),enpara%lchg_v(1,jspin),enpara%evac(2,jspin)
412 413 414 415 416 417 418 419 420 421 422 423
8050      FORMAT ('  vacuum parameter=',f9.5,' change: ',l1,&
               &           ' second vacuum=',f9.5)
       ENDIF
    ENDDO
    CLOSE(40)
    RETURN
  END SUBROUTINE WRITE





424
  SUBROUTINE mix(enpara,mpi,atoms,vacuum,input,vr,vz)
425 426
    !------------------------------------------------------------------
    USE m_types_setup
427
    USE m_types_mpi
428 429
    IMPLICIT NONE
    CLASS(t_enpara),INTENT(INOUT)  :: enpara
430
    TYPE(t_mpi),INTENT(IN)         :: mpi
431 432 433 434 435 436 437 438 439 440
    TYPE(t_atoms),INTENT(IN)       :: atoms
    TYPE(t_vacuum),INTENT(IN)      :: vacuum
    TYPE(t_input),INTENT(IN)       :: input

    REAL,    INTENT(IN) :: vr(:,:,:)
    REAL,    INTENT(IN) :: vz(vacuum%nmzd,2)

    INTEGER ityp,j,l,lo,jsp,n
    REAL    vbar,maxdist,maxdist2
    INTEGER same(atoms%nlod)
441
    LOGICAL l_enpara
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
#ifdef CPP_MPI
    INCLUDE 'mpif.h'
    INTEGER :: ierr
#endif    

    IF (mpi%irank==0) THEN
       maxdist2=0.0
       DO jsp=1,SIZE(enpara%el0,3)
          maxdist=0.0
          DO ityp = 1,atoms%ntype
             !        look for LO's energy parameters equal to the LAPW (and previous LO) ones
             same = 0
             DO lo = 1,atoms%nlo(ityp)
                IF(enpara%el0(atoms%llo(lo,ityp),ityp,jsp).EQ.enpara%ello0(lo,ityp,jsp)) same(lo)=-1
                DO l = 1,lo-1
                   IF(atoms%llo(l,ityp).NE.atoms%llo(lo,ityp)) CYCLE
                   IF(enpara%ello0(l,ityp,jsp).EQ.enpara%ello0(lo,ityp,jsp).AND.same(lo).EQ.0) same(lo)=l
                ENDDO
460
             ENDDO
461 462 463 464 465 466 467 468 469 470 471 472
             !
             !--->   change energy parameters
             !
             DO l = 0,3
                WRITE(6,*) 'Type:',ityp,' l:',l
                WRITE(6,FMT=777) enpara%el0(l,ityp,jsp),enpara%el1(l,ityp,jsp),&
                     ABS(enpara%el0(l,ityp,jsp)-enpara%el1(l,ityp,jsp))
                maxdist=MAX(maxdist,ABS(enpara%el0(l,ityp,jsp)-enpara%el1(l,ityp,jsp)))
                IF ( enpara%lchange(l,ityp,jsp) ) THEN
                   maxdist2=MAX(maxdist2,ABS(enpara%el0(l,ityp,jsp)-enpara%el1(l,ityp,jsp)))
                   enpara%el0(l,ityp,jsp) =(1.0-enpara%enmix(jsp))*enpara%el0(l,ityp,jsp) + &
                        enpara%enmix(jsp)*enpara%el1(l,ityp,jsp)
473
                ENDIF
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
             ENDDO
             IF ( enpara%lchange(3,ityp,jsp) ) enpara%el0(4:,ityp,jsp) = enpara%el0(3,ityp,jsp)
             !
             !--->    determine and change local orbital energy parameters
             !
             DO lo = 1,atoms%nlo(ityp)
                IF (atoms%l_dulo(lo,ityp)) THEN
                   enpara%ello0(lo,ityp,jsp) =enpara%el0(atoms%llo(lo,ityp),ityp,jsp)
                ELSE
                   IF (enpara%llochg(lo,ityp,jsp) ) THEN
                      IF(same(lo).EQ.-1) THEN
                         enpara%ello0(lo,ityp,jsp) = enpara%el0(atoms%llo(lo,ityp),ityp,jsp)
                         CYCLE
                      ELSE IF(same(lo).GT.0) THEN
                         enpara%ello0(lo,ityp,jsp) = enpara%ello0(same(lo),ityp,jsp)
                         CYCLE
                      ENDIF
                   ENDIF
                   WRITE(6,*) 'Type:',ityp,' lo:',lo
                   WRITE(6,FMT=777) enpara%ello0(lo,ityp,jsp),enpara%ello1(lo,ityp,jsp),&
                        ABS(enpara%ello0(lo,ityp,jsp)-enpara%ello1(lo,ityp,jsp))
                   maxdist=MAX(maxdist,ABS(enpara%ello0(lo,ityp,jsp)-enpara%ello1(lo,ityp,jsp)))
                   IF (enpara%llochg(lo,ityp,jsp) ) THEN
                      maxdist2=MAX(maxdist2,ABS(enpara%ello0(lo,ityp,jsp)-enpara%ello1(lo,ityp,jsp)))
                      enpara%ello0(lo,ityp,jsp) =(1.0-enpara%enmix(jsp))*enpara%ello0(lo,ityp,jsp)+&
                           enpara%enmix(jsp)*enpara%ello1(lo,ityp,jsp)
                   ENDIF
                END IF
             END DO
             !Shift if floating energy parameters are used
             IF (enpara%floating) THEN
                j = atoms%jri(ityp) - (LOG(4.0)/atoms%dx(ityp)+1.51)
                vbar = vr(j,ityp,jsp)/( atoms%rmt(ityp)*EXP(atoms%dx(ityp)*(j-atoms%jri(ityp))) )
                enpara%el0(:,n,jsp)=enpara%el0(:,n,jsp)-vbar
             ENDIF
509
          END DO
510 511 512 513 514
          
          
          IF (input%film) THEN
             WRITE(6,*) 'Vacuum:'
             DO n=1,vacuum%nvac
515 516
                WRITE(6,FMT=777) enpara%evac(n,jsp),enpara%evac1(n,jsp),ABS(enpara%evac(n,jsp)-enpara%evac1(n,jsp))
                maxdist=MAX(maxdist,ABS(enpara%evac(n,jsp)-enpara%evac1(n,jsp)))
517
                IF (enpara%lchg_v(n,jsp) ) THEN
518 519
                   maxdist2=MAX(maxdist2,ABS(enpara%evac(n,jsp)-enpara%evac1(n,jsp)))
                   enpara%evac(n,jsp) =(1.0-enpara%enmix(jsp))*enpara%evac(n,jsp)+&
520 521 522
                        enpara%enmix(jsp)*enpara%evac1(n,jsp)
                END IF
             END DO
523 524
             IF (vacuum%nvac==1) enpara%evac(2,jsp) = enpara%evac(1,jsp)
             IF (enpara%floating) enpara%evac(:,jsp)=enpara%evac(:,jsp)-vz(:,jsp)
525
          ENDIF
526
          WRITE(6,'(a36,f12.6)') 'Max. mismatch of energy parameters:', maxdist
527
       END DO
528 529 530 531 532 533
       IF (maxdist2>1.0) CALL juDFT_warn&
            ("Energy parameter mismatch too large",hint&
            ="If any energy parameters calculated from the output "//&
            "differ from the input by more than 1Htr, chances are "//&
            "high that your initial setup was broken.")
    ENDIF
534 535
    INQUIRE(file='enpara',exist=l_enpara)
    IF (mpi%irank==0.AND.l_enpara) CALL enpara%WRITE(atoms,input%jspins,input%film)
536 537 538
#ifdef CPP_MPI
    CALL MPI_BCAST(enpara%el0,SIZE(enpara%el0),MPI_DOUBLE_PRECISION,0,mpi%mpi_comm,ierr)
    CALL MPI_BCAST(enpara%ello0,SIZE(enpara%ello0),MPI_DOUBLE_PRECISION,0,mpi%mpi_comm,ierr)
539
    CALL MPI_BCAST(enpara%evac,SIZE(enpara%evac),MPI_DOUBLE_PRECISION,0,mpi%mpi_comm,ierr)
540
#endif    
541 542 543 544 545
    RETURN
777 FORMAT('Old:',f8.5,' new:',f8.5,' diff:',f8.5)

  END SUBROUTINE mix

546 547
  SUBROUTINE calcOutParams(enpara,input,atoms,vacuum,regCharges)
    USE m_types_setup
548
    USE m_types_regionCharges
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    IMPLICIT NONE
    CLASS(t_enpara),INTENT(INOUT)    :: enpara
    TYPE(t_input),INTENT(IN)         :: input
    TYPE(t_atoms),INTENT(IN)         :: atoms
    TYPE(t_vacuum),INTENT(IN)        :: vacuum
    TYPE(t_regionCharges),INTENT(IN) :: regCharges

    INTEGER :: ispin, n

    DO ispin = 1,input%jspins
       DO n=1,atoms%ntype
          enpara%el1(0:3,n,ispin)=regCharges%ener(0:3,n,ispin)/regCharges%sqal(0:3,n,ispin)
          IF (atoms%nlo(n)>0) enpara%ello1(:atoms%nlo(n),n,ispin)=regCharges%enerlo(:atoms%nlo(n),n,ispin)/regCharges%sqlo(:atoms%nlo(n),n,ispin)
       END DO
       IF (input%film) enpara%evac1(:vacuum%nvac,ispin)=regCharges%pvac(:vacuum%nvac,ispin)/regCharges%svac(:vacuum%nvac,ispin)
    END DO
  END SUBROUTINE calcOutParams
566

567
END MODULE m_types_enpara