exchange_val_hf.F90 24.1 KB
Newer Older
1 2 3 4 5 6
!--------------------------------------------------------------------------------
! Copyright (c) 2016 Peter Grünberg Institut, Forschungszentrum Jülich, Germany
! This file is part of FLEUR and available as free software under the conditions
! of the MIT license as expressed in the LICENSE file in more detail.
!--------------------------------------------------------------------------------

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
!     Calculates the HF exchange term 
!
!                                          s          s*          s            s*
!                                       phi    (r) phi     (r) phi     (r') phi    (r')
!                         occ.             n_1k       n'k+q       n'k+q        n_2k
!     exchange(n,q)  =  - SUM  INT INT  ------------------------------------------- dr dr'
!                         k,n'                           | r - r' |
!
!                         occ                  s          s    ~        ~       s         s
!                    =  - SUM  SUM  v     < phi      | phi     M    > < M    phi     | phi      >
!                         k,n' I,J   k,IJ      n'k+q      n_1k  q,I      q,J    n_2k      n'k+q
!
!     for the different combinations of n_1 and n_2 and where n' runs only over the valence states.     
!     ( n_1,n_2:  valence-valence, core-core,core-valence )
!
!
!     At the Gamma point (k=0) v diverges. After diagonalization of v at k=0 the divergence is
!     restricted to the head element I=1. Furthermore, we expand <...> with kp perturbation theory.
!     As a result, the total I=1 element is given by a sum of a divergent 1/k**2-term and an
!     angular dependent term. The former is separated from the numerical k-summation and treated
!     analytically while the latter is spherically averaged and added to the k=0 contribution of
!     the numerical k-summation. (A better knowledge of the integrand's behavior at the BZ edges
!     might further improve the integration.)
!
!     The divergence at the Gamma point is integrated with one of the following algorithms:
! (1) Switching-Off Function
!     In a sphere of radius k0=radshmin/2 a switching-off function g(k)=1-(k/k0)**n*(n+1-n*k/k0)
!     (n=npot) is defined. The 1/k**2 divergence is subtracted from the BZ integral in the form
!     g(k)/k**2 and integrated analytically. The non-divergent rest is integrated numerically.
! (2) Periodic Function (similar to the one used by Massidda PRB 48, 5058)
!     The function  F(k) = SUM(G) exp(-expo*|k+G|**3) / |k+G|**2  is subtracted from the BZ integral
!     and integrated analytically. The non-divergent rest is integrated numerically.
!     The parameter expo is chosen such that exp(-expo*q**3)=1/2
!     with q = radius of sphere with same volume as BZ.
! (3) Periodic Function (same as Massidda's) with expo->0
!     The function  F(k) = lim(expo->0) SUM(G) exp(-expo*|k+G|**2) / |k+G|**2  is subtracted from
!     the BZ integral and integrated analytically. The contribution to the BZ integral including
!     the "tail" is
!     vol/(8*pi**3) INT F(k) d^3k - P SUM(k) F(k)  ( P = principal value ) .
!     For expo->0 the two terms diverge. Therefore a cutoff radius q0 is introduced and related to
!     expo by exp(-expo*q0**2)=delta  ( delta = small value, e.g., delta = 1d-10 ) .
!     The resulting formula
!     vol/(4*pi**1.5*sqrt(expo)) * erf(sqrt(a)*q0) - sum(q,0<q<q0) exp(-expo*q**2)/q**2
!     converges well with q0. (Should be the default.)

52
MODULE m_exchange_valence_hf
53

54 55
   LOGICAL,PARAMETER:: zero_order=.false.,ibs_corr=.false.
   INTEGER,PARAMETER:: maxmem=600
56

57
CONTAINS
58

59 60
SUBROUTINE exchange_valence_hf(nk,kpts,nkpt_EIBZ,sym,atoms,hybrid,cell,dimension,input,jsp,hybdat,mnobd,lapw,&
                               eig_irr,results,parent,pointer_EIBZ,n_q,wl_iks,it,xcpot, noco,nsest,indx_sest,&
61
                               mpi,mat_ex)
62

63 64 65 66 67 68 69 70
   USE m_types
   USE m_wrapper
   USE m_constants   
   USE m_trafo
   USE m_wavefproducts
   USE m_olap
   USE m_spmvec
   USE m_hsefunctional ,ONLY: dynamic_hse_adjustment
71
#if defined(CPP_MPI)&&defined(CPP_NEVER)
72 73
   USE m_mpi_work_dist
   USE m_mpi_tags
74
#endif
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
   USE m_io_hybrid
   USE m_kp_perturbation

   IMPLICIT NONE

   TYPE(t_results),       INTENT(IN)    :: results
   TYPE(t_xcpot_inbuild), INTENT(IN)    :: xcpot
   TYPE(t_mpi),           INTENT(IN)    :: mpi
   TYPE(t_dimension),     INTENT(IN)    :: dimension
   TYPE(t_hybrid),        INTENT(INOUT) :: hybrid
   TYPE(t_input),         INTENT(IN)    :: input
   TYPE(t_noco),          INTENT(IN)    :: noco
   TYPE(t_sym),           INTENT(IN)    :: sym
   TYPE(t_cell),          INTENT(IN)    :: cell
   TYPE(t_kpts),          INTENT(IN)    :: kpts
   TYPE(t_atoms),         INTENT(IN)    :: atoms
   TYPE(t_lapw),          INTENT(IN)    :: lapw
   TYPE(t_mat),           INTENT(INOUT) :: mat_ex
Matthias Redies's avatar
Matthias Redies committed
93
   TYPE(t_hybdat),        INTENT(INOUT) :: hybdat
94 95

   ! scalars
96
   INTEGER,               INTENT(IN)    :: it
97 98 99 100 101 102 103 104 105 106 107
   INTEGER,               INTENT(IN)    :: jsp
   INTEGER,               INTENT(IN)    :: nk,nkpt_EIBZ
   INTEGER,               INTENT(IN)    :: mnobd 

   ! arrays
   INTEGER,               INTENT(IN)    ::  n_q(nkpt_EIBZ)

   INTEGER,               INTENT(IN)    ::  parent(kpts%nkptf)
   INTEGER,               INTENT(IN)    ::  pointer_EIBZ(nkpt_EIBZ)
   INTEGER,               INTENT(IN)    ::  nsest(hybrid%nbands(nk))
   INTEGER,               INTENT(IN)    ::  indx_sest(hybrid%nbands(nk),hybrid%nbands(nk))
Daniel Wortmann's avatar
Daniel Wortmann committed
108 109

 
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
   REAL,                  INTENT(IN)    ::  eig_irr(dimension%neigd,kpts%nkpt)
   REAL,                  INTENT(IN)    ::  wl_iks(dimension%neigd,kpts%nkptf)    

   ! local scalars
   INTEGER                 ::  iband,iband1,ibando,ikpt,ikpt0
   INTEGER                 ::  i,ic,ix,iy,iz
   INTEGER                 ::  irecl_coulomb,irecl_coulomb1
   INTEGER                 ::  j
   INTEGER                 ::  m1,m2
   INTEGER                 ::  n,n1,n2,nn,nn2
   INTEGER                 ::  nkqpt
   INTEGER                 ::  npot
   INTEGER                 ::  ok
   INTEGER                 ::  psize
   REAL                    ::  rdum
   REAL                    ::  k0
Daniel Wortmann's avatar
Daniel Wortmann committed
126
     
127
   REAL , SAVE             ::  divergence
128

129 130
   COMPLEX                 ::  cdum,cdum1,cdum2 
   COMPLEX                 ::  exch0
Daniel Wortmann's avatar
Daniel Wortmann committed
131
 
132 133 134 135 136 137
   LOGICAL, SAVE           ::  initialize = .true.

   ! local arrays
   INTEGER              :: kcorner(3,8) = reshape((/ 0,0,0, 1,0,0, 0,1,0, 0,0,1, 1,1,0, 1,0,1, 0,1,1, 1,1,1 /), (/3,8/) )
   COMPLEX              :: exchcorrect(kpts%nkptf)
   COMPLEX              :: dcprod(hybrid%nbands(nk),hybrid%nbands(nk),3) 
138
   COMPLEX              :: exch_vv(hybrid%nbands(nk),hybrid%nbands(nk))
139 140 141 142 143 144 145 146
   COMPLEX              :: hessian(3,3)
   COMPLEX              :: proj_ibsc(3,mnobd,hybrid%nbands(nk))
   COMPLEX              :: olap_ibsc(3,3,mnobd,mnobd)
   REAL                 :: carr1_v_r(hybrid%maxbasm1),carr1_c_r(hybrid%maxbasm1)
   COMPLEX              :: carr1_v_c(hybrid%maxbasm1),carr1_c_c(hybrid%maxbasm1)
   COMPLEX, ALLOCATABLE :: phase_vv(:,:)
   REAL,    ALLOCATABLE :: cprod_vv_r(:,:,:),cprod_cv_r(:,:,:), carr3_vv_r(:,:,:),carr3_cv_r(:,:,:)
   COMPLEX, ALLOCATABLE :: cprod_vv_c(:,:,:),cprod_cv_c(:,:,:), carr3_vv_c(:,:,:),carr3_cv_c(:,:,:)
147 148


149
#if defined(CPP_MPI)&&defined(CPP_NEVER)
150
   COMPLEX             :: buf_vv(hybrid%nbands(nk),nbands(nk))
151 152
#endif

153 154 155 156 157 158
#if ( !defined CPP_NOSPMVEC && !defined CPP_IRAPPROX )
   REAL                 :: coulomb_mt1(hybrid%maxindxm1-1,hybrid%maxindxm1-1, 0:hybrid%maxlcutm1,atoms%ntype)       
   REAL                 :: coulomb_mt2_r(hybrid%maxindxm1-1,-hybrid%maxlcutm1:hybrid%maxlcutm1,0:hybrid%maxlcutm1+1,atoms%nat)
   REAL                 :: coulomb_mt3_r(hybrid%maxindxm1-1,atoms%nat,atoms%nat)
   COMPLEX              :: coulomb_mt2_c(hybrid%maxindxm1-1,-hybrid%maxlcutm1:hybrid%maxlcutm1,0:hybrid%maxlcutm1+1,atoms%nat)
   COMPLEX              :: coulomb_mt3_c(hybrid%maxindxm1-1,atoms%nat,atoms%nat)
159
#else
160 161
   REAL                 :: coulomb_r(hybrid%maxbasm1*(hybrid%maxbasm1+1)/2)
   COMPLEX              :: coulomb_c(hybrid%maxbasm1*(hybrid%maxbasm1+1)/2)
162 163 164
#endif

#ifdef CPP_IRCOULOMBAPPROX
165 166
   REAL                 :: coulomb_mtir_r((hybrid%maxlcutm1+1)**2*atoms%nat,&
                                          (hybrid%maxlcutm1+1)**2*atoms%nat+maxval(hybrid%ngptm))
167
#else
168 169
   REAL                 :: coulomb_mtir_r(((hybrid%maxlcutm1+1)**2*atoms%nat +maxval(hybrid%ngptm)) *&
                                          ((hybrid%maxlcutm1+1)**2*atoms%nat +maxval(hybrid%ngptm)+1)/2)
170 171 172
#endif

#ifdef CPP_IRCOULOMBAPPROX
173 174
   COMPLEX              :: coulomb_mtir_c((hybrid%maxlcutm1+1)**2*atoms%nat,&
                                          (hybrid%maxlcutm1+1)**2*atoms%nat+maxval(hybrid%ngptm))
175
#else
176 177
   COMPLEX              :: coulomb_mtir_c(((hybrid%maxlcutm1+1)**2*atoms%nat +maxval(hybrid%ngptm)) *&
                                          ((hybrid%maxlcutm1+1)**2*atoms%nat +maxval(hybrid%ngptm)+1)/2)
178 179
#endif

180
   LOGICAL              :: occup(dimension%neigd)
181
#if defined(CPP_MPI)&&defined(CPP_NEVER)
182 183 184
   INCLUDE "mpif.h"
   INTEGER              :: ierr,ierr2,length,rank
   CHARACTER(LEN=MPI_MAX_ERROR_STRING) :: errmsg
185
#endif
186
   CALL timestart("valence exchange calculation")
Daniel Wortmann's avatar
Daniel Wortmann committed
187
     
188 189 190 191 192
   IF(initialize) THEN !it .eq. 1 .and. nk .eq. 1) THEN
      call calc_divergence(cell,kpts,divergence)
      PRINT *,"Divergence:",divergence
      initialize = .false.
   END IF
Daniel Wortmann's avatar
Daniel Wortmann committed
193
   
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
   ! calculate valence-valence-valence-valence, core-valence-valence-valence
   ! and core-valence-valence-core exchange at current k-point
   ! the sum over the inner occupied valence states is restricted to the EIBZ(k)
   ! the contribution of the Gamma-point is treated separately (see below)

   ! determine package size loop over the occupied bands
   if (mat_ex%l_real) THEn
      rdum  = hybrid%maxbasm1*hybrid%nbands(nk)*4/1048576.
   else
      rdum  = hybrid%maxbasm1*hybrid%nbands(nk)*4/1048576.
   endif
   psize = 1
   DO iband = mnobd,1,-1
      ! ensure that the packages have equal size
      IF(modulo(mnobd,iband).eq.0) THEN
         ! choose packet size such that cprod is smaller than memory threshold
         IF(rdum*iband.le.maxmem) THEN
211 212
            psize = iband
            EXIT
213
         END IF
214
      END IF
215 216 217 218 219 220 221 222 223 224 225 226
   END DO

   IF(psize.ne.mnobd) THEN
      WRITE(6,'(A,A,i3,A,f7.2,A)') ' Divide the loop over the occupied hybrid%bands in packages',&
                                   ' of the size',psize,' (cprod=',rdum*psize,'MB)'
   END IF
   ALLOCATE( phase_vv(psize,hybrid%nbands(nk)),stat=ok )
   IF(ok.ne.0) STOP 'exchange_val_hf: error allocation phase'
   phase_vv=0
   IF(ok.ne.0) STOP 'exchange_val_hf: error allocation phase'

   if (mat_ex%l_real) THEN
227
      ALLOCATE( cprod_vv_c(hybrid%maxbasm1,0,0), carr3_vv_c(hybrid%maxbasm1,0,0))
228 229 230 231 232 233
      ALLOCATE( cprod_vv_r(hybrid%maxbasm1,psize,hybrid%nbands(nk)),stat=ok )
      IF( ok .ne. 0 ) STOP 'exchange_val_hf: error allocation cprod'
      ALLOCATE( carr3_vv_r(hybrid%maxbasm1,psize,hybrid%nbands(nk)),stat=ok )
      IF( ok .ne. 0 ) STOP 'exchange_val_hf: error allocation carr3'
      cprod_vv_r = 0 ; carr3_vv_r = 0 
   ELSE
234
      ALLOCATE( cprod_vv_r(hybrid%maxbasm1,0,0), carr3_vv_r(hybrid%maxbasm1,0,0))
235 236 237 238 239 240
      ALLOCATE( cprod_vv_c(hybrid%maxbasm1,psize,hybrid%nbands(nk)),stat=ok )
      IF( ok .ne. 0 ) STOP 'exchange_val_hf: error allocation cprod'
      ALLOCATE( carr3_vv_c(hybrid%maxbasm1,psize,hybrid%nbands(nk)),stat=ok )
      IF( ok .ne. 0 ) STOP 'exchange_val_hf: error allocation carr3'
      cprod_vv_c = 0 ; carr3_vv_c = 0
   END IF
Daniel Wortmann's avatar
Daniel Wortmann committed
241
         
242
   exch_vv = 0
243

244
   DO ikpt = 1,nkpt_EIBZ
245

246
      ikpt0 = pointer_EIBZ(ikpt)
247

248 249 250
      n  = hybrid%nbasp + hybrid%ngptm(ikpt0)
      IF( hybrid%nbasm(ikpt0).ne.n) STOP 'error hybrid%nbasm'
      nn = n*(n+1)/2
251

252
      ! read in coulomb matrix from direct access file coulomb
253
#if( !defined CPP_NOSPMVEC && !defined CPP_IRAPPROX )
254 255 256 257 258
      IF (mat_ex%l_real) THEN
         CALL read_coulomb_spm_r(kpts%bkp(ikpt0),coulomb_mt1,coulomb_mt2_r,coulomb_mt3_r,coulomb_mtir_r)
      ELSE
         CALL read_coulomb_spm_c(kpts%bkp(ikpt0),coulomb_mt1,coulomb_mt2_c,coulomb_mt3_c,coulomb_mtir_c)
      END IF
259
#else
260
	   call read_coulomb(kpts%bkp(ikpt0),coulomb)
261 262
#endif

263
      IF(kpts%bkp(ikpt0).ne.ikpt0) THEN
264
#if( !defined CPP_NOSPMVEC && !defined CPP_IRAPPROX )
265
         IF((kpts%bksym(ikpt0).gt.sym%nop).and.(.not.mat_ex%l_real)) THEN
Daniel Wortmann's avatar
Daniel Wortmann committed
266
            coulomb_mt2_c = conjg(coulomb_mt2_c)
267 268
            coulomb_mtir_c = conjg(coulomb_mtir_c)
         END IF
269
#else
270 271 272
         if (.not.mat_ex%l_real) THEN
            IF( kpts%bksym(ikpt0) .gt. sym%nop ) coulomb = conjg(coulomb)
         endif
273
#endif
274
      END IF
275

276
      DO ibando = 1, mnobd, psize
277

278
         IF (mat_ex%l_real) THEN
279
#ifdef CPP_IRAPPROX
280 281
            CALL wavefproducts_inv(1,hybdat,dimension,input,jsp,atoms,lapw,obsolete,kpts,nk,ikpt0,&
                                   mnobd,hybrid,parent,cell,sym,noco,nkqpt,cprod_vv)
282
#else
283 284 285
            CALL wavefproducts_inv5(1,hybrid%nbands(nk),ibando,ibando+psize-1,dimension,input,jsp,atoms,&
                                    lapw,kpts,nk,ikpt0,hybdat,mnobd,hybrid,parent,cell,hybrid%nbasp,sym,&
                                    noco,nkqpt,cprod_vv_r)
286
#endif
287
         ELSE
288
#ifdef CPP_IRAPPROX
289 290
            CALL wavefproducts_noinv(1,hybdat,nk,ikpt0,dimension,input,jsp,cell,atoms,hybrid, 
                                     kpts,mnobd,lapw,sym,noco,nkqpt,cprod_vv)
291
#else
292 293
            CALL wavefproducts_noinv5(1,hybrid%nbands(nk),ibando,ibando+psize-1,nk,ikpt0,dimension,input,jsp,&!jsp,&
                                      cell,atoms,hybrid,hybdat,kpts,mnobd,lapw,sym,hybrid%nbasp,noco,nkqpt,cprod_vv_c)
294
#endif
295
         END IF
296

297 298 299 300 301
         ! The sparse matrix technique is not feasible for the HSE
         ! functional. Thus, a dynamic adjustment is implemented
         ! The mixed basis functions and the potential difference
         ! are Fourier transformed, so that the exchange can be calculated
         ! in Fourier space
302
#ifndef CPP_NOSPMVEC
303
         IF (xcpot%is_name("hse").OR.xcpot%is_name("vhse")) THEN
Daniel Wortmann's avatar
Daniel Wortmann committed
304
            iband1  = hybrid%nobd(nkqpt)
305 306 307 308 309 310 311 312 313 314

            exch_vv = exch_vv +&
                      dynamic_hse_adjustment(atoms%rmsh,atoms%rmt,atoms%dx,atoms%jri,atoms%jmtd,kpts%bkf(:,ikpt0),ikpt0,&
                                             kpts%nkptf,cell%bmat,cell%omtil,atoms%ntype,atoms%neq,atoms%nat,atoms%taual,&
                                             hybrid%lcutm1,hybrid%maxlcutm1,hybrid%nindxm1,hybrid%maxindxm1,hybrid%gptm,&
                                             hybrid%ngptm(ikpt0),hybrid%pgptm(:,ikpt0),hybrid%gptmd,hybrid%basm1,&
                                             hybrid%nbasm(ikpt0),iband1,hybrid%nbands(nk),nsest,ibando,psize,indx_sest,&
                                             atoms%invsat,sym%invsatnr,mpi%irank,cprod_vv_r(:hybrid%nbasm(ikpt0),:,:),&
                                             cprod_vv_c(:hybrid%nbasm(ikpt0),:,:),mat_ex%l_real,wl_iks(:iband1,nkqpt),n_q(ikpt))
         END IF
315 316
#endif

317 318 319 320 321 322 323 324 325 326 327 328 329 330
         ! the Coulomb matrix is only evaluated at the irrecuible k-points
         ! bra_trafo transforms cprod instead of rotating the Coulomb matrix
         ! from IBZ to current k-point
         IF( kpts%bkp(ikpt0) .ne. ikpt0 ) THEN
            CALL bra_trafo2(mat_ex%l_real,carr3_vv_r(:hybrid%nbasm(ikpt0),:,:),cprod_vv_r(:hybrid%nbasm(ikpt0),:,:),&
                            carr3_vv_c(:hybrid%nbasm(ikpt0),:,:),cprod_vv_c(:hybrid%nbasm(ikpt0),:,:),&
                            hybrid%nbasm(ikpt0),psize,hybrid%nbands(nk),kpts%bkp(ikpt0),ikpt0,kpts%bksym(ikpt0),sym,&
                            hybrid,kpts,cell,atoms,phase_vv)
            IF (mat_ex%l_real) THEN
               cprod_vv_r(:hybrid%nbasm(ikpt0),:,:) = carr3_vv_r(:hybrid%nbasm(ikpt0),:,:)
            ELSE
               cprod_vv_c(:hybrid%nbasm(ikpt0),:,:) = carr3_vv_c(:hybrid%nbasm(ikpt0),:,:)
            ENDIF
         ELSE
331
            phase_vv(:,:) = (1d0,0d0)
332
         END IF
333

334
         ! calculate exchange matrix at ikpt0
Matthias Redies's avatar
Matthias Redies committed
335 336
   
         call timestart("exchange matrix")
337
         DO n1=1,hybrid%nbands(nk)
338
            DO iband = 1,psize
339 340 341
               IF((ibando+iband-1).gt.hybrid%nobd(nkqpt)) CYCLE

               cdum  = wl_iks(ibando+iband-1,nkqpt) * conjg(phase_vv(iband,n1))/n_q(ikpt)
342 343

#if( !defined CPP_NOSPMVEC && !defined CPP_IRAPPROX )
344 345 346 347 348 349 350 351 352
               IF (mat_ex%l_real) THEN
                  carr1_v_r(:n) = 0 
                  CALL spmvec_invs(atoms,hybrid,hybdat,ikpt0,kpts,cell,coulomb_mt1,coulomb_mt2_r,coulomb_mt3_r,&
                                   coulomb_mtir_r,cprod_vv_r(:n,iband,n1),carr1_v_r(:n))
               ELSE
                  carr1_v_c(:n) = 0 
                  CALL spmvec_noinvs(atoms,hybrid,hybdat,ikpt0,kpts,cell,coulomb_mt1,coulomb_mt2_c,coulomb_mt3_c,&
                                     coulomb_mtir_c,cprod_vv_c(:n,iband,n1),carr1_v_c(:n))
               END IF
353
#else
354 355 356
               IF (mat_ex%l_real) THEN
                  carr1_v_r(:n) = matvec( coulomb_r(:nn),cprod_vv_r(:n,iband,n1) )
               ELSE
357
                  carr1_v_c(:n) = matvec( coulomb_c(:nn),cprod_vv_c(:n,iband,n1) )
358
               END IF
359 360
#endif

361 362 363 364 365 366 367 368 369 370 371 372 373
               IF (mat_ex%l_real) THEN
                  DO n2=1,nsest(n1)!n1
                     nn2 = indx_sest(n2,n1)
                     exch_vv(nn2,n1) = exch_vv(nn2,n1) + cdum*phase_vv(iband,nn2) *&
                                                         dotprod(carr1_v_r(:n),cprod_vv_r(:n,iband,nn2))
                  END DO !n2
               ELSE
                  DO n2=1,nsest(n1)!n1
                     nn2 = indx_sest(n2,n1)
                     exch_vv(nn2,n1) = exch_vv(nn2,n1) + cdum*phase_vv(iband,nn2) *&
                                                         dotprod(carr1_v_c(:n),cprod_vv_c(:n,iband,nn2))
                  END DO !n2
               END IF
374
            END DO
375
         END DO  !n1
Matthias Redies's avatar
Matthias Redies committed
376
         call timestop("exchange matrix")
377 378
      END DO !ibando
   END DO  !ikpt
379

380 381 382 383 384 385 386
!   WRITE(7001,'(a,i7)') 'nk: ', nk
!   DO n1=1,hybrid%nbands(nk)
!      DO n2=1,n1
!         WRITE(7001,'(2i7,2f15.8)') n2, n1, exch_vv(n2,n1)
!     END DO
!   END DO

387
   ! add contribution of the gamma point to the different cases (exch_vv,exch_cv,exch_cc)
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
   ! valence-valence-valence-valence exchange

   IF ((.not.xcpot%is_name("hse")).AND.(.not.xcpot%is_name("vhse"))) THEN ! no gamma point correction needed for HSE functional
      IF( zero_order .and. .not. ibs_corr ) THEN
         WRITE(6,'(A)') ' Take zero order terms into account.'
      ELSE IF( zero_order .and.  ibs_corr ) THEN
         WRITE(6,'(A)') ' Take zero order terms and ibs-correction into account.'
      END IF

      IF(zero_order) THEN
         CALL dwavefproducts(dcprod,nk,1,hybrid%nbands(nk),1,hybrid%nbands(nk),.false.,atoms,hybrid,&
                             cell,hybdat,kpts,kpts%nkpt,lapw,dimension,jsp,eig_irr)

         ! make dcprod hermitian
         DO n1 = 1, hybrid%nbands(nk)
404
            DO n2 = 1,n1
405 406
               dcprod(n1,n2,:) = (dcprod(n1,n2,:) - conjg(dcprod(n2,n1,:)))/2   
               dcprod(n2,n1,:) = -conjg(dcprod(n1,n2,:))
407
            END DO
408 409 410 411 412 413 414
         END DO

         IF(ibs_corr) THEN
            CALL ibs_correction(nk,atoms,dimension,input,jsp,hybdat,hybrid,lapw,kpts,kpts%nkpt,cell,mnobd,&
                                sym,proj_ibsc,olap_ibsc)
         END IF
      END IF
Daniel Wortmann's avatar
Daniel Wortmann committed
415
        
416 417 418 419
      !This should be done with w_iks I guess!TODO
      occup = .false.
      DO i=1,hybrid%ne_eig(nk)
         IF (results%ef.ge.eig_irr(i,nk)) THEN
420
            occup(i) = .true.
421 422 423 424
         ELSE IF ((eig_irr(i,nk)-results%ef).le.1E-06) THEN
            occup(i) = .true.
         END IF
      END DO
425

426 427
      DO n1 = 1, hybrid%nbands(nk)
         DO n2 = 1, nsest(n1)!n1
428 429
            nn2 = indx_sest(n2,n1)
            exchcorrect = 0
430 431 432
            exch0 = 0

            ! if zero_order = .true. add averaged k-dependent term to the numerical integration at Gamma-point contribution
433 434 435 436 437 438

            ! if we start with a system with a small DFT band gap (like GaAs), the contribution
            ! of the highest occupied and lowest unoccupied state in Hessian is typically
            ! large; a correct numerical integration requires a dense k-point mesh, so
            ! we don't add the contribution exchcorrect for such materials 

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
            IF(zero_order) THEN
               hessian = 0
               IF(occup(n1).and.occup(nn2)) THEN
                  DO i = 1,3
                     j = i
                     DO iband = 1, hybrid%nbands(nk)
                        IF(occup(iband)) THEN
                           hessian(i,j) = hessian(i,j) + conjg(dcprod(iband,n1,i)) *dcprod(iband,nn2,j)
                        END IF
                        hessian(i,j) = hessian(i,j) - dcprod(iband,nn2,i) * conjg(dcprod(iband,n1,j))
                     END DO

                     ! ibs correction
                     IF(ibs_corr) THEN 
                        hessian(i,j) = hessian(i,j) - olap_ibsc(i,j,n1,nn2)/cell%omtil
                        DO iband = 1,hybrid%nbands(nk)
                           hessian(i,j) = hessian(i,j) + conjg(proj_ibsc(i,nn2,iband)) * proj_ibsc(j,n1,iband)/cell%omtil
                        END DO
                     END IF
458
                  END DO
459 460 461 462 463 464 465 466
               ELSE
                  DO i = 1,3
                     j = i 
                     DO iband = 1, hybrid%nbands(nk)
                        IF(occup(iband)) THEN
                           hessian(i,j) = hessian(i,j) + conjg(dcprod(iband,n1,i)) * dcprod(iband,nn2,j)
                        END IF
                     END DO
467
                  END DO
468
               END IF
Daniel Wortmann's avatar
Daniel Wortmann committed
469
 
470 471
               exchcorrect(1) = fpi_const/3 * (hessian(1,1)+hessian(2,2)+hessian(3,3))
               exch0 = exchcorrect(1)/kpts%nkptf
472 473 474 475 476 477 478 479 480
            END IF

            ! tail correction/contribution from all other k-points (it  goes into exchcorrect )

            ! Analytic contribution

            cdum2 = 0
            !multiply divergent contribution with occupation number;
            !this only affects metals 
481
            IF (n1.eq.nn2) THEN
Daniel Wortmann's avatar
Daniel Wortmann committed
482
               cdum2 = fpi_const/cell%omtil * divergence * wl_iks(n1,nk)*kpts%nkptf
483 484 485 486
            END IF

            ! due to the symmetrization afterwards the factor 1/n_q(1) must be added

487
            IF(n1.EQ.nn2) hybrid%div_vv(n1,nk,jsp) = REAL(cdum2) 
488 489
            exch_vv(nn2,n1)  = exch_vv(nn2,n1) + (exch0 + cdum2)/n_q(1)

490 491 492
         END DO !n2
      END DO !n1
   END IF ! xcpot%icorr .ne. icorr_hse
493 494


495
   IF (mat_ex%l_real) THEN
496 497 498
      IF(any(abs(aimag(exch_vv)).gt.1E-08)) CALL judft_warn('unusally large imaginary part of exch_vv',&
                                                            calledby='exchange_val_hf.F90')
   END IF
499

500 501 502 503 504 505 506
!   WRITE(7000,'(a,i7)') 'nk: ', nk
!   DO n1=1,hybrid%nbands(nk)
!      DO n2=1,n1
!         WRITE(7000,'(2i7,2f15.8)') n2, n1, exch_vv(n2,n1)
!      END DO
!   END DO

507 508 509 510 511 512 513
   ! write exch_vv in mat_ex
   CALL mat_ex%alloc(matsize1=hybrid%nbands(nk))
   IF (mat_ex%l_real) THEN
      mat_ex%data_r=exch_vv
   ELSE
      mat_ex%data_c=exch_vv
   END IF
514
   CALL timestop("valence exchange calculation")
Daniel Wortmann's avatar
Daniel Wortmann committed
515
     
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
END SUBROUTINE exchange_valence_hf




SUBROUTINE calc_divergence(cell,kpts,divergence)

   USE m_util, ONLY: cerf
   USE m_types
   USE m_constants

   IMPLICIT NONE

   TYPE(t_cell), INTENT(IN)  :: cell
   TYPE(t_kpts), INTENT(IN)  :: kpts
   REAL,         INTENT(OUT) :: divergence
Daniel Wortmann's avatar
Daniel Wortmann committed
532
        
533 534 535 536
   INTEGER :: ix,iy,iz,sign,n
   logical :: found
   REAL    :: expo,rrad,k(3),kv1(3),kv2(3),kv3(3),knorm2
   COMPLEX :: cdum
Daniel Wortmann's avatar
Daniel Wortmann committed
537
        
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
   expo       = 5d-3
   rrad       = sqrt(-log(5d-3)/expo)
   cdum       = sqrt(expo)*rrad
   divergence = cell%omtil / (tpi_const**2) * sqrt(pi_const/expo) * cerf(cdum)
   rrad       = rrad**2
   kv1        = cell%bmat(1,:)/kpts%nkpt3(1)
   kv2        = cell%bmat(2,:)/kpts%nkpt3(2)
   kv3        = cell%bmat(3,:)/kpts%nkpt3(3)
   n          = 1
   found      = .true.

   DO WHILE(found)
      found = .false.
      DO ix = -n,n
         DO iy = -(n-abs(ix)),n-abs(ix)
            iz     = n - abs(ix) - abs(iy)
            DO sign=-1,1,2
               iz=sign*iz
               k(1) = ix*kv1(1) + iy*kv2(1) + iz*kv3(1)
               k(2) = ix*kv1(2) + iy*kv2(2) + iz*kv3(2)
               k(3) = ix*kv1(3) + iy*kv2(3) + iz*kv3(3)
               knorm2 = k(1)**2 + k(2)**2 + k(3)**2
               IF(knorm2.lt.rrad) THEN
                  found = .true.
                  divergence = divergence - exp(-expo*knorm2)/knorm2 / kpts%nkptf
               END IF
               IF(iz==0) exit
            END DO 
         END DO
      END DO
      n = n + 1
   END DO

END SUBROUTINE calc_divergence

END MODULE m_exchange_valence_hf