dylm3.f 3.07 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
      MODULE m_dylm
      use m_juDFT
c.....------------------------------------------------------------------
c     preparation of dylmt1(=d(ylm)/dtheta),
c     dylmt2(=d(dylmt1)/dtheta),
c     dylmf1, dylmf2 are for fai.
c     dylmtf=d(dylmt1)/df
c     t.a. june, 1996.
c.....------------------------------------------------------------------
      CONTAINS
      SUBROUTINE dylm3(
     >                 lmaxd,lmax,v,ylm,
     <                 dylmt1,dylmt2,dylmf1,dylmf2,dylmtf)
c
15
      use m_constants
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
      IMPLICIT NONE
C     ..
C     .. Scalar Arguments ..
      INTEGER, INTENT (IN) :: lmaxd,lmax
C     ..
C     .. Array Arguments ..
      REAL,    INTENT (IN) :: v(3)
      COMPLEX, INTENT (IN) ::    ylm( (lmaxd+1)**2 )
      COMPLEX, INTENT (OUT):: dylmt1( (lmaxd+1)**2 )
      COMPLEX, INTENT (OUT):: dylmt2( (lmaxd+1)**2 )
      COMPLEX, INTENT (OUT):: dylmf1( (lmaxd+1)**2 )
      COMPLEX, INTENT (OUT):: dylmf2( (lmaxd+1)**2 )
      COMPLEX, INTENT (OUT):: dylmtf( (lmaxd+1)**2 )
C     ..
C     .. Local Scalars ..
      INTEGER lm1,lm,lm2,lm1m,lmm1m,lmm,lmm1,lmm2
      INTEGER l,m,ll1,llm
33
      COMPLEX em1f,em2f,ep1f,ep2f
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
      REAL cph,rxy,small,sph,x,xy,y
C     ..
C     .. Data Statements ..
      DATA small/1.0e-12/
c.....------------------------------------------------------------------
c     ..
      IF (lmax.GT.lmaxd) THEN
        WRITE (6,*) lmax,lmaxd
         CALL juDFT_error("lmax.GT.lmaxd",calledby="dylm3")
      ENDIF

c--->    calculate sin and cos of phi
      x = v(1)
      y = v(2)

      xy = x*x + y*y
      rxy = sqrt(xy)
c
      IF (rxy.gt.small) THEN
         cph = x/rxy
         sph = y/rxy
      ELSE
         cph = 1.e0
         sph = 0.e0
      ENDIF

      ep1f=cmplx(cph,sph)
      em1f=conjg(ep1f)
      ep2f=ep1f*ep1f
      em2f=em1f*em1f
c
      DO 21 l=0,lmax
         ll1 = l*(l+1) 

         DO m=-l,l
            llm = ll1 + m + 1
            dylmt1(llm) = cmplx(0.0,0.0)
            dylmt2(llm) = cmplx(0.0,0.0)
         ENDDO

         DO 23 m=-l,l
            llm = ll1 + m + 1

            lmm1m = l - m - 1
            lmm   = l - m
            lmm1  = l - m + 1
            lmm2  = l - m + 2
            lm1m  = l + m - 1
            lm    = l + m
            lm1   = l + m + 1
            lm2   = l + m + 2

            dylmt2(llm)=dylmt2(llm) -
     +                      (lmm*lm1+lmm1*lm)/4.e0*ylm(llm)

            IF (m+2.le.l) dylmt2(llm)=dylmt2(llm) +
     +           sqrt(real(lmm1m*lmm*lm1*lm2))/4*ylm(llm+2)*em2f

            IF (m+1.le.l) dylmt1(llm)=dylmt1(llm) +
     +           sqrt(real(lmm*lm1))/2*ylm(llm+1)*em1f

            IF (m-1.ge.-l) dylmt1(llm)=dylmt1(llm) -
     +           sqrt(real(lm*lmm1))/2*ylm(llm-1)*ep1f

            IF (m-2.ge.-l) dylmt2(llm)=dylmt2(llm) +
     +           sqrt(real(lmm1*lmm2*lm1m*lm))/4*ylm(llm-2)*ep2f

   23    ENDDO

         DO m=-l,l
            llm = ll1 + m + 1
105
            dylmf1(llm) = ImagUnit * m *    ylm(llm)
106
            dylmf2(llm) = -m * m *    ylm(llm)
107
            dylmtf(llm) = ImagUnit * m * dylmt1(llm)
108 109 110 111 112 113 114
         ENDDO

   21 ENDDO

      RETURN
      END SUBROUTINE dylm3
      END MODULE m_dylm