Commit 9b9473ce authored by Daniel Wortmann's avatar Daniel Wortmann

Merge branch 'aixcel' of https://iffgit.fz-juelich.de/fleur/fleur into aixcel

Conflicts:
	eigen/hsmt_sph.F90
parents bb1a6d24 3d41caec
......@@ -70,15 +70,15 @@ CONTAINS
!$OMP MASTER
IF ((atoms%invsat(na).EQ.0) .OR. (atoms%invsat(na).EQ.1)) THEN
IF ((atoms%invsat(na) == 0) .OR. (atoms%invsat(na) == 1)) THEN
!---> if this atom is the first of two atoms related by inversion,
!---> the contributions to the overlap matrix of both atoms are added
!---> at once. where it is made use of the fact, that the sum of
!---> these contributions is twice the real part of the contribution
!---> of each atom. note, that in this case there are twice as many
!---> (2*(2*l+1)) k-vectors (compare abccoflo and comments there).
IF (atoms%invsat(na).EQ.0) invsfct = 1
IF (atoms%invsat(na).EQ.1) invsfct = 2
IF (atoms%invsat(na) == 0) invsfct = 1
IF (atoms%invsat(na) == 1) invsfct = 2
!
DO lo = 1,atoms%nlo(ntyp)
......@@ -127,7 +127,7 @@ CONTAINS
!+t3e
DO nkvec = 1,invsfct* (2*l+1)
locol= lapw%nv(jintsp)+lapw%index_lo(lo,na)+nkvec !this is the column of the matrix
IF (MOD(locol-1,mpi%n_size).EQ.mpi%n_rank) THEN
IF (MOD(locol-1,mpi%n_size) == mpi%n_rank) THEN
locol=(locol-1)/mpi%n_size+1 !this is the column in local storage
!-t3e
IF (hmat%l_real) THEN
......@@ -174,7 +174,7 @@ CONTAINS
!---> local orbitals at the same atom and with itself
DO nkvec = 1,invsfct* (2*l+1)
locol = lapw%nv(jintsp)+lapw%index_lo(lo,na)+nkvec !this is the column of the matrix
IF (MOD(locol-1,mpi%n_size).EQ.mpi%n_rank) THEN
IF (MOD(locol-1,mpi%n_size) == mpi%n_rank) THEN
locol=(locol-1)/mpi%n_size+1 !this is the column in local storage
!-t3e
!---> calculate the hamiltonian matrix elements with other
......
......@@ -313,41 +313,41 @@ SUBROUTINE hsmt_sph_gpu(n,atoms,mpi,isp,input,noco,iintsp,jintsp,chi,lapw,el,e_s
END SUBROUTINE hsmt_sph_gpu
#endif
SUBROUTINE hsmt_sph_cpu(n,atoms,mpi,isp,input,noco,iintsp,jintsp,chi,lapw,el,e_shift,usdus,fj,gj,smat,hmat)
USE m_constants, ONLY : fpi_const,tpi_const
USE m_types
IMPLICIT NONE
TYPE(t_input),INTENT(IN) :: input
TYPE(t_mpi),INTENT(IN) :: mpi
TYPE(t_noco),INTENT(IN) :: noco
TYPE(t_atoms),INTENT(IN) :: atoms
TYPE(t_lapw),INTENT(IN) :: lapw
TYPE(t_usdus),INTENT(IN) :: usdus
CLASS(t_mat),INTENT(INOUT) :: smat,hmat
! ..
! .. Scalar Arguments ..
INTEGER, INTENT (IN) :: n,isp,iintsp,jintsp
COMPLEX, INTENT(IN) :: chi
! ..
! .. Array Arguments ..
REAL, INTENT (IN) :: el(0:atoms%lmaxd,atoms%ntype,input%jspins)
REAL, INTENT (IN) :: e_shift!(atoms%ntype,input%jspins)
REAL, INTENT (IN) :: fj(:,0:,:),gj(:,0:,:)
! ..
! .. Local Scalars ..
REAL tnn(3), elall,fct,fct2,fjkiln,gjkiln,ddnln,ski(3)
REAL apw_lo1,apw_lo2,apw1,w1
SUBROUTINE hsmt_sph_cpu(n,atoms,mpi,isp,input,noco,iintsp,jintsp,chi,lapw,el,e_shift,usdus,fj,gj,smat,hmat)
USE m_constants, ONLY : fpi_const,tpi_const
USE m_types
IMPLICIT NONE
TYPE(t_input),INTENT(IN) :: input
TYPE(t_mpi),INTENT(IN) :: mpi
TYPE(t_noco),INTENT(IN) :: noco
TYPE(t_atoms),INTENT(IN) :: atoms
TYPE(t_lapw),INTENT(IN) :: lapw
TYPE(t_usdus),INTENT(IN) :: usdus
CLASS(t_mat),INTENT(INOUT) :: smat,hmat
! ..
! .. Scalar Arguments ..
INTEGER, INTENT (IN) :: n,isp,iintsp,jintsp
COMPLEX, INTENT(IN) :: chi
! ..
! .. Array Arguments ..
REAL, INTENT (IN) :: el(0:atoms%lmaxd,atoms%ntype,input%jspins)
REAL, INTENT (IN) :: e_shift!(atoms%ntype,input%jspins)
REAL, INTENT (IN) :: fj(:,0:,:),gj(:,0:,:)
! ..
! .. Local Scalars ..
REAL tnn(3), elall,fct,fct2,fjkiln,gjkiln,ddnln,ski(3)
REAL apw_lo1,apw_lo2,apw1,w1
COMPLEX capw1
INTEGER kii,ki,kj,l,nn
INTEGER kj_BlockSize, kj_BlockNum, kjb, kj_start, kj_end
! ..
! .. Local Arrays ..
REAL fleg1(0:atoms%lmaxd),fleg2(0:atoms%lmaxd),fl2p1(0:atoms%lmaxd)
REAL fl2p1bt(0:atoms%lmaxd)
REAL qssbti(3),qssbtj(3)
REAL, ALLOCATABLE :: gdot(:)
REAL, ALLOCATABLE :: VecHelpS(:),VecHelpH(:)
COMPLEX capw1
INTEGER kii,ki,kj,l,nn,kj_end
! ..
! .. Local Arrays ..
REAL fleg1(0:atoms%lmaxd),fleg2(0:atoms%lmaxd),fl2p1(0:atoms%lmaxd)
REAL fl2p1bt(0:atoms%lmaxd)
REAL qssbti(3),qssbtj(3)
REAL, ALLOCATABLE :: plegend(:,:)
REAL, ALLOCATABLE :: VecHelpS(:),VecHelpH(:)
COMPLEX, ALLOCATABLE :: cph(:),cp_h(:,:)
LOGICAL apw(0:atoms%lmaxd)
......@@ -364,112 +364,118 @@ SUBROUTINE hsmt_sph_cpu(n,atoms,mpi,isp,input,noco,iintsp,jintsp,chi,lapw,el,e_s
CALL lapw%phase_factors(1,atoms%taual(:,nn),noco%qss,cp_h(:,nn))
ENDDO
!$OMP PARALLEL DEFAULT(NONE)&
!$OMP SHARED(lapw,atoms,noco,mpi,input,usdus,smat,hmat,cp_h)&
!$OMP SHARED(jintsp,iintsp,n,fleg1,fleg2,fj,gj,isp,fl2p1,el,e_shift,fl2p1bt,chi)&
!$OMP PRIVATE(kii,ki,ski,kj,plegend,l,kj_end,qssbti,qssbtj,fct2)&
!$OMP PRIVATE(cph,nn,tnn,fjkiln,gjkiln)&
!$OMP PRIVATE(w1,apw_lo1,apw_lo2,ddnln,elall,fct,apw1)&
!$OMP PRIVATE(capw1,VecHelpS,VecHelpH)
ALLOCATE(cph(MAXVAL(lapw%nv)))
ALLOCATE(plegend(MAXVAL(lapw%nv),0:atoms%lmaxd))
ALLOCATE(VecHelpS(MAXVAL(lapw%nv)),VecHelpH(MAXVAL(lapw%nv)))
plegend=0.0
plegend(:,0)=1.0
qssbti=MERGE(- noco%qss/2,+ noco%qss/2,jintsp.EQ.1)
qssbtj=MERGE(- noco%qss/2,+ noco%qss/2,iintsp.EQ.1)
!$OMP DO SCHEDULE(DYNAMIC,1)
DO ki = mpi%n_rank+1, lapw%nv(jintsp), mpi%n_size
kii=(ki-1)/mpi%n_size+1
ski = lapw%gvec(:,ki,jintsp) + qssbti
!---> legendre polynomials
DO kj = 1,ki
plegend(kj,1) = DOT_PRODUCT(lapw%gk(:,kj,iintsp),lapw%gk(:,ki,jintsp))
END DO
DO l = 1,atoms%lmax(n) - 1
plegend(:ki,l+1) = fleg1(l)*plegend(:ki,1)*plegend(:ki,l) - fleg2(l)*plegend(:ki,l-1)
END DO
!---> set up phase factors
cph = 0.0
DO nn = SUM(atoms%neq(:n-1))+1,SUM(atoms%neq(:n))
tnn = tpi_const*atoms%taual(:,nn)
DO kj = 1,ki
cph(kj) = cph(kj) +&
cp_h(ki,nn)/cp_h(kj,nn)
! CMPLX(COS(DOT_PRODUCT(ski-lapw%gvec(:,kj,iintsp)-qssbtj,tnn)),&
! SIN(DOT_PRODUCT(lapw%gvec(:,kj,iintsp)+qssbtj-ski,tnn)))
! IF (iintsp.NE.jintsp) cph(kj)=CONJG(cph(kj))
END DO
END DO
!---> update overlap and l-diagonal hamiltonian matrix
kj_end = MIN(ki,lapw%nv(iintsp))
VecHelpS = 0.d0
VecHelpH = 0.d0
DO l = 0,atoms%lmax(n)
fjkiln = fj(ki,l,jintsp)
gjkiln = gj(ki,l,jintsp)
!
IF (input%l_useapw) THEN
w1 = 0.5 * ( usdus%uds(l,n,isp)*usdus%dus(l,n,isp) + &
usdus%us(l,n,isp)*usdus%duds(l,n,isp) )
apw_lo1 = fl2p1(l) * 0.5 * atoms%rmt(n)**2 * ( gjkiln * w1 +&
fjkiln * usdus%us(l,n,isp) * usdus%dus(l,n,isp) )
apw_lo2 = fl2p1(l) * 0.5 * atoms%rmt(n)**2 * ( fjkiln * w1 +&
gjkiln * usdus%uds(l,n,isp) * usdus%duds(l,n,isp) )
!
ENDIF
ddnln = usdus%ddn(l,n,isp)
elall = el(l,n,isp)
IF (l<=atoms%lnonsph(n)) elall=elall-e_shift!(isp)
IF (smat%l_real) THEN
DO kj = 1,ki
fct = plegend(kj,l)*fl2p1(l)*&
( fjkiln*fj(kj,l,iintsp) + gjkiln*gj(kj,l,iintsp)*ddnln )
fct2 = plegend(kj,l)*fl2p1bt(l) * ( fjkiln*gj(kj,l,iintsp) + gjkiln*fj(kj,l,iintsp) )
smat%data_r(kj,kii)=smat%data_r(kj,kii)+REAL(cph(kj))*fct
hmat%data_r(kj,kii)=hmat%data_r(kj,kii) + REAL(cph(kj)) * ( fct * elall + fct2)
!+APW
IF (input%l_useapw) THEN
apw1 = REAL(cph(kj)) * plegend(kj,l) * &
kj_BlockSize = 1000
!$OMP PARALLEL DEFAULT(NONE)&
!$OMP SHARED(cp_h,kj_BlockSize,lapw,atoms,noco,mpi,input,usdus,smat,hmat)&
!$OMP SHARED(jintsp,iintsp,n,fleg1,fleg2,fj,gj,isp,fl2p1,el,e_shift,fl2p1bt,chi)&
!$OMP PRIVATE(kii,ki,ski,kj,gdot,l,qssbti,qssbtj,fct2,plegend)&
!$OMP PRIVATE(cph,nn,tnn,fjkiln,gjkiln)&
!$OMP PRIVATE(w1,apw_lo1,apw_lo2,ddnln,elall,fct,apw1)&
!$OMP PRIVATE(capw1,VecHelpS,VecHelpH)&
!$OMP PRIVATE(kj_start,kj_end,kj_BlockNum, kjb)
ALLOCATE(cph(MAXVAL(lapw%nv)))
ALLOCATE(gdot(0:atoms%lmaxd))
ALLOCATE(VecHelpS(MAXVAL(lapw%nv)),VecHelpH(MAXVAL(lapw%nv)))
gdot=0.0
qssbti=MERGE(- noco%qss/2,+ noco%qss/2,jintsp.EQ.1)
qssbtj=MERGE(- noco%qss/2,+ noco%qss/2,iintsp.EQ.1)
!$OMP DO SCHEDULE(DYNAMIC,1)
DO ki = mpi%n_rank+1, lapw%nv(jintsp), mpi%n_size
kii=(ki-1)/mpi%n_size+1
ski = lapw%gvec(:,ki,jintsp) + qssbti
kj_BlockNum = ki/kj_BlockSize + 1
DO kjb = 1, kj_BlockNum
kj_start = (kjb-1) * kj_BlockSize + 1
kj_end = MIN(ki,kjb * kj_BlockSize,lapw%nv(iintsp))
!---> legendre polynomials
DO kj = kj_start,kj_end
gdot(kj,1) = DOT_PRODUCT(lapw%gk(:,kj,iintsp),lapw%gk(:,ki,jintsp))
END DO
!---> set up phase factors
cph(kj_start:kj_end) = 0.0
DO nn = SUM(atoms%neq(:n-1))+1,SUM(atoms%neq(:n))
tnn = tpi_const*atoms%taual(:,nn)
DO kj = kj_start,kj_end
cph(kj) = cph(kj) +cp_h(ki,nn)/cp_h(kj,nn)
! CMPLX(COS(DOT_PRODUCT(ski-lapw%gvec(:,kj,iintsp)-qssbtj,tnn)),&
! SIN(DOT_PRODUCT(lapw%gvec(:,kj,iintsp)+qssbtj-ski,tnn)))
! IF (iintsp.NE.jintsp) cph(kj)=CONJG(cph(kj))
END DO
END DO
!---> update overlap and l-diagonal hamiltonian matrix
VecHelpS = 0.d0
VecHelpH = 0.d0
DO l = 0,atoms%lmax(n)
fjkiln = fj(ki,l,jintsp)
gjkiln = gj(ki,l,jintsp)
IF (input%l_useapw) THEN
w1 = 0.5 * ( usdus%uds(l,n,isp)*usdus%dus(l,n,isp) + &
usdus%us(l,n,isp)*usdus%duds(l,n,isp) )
apw_lo1 = fl2p1(l) * 0.5 * atoms%rmt(n)**2 * ( gjkiln * w1 +&
fjkiln * usdus%us(l,n,isp) * usdus%dus(l,n,isp) )
apw_lo2 = fl2p1(l) * 0.5 * atoms%rmt(n)**2 * ( fjkiln * w1 +&
gjkiln * usdus%uds(l,n,isp) * usdus%duds(l,n,isp) )
ENDIF
ddnln = usdus%ddn(l,n,isp)
elall = el(l,n,isp)
IF (l<=atoms%lnonsph(n)) elall=elall-e_shift!(isp)
IF (smat%l_real) THEN
DO kj = kj_start,kj_end
plegend = LegendrePoly(l,gdot(kj))
fct = plegend*fl2p1(l)*&
( fjkiln*fj(kj,l,iintsp) + gjkiln*gj(kj,l,iintsp)*ddnln )
fct2 = plegend*fl2p1bt(l) * ( fjkiln*gj(kj,l,iintsp) + gjkiln*fj(kj,l,iintsp) )
smat%data_r(kj,kii)=smat%data_r(kj,kii)+REAL(cph(kj))*fct
hmat%data_r(kj,kii)=hmat%data_r(kj,kii) + REAL(cph(kj)) * ( fct * elall + fct2)
!+APW
IF (input%l_useapw) THEN
apw1 = REAL(cph(kj)) * plegend * &
( apw_lo1 * fj(kj,l,iintsp) + apw_lo2 * gj(kj,l,iintsp) )
hmat%data_r(kj,kii)=hmat%data_r(kj,kii) + apw1
ENDIF
!-APW
ENDDO
ELSE
DO kj = 1,kj_end
fct = plegend(kj,l)*fl2p1(l)*&
hmat%data_r(kj,kii)=hmat%data_r(kj,kii) + apw1
ENDIF
!-APW
ENDDO
ELSE
plegend = LegendrePoly(l,gdot(kj))
DO kj = kj_start,kj_end
fct = plegend*fl2p1(l)*&
( fjkiln*fj(kj,l,iintsp) + gjkiln*gj(kj,l,iintsp)*ddnln )
fct2 = plegend(kj,l)*fl2p1bt(l) * ( fjkiln*gj(kj,l,iintsp) + gjkiln*fj(kj,l,iintsp) )
VecHelpS(kj) = VecHelpS(kj) + fct
VecHelpH(kj) = VecHelpH(kj) + fct*elall + fct2
IF (input%l_useapw) THEN
capw1 = cph(kj)*plegend(kj,l)&
* ( apw_lo1 * fj(kj,l,iintsp) + apw_lo2 * gj(kj,l,iintsp) )
hmat%data_c(kj,kii)=hmat%data_c(kj,kii) + capw1
ENDIF
END DO
ENDIF
!---> end loop over l
ENDDO
IF (.not.smat%l_real) THEN
smat%data_c(:kj_end,kii)=smat%data_c(:kj_end,kii) + chi*cph(:kj_end) * VecHelpS(:kj_end)
hmat%data_c(:kj_end,kii)=hmat%data_c(:kj_end,kii) + chi*cph(:kj_end) * VecHelpH(:kj_end)
ENDIF
!---> end loop over ki
ENDDO
!$OMP END DO
DEALLOCATE(plegend)
DEALLOCATE(cph)
DEALLOCATE(VecHelpS,VecHelpH)
!$OMP END PARALLEL
CALL timestop("spherical setup")
RETURN
END SUBROUTINE hsmt_sph_cpu
fct2 = plegend*fl2p1bt(l) * ( fjkiln*gj(kj,l,iintsp) + gjkiln*fj(kj,l,iintsp) )
VecHelpS(kj) = VecHelpS(kj) + fct
VecHelpH(kj) = VecHelpH(kj) + fct*elall + fct2
IF (input%l_useapw) THEN
capw1 = cph(kj)*plegend *&
( apw_lo1 * fj(kj,l,iintsp) + apw_lo2 * gj(kj,l,iintsp) )
hmat%data_c(kj,kii)=hmat%data_c(kj,kii) + capw1
ENDIF
END DO
ENDIF
!---> end loop over l
ENDDO
IF (.not.smat%l_real) THEN
smat%data_c(kj_start:kj_end,kii)=smat%data_c(kj_start:kj_end,kii) + chi*cph(kj_start:kj_end) * VecHelpS(kj_start:kj_end)
hmat%data_c(kj_start:kj_end,kii)=hmat%data_c(kj_start:kj_end,kii) + chi*cph(kj_start:kj_end) * VecHelpH(kj_start:kj_end)
ENDIF
!---> end loop over kj-blocks
ENDDO
!---> end loop over ki
ENDDO
!$OMP END DO
DEALLOCATE(gdot)
DEALLOCATE(cph)
DEALLOCATE(VecHelpS,VecHelpH)
!$OMP END PARALLEL
CALL timestop("spherical setup")
RETURN
END SUBROUTINE hsmt_sph_cpu
END MODULE m_hsmt_sph
......@@ -58,15 +58,15 @@ CONTAINS
CALL lapw%phase_factors(i,atoms%taual(:,na),noco%qss,cph(:,i))
ENDDO
IF ((atoms%invsat(na).EQ.0) .OR. (atoms%invsat(na).EQ.1)) THEN
IF ((atoms%invsat(na) == 0) .OR. (atoms%invsat(na) == 1)) THEN
!---> if this atom is the first of two atoms related by inversion,
!---> the contributions to the overlap matrix of both atoms are added
!---> at once. where it is made use of the fact, that the sum of
!---> these contributions is twice the real part of the contribution
!---> of each atom. note, that in this case there are twice as many
!---> (2*(2*l+1)) k-vectors (compare abccoflo and comments there).
IF (atoms%invsat(na).EQ.0) invsfct = 1
IF (atoms%invsat(na).EQ.1) invsfct = 2
IF (atoms%invsat(na) == 0) invsfct = 1
IF (atoms%invsat(na) == 1) invsfct = 2
con = fpi_const/SQRT(cell%omtil)* ((atoms%rmt(ntyp))**2)/2.0
......@@ -82,7 +82,7 @@ CONTAINS
DO nkvec = 1,invsfct* (2*l+1) !Each LO can have several functions
!+t3e
locol = lapw%nv(jintsp)+lapw%index_lo(lo,na)+nkvec !this is the column of the matrix
IF (MOD(locol-1,mpi%n_size).EQ.mpi%n_rank) THEN
IF (MOD(locol-1,mpi%n_size) == mpi%n_rank) THEN
locol=(locol-1)/mpi%n_size+1 !this is the column in local storage
!-t3e
k = lapw%kvec(nkvec,lo,na)
......@@ -107,7 +107,7 @@ CONTAINS
!---> orbitals at the same atom, if they have the same l
DO lop = 1, (lo-1)
lp = atoms%llo(lop,ntyp)
IF (l.EQ.lp) THEN
IF (l == lp) THEN
fact3 = con**2 * fl2p1 * (&
alo1(lop)*(alo1(lo) + &
clo1(lo)*ud%uulon(lo,ntyp,isp))+&
......
......@@ -13,7 +13,7 @@ MODULE m_fleur_arguments
CHARACTER(len=200) :: values
END TYPE t_fleur_param
INTEGER,PARAMETER:: no_params=6
INTEGER,PARAMETER:: no_params=7
TYPE(t_fleur_param) :: fleur_param(no_params)=(/&
t_fleur_param(0,"-old","Generate input file for old fleur versions",""),&
......@@ -21,6 +21,7 @@ MODULE m_fleur_arguments
t_fleur_param(0,"-genEnpara","generate an 'enpara' file",""),&
t_fleur_param(0,"-electronConfig","explicitely write the electron configuration into inp.xml",""),&
t_fleur_param(0,"-fast_defaults","generate more aggressive (and less stable) input parameters for faster calculations",""),&
t_fleur_param(0,"-kpts_gw","add alternative k point set for GW",""),&
t_fleur_param(0,"-h","print this help message","")&
/)
......
......@@ -32,6 +32,7 @@ CONTAINS
CALL print_argument("-explicit")
CALL print_argument("-electronConfig")
CALL print_argument("-fast_defaults")
CALL print_argument("-kpts_gw")
CALL print_argument("-h")
WRITE(*,'(a)')""
WRITE(*,'(a)')"Please check the documentation on www.flapw.de for more details"
......
......@@ -279,6 +279,13 @@ SUBROUTINE w_inpXML(&
212 FORMAT(' <kPointDensity denX="',f0.6,'" denY="',f0.6,'" denZ="',f0.6,'" gamma="',l1,'"/>')
WRITE (fileNum,212) kpts%kPointDensity(1),kpts%kPointDensity(2),kpts%kPointDensity(3),kptGamma
END IF
IF(juDFT_was_argument("-kpts_gw")) THEN
WRITE(fileNum,'(a)') ' <altKPointSet purpose="GW">'
WRITE(fileNum,'(a)') ' <kPointListFile filename="kpts_gw"/>'
WRITE(fileNum,'(a)') ' </altKPointSet>'
END IF
WRITE (fileNum,'(a)') ' </bzIntegration>'
! <energyParameterLimits ellow="-2.00000" elup="2.00000"/>
......
......@@ -13,7 +13,7 @@ MODULE m_fleur_arguments
CHARACTER(len=200) :: values
END TYPE t_fleur_param
INTEGER,PARAMETER:: no_params=22
INTEGER,PARAMETER:: no_params=23
TYPE(t_fleur_param) :: fleur_param(no_params)=(/&
!Input options
t_fleur_param(0,"-toXML","Convert an old 'inp' file into the new XML format",""),&
......@@ -60,6 +60,7 @@ MODULE m_fleur_arguments
!Output
t_fleur_param(0,"-no_out","Do not open the 'out' file but write to stdout",""),&
t_fleur_param(0,"-genEnpara","Generate an 'enpara' file for the energy parameters",""),&
t_fleur_param(0,"-kpts_gw","add alternative k point set for GW in all outputs for the XML input file",""),&
t_fleur_param(0,"-h","Print this message",""),&
t_fleur_param(0,"-no_send","Do not send usage data","")&
!HDF density
......
......@@ -28,6 +28,7 @@
USE m_setupMPI
USE m_cdn_io
USE m_fleur_info
USE m_broyd_io
USE m_checks
USE m_prpqfftmap
USE m_writeOutHeader
......@@ -523,6 +524,7 @@
CALL results%init(dimension,input,atoms,kpts,noco)
IF (mpi%irank.EQ.0) THEN
IF(input%gw.NE.0) CALL resetBroydenHistory()
CALL setStartingDensity(noco%l_noco)
END IF
......
......@@ -32,6 +32,7 @@ math/DoubleFactorial.f90
math/ExpSave.f90
math/intgr.F90
math/ylm4.F90
math/LegendrePoly.f90
)
if (FLEUR_USE_FFTMKL)
set(fleur_F90 ${fleur_F90} math/mkl_dfti.f90)
......
module m_LegendrePoly
implicit none
contains
pure function LegendrePoly(l,x) result(p)
implicit none
integer, intent(in) :: l
real, intent(in) :: x(:)
real :: p(size(x))
select case(l)
case(0)
p = 1.0
case(1)
p = x
case(2)
p = x**2 - 1./3.
case(3)
p = x**3 - 3./5. * x
case(4)
p = x**4 - 6./7. * x**2 + 3./35.
case(5)
p = x**5 - 10./9. * x**3 + 5./21. * x
case(6)
p = x**6 - 15./11. * x**4 + 5./11. * x**2 - 5./231
case(7)
p = x**7 - 21./13. * x**5 + 105./143. * x**3 - 35./429. * x
case(8)
p = x**8 - 28./15. * x**6 + 14./13. * x**4 - 28./143. * x**2 + 7./1287.
case(9)
p = x**9 - 36./17. * x**7 + 126./85. * x**5 - 84./221. * x**3 + 17./656.
case(10)
p = x**10 - 45./19. * x**8 + 630./323. * x**6 - 210./323. * x**4 + 106./1413. * x**2 - 1./733.
end select
end function LegendrePoly
pure function LegendrePoly_scalar(l,x) result(p)
implicit none
integer, intent(in) :: l
real, intent(in) :: x
real :: p
select case(l)
case(0)
p = 1.0
case(1)
p = x
case(2)
p = x**2 - 1./3.
case(3)
p = x**3 - 3./5. * x
case(4)
p = x**4 - 6./7. * x**2 + 3./35.
case(5)
p = x**5 - 10./9. * x**3 + 5./21. * x
case(6)
p = x**6 - 15./11. * x**4 + 5./11. * x**2 - 5./231
case(7)
p = x**7 - 21./13. * x**5 + 105./143. * x**3 - 35./429. * x
case(8)
p = x**8 - 28./15. * x**6 + 14./13. * x**4 - 28./143. * x**2 + 7./1287.
case(9)
p = x**9 - 36./17. * x**7 + 126./85. * x**5 - 84./221. * x**3 + 17./656.
case(10)
p = x**10 - 45./19. * x**8 + 630./323. * x**6 - 210./323. * x**4 + 106./1413. * x**2 - 1./733.
end select
end function LegendrePoly_scalar
end module m_LegendrePoly
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment