Commit f21edce0 authored by Markus Betzinger's avatar Markus Betzinger

Bugfix in abcof.F90.

parent 2712fa64
......@@ -25,9 +25,9 @@ CONTAINS
TYPE(t_atoms),INTENT(IN) :: atoms
! ..
! .. Scalar Arguments ..
INTEGER, INTENT (IN) :: nobd
INTEGER, INTENT (IN) :: ne
INTEGER, INTENT (IN) :: jspin
INTEGER, INTENT (IN) :: nobd
INTEGER, INTENT (IN) :: ne
INTEGER, INTENT (IN) :: jspin
! ..
! .. Array Arguments ..
INTEGER, INTENT (IN) :: kveclo(atoms%nlotot)
......@@ -140,7 +140,7 @@ CONTAINS
!$ acof_inv(:,:) = cmplx(0.0,0.0)
!$ bcof_inv(:,:) = cmplx(0.0,0.0)
!$ ENDIF
#endif
#endif
!!!!
......@@ -186,7 +186,7 @@ CONTAINS
fk(2) = bkpt(2) + lapw%k2(k,jspin) + qss2
fk(3) = bkpt(3) + lapw%k3(k,jspin) + qss3
ENDIF ! (noco%l_ss)
s=dot_product(fk,matmul(fk,cell%bbmat))
s= dot_product(fk,matmul(cell%bbmat,fk))
s = sqrt(s)
r1 = atoms%rmt(n)*s
CALL sphbes(atoms%lmax(n),r1,fj)
......@@ -223,7 +223,7 @@ CONTAINS
END IF
ENDDO
ENDDO
fkp=matmul(cell%bmat,fkr)
fkp=matmul(fkr,cell%bmat)
! ----> generate spherical harmonics
CALL ylm4(atoms%lmax(n),fkp,ylm)
! ----> loop over l
......@@ -288,12 +288,12 @@ CONTAINS
!$ acof(:,:,jatom) = acof(:,:,jatom) + acof_inv(:,:)
!$ bcof(:,:,jatom) = bcof(:,:,jatom) + bcof_inv(:,:)
!$ ENDIF
#endif
#endif
!$OMP END CRITICAL
!$ DEALLOCATE(acof_loc,bcof_loc)
#if ( defined(CPP_SOC) && defined(CPP_INVERSION) )
!$ DEALLOCATE(acof_inv,bcof_inv)
#endif
#endif
DEALLOCATE(work)
!$OMP END PARALLEL
ENDIF ! invsatom == ( 0 v 1 )
......@@ -305,14 +305,14 @@ CONTAINS
!
! -p,n (l+m) p,n *
! Usually, we exploit that A = (-1) (A ) if p and -p are the positions
! l,m l,-m
! l,m l,-m
! of two atoms related by inversion symmetry and the coefficients are considered to
! be in the local frame of the representative atom. This is possible, if z is real.
! After SOC, however, the eigenvectors z are complex and this is no longer possible
! so the z has to enter, not z*. This is done within the k-loop.
! -p,n m p,n *
! When called from hsohelp, we need A = (-1) (A ) because we don't have to
! l,m l,-m l
! l,m l,-m l
! rotate, but in the sums in hsoham only products A* A enter and the (-1) cancels.
! lm lm
#else
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment