... | ... | @@ -24,8 +24,8 @@ Thus by knowing the GF one can extract the |
|
|
systems properties, i.e. the expectation value $`\langle
|
|
|
\mathcal{A}\rangle`$ of an operator $`\hat{\mathcal{A}}`$:
|
|
|
```math
|
|
|
\langle\mathcal{A}\rangle=-\frac{1}{\pi}\mathrm{Im}\int_{-\infty}^{E_F}\mathrm{d}E\mathrm{Tr}\left\[
|
|
|
\hat{\mathcal{A}}\mathcal{G}(E) \right\]
|
|
|
\langle\mathcal{A}\rangle=-\frac{1}{\pi}\mathrm{Im}\int_{-\infty}^{E_F}\mathrm{d}E\mathrm{Tr}\left[
|
|
|
\hat{\mathcal{A}}\mathcal{G}(E) \right]
|
|
|
```
|
|
|
For example the density
|
|
|
$`\rho`$ can be calculated via
|
... | ... | @@ -41,8 +41,8 @@ which gives the exression |
|
|
where the second
|
|
|
expression is the formulation in the KKR formalism where all quantities
|
|
|
are expressed in atom centered (at $`\vec{R}^n`$) voronoi cells and
|
|
|
therein expanded in real spherical harmonics $`Y_L(\hat{r})`$. {{
|
|
|
:kkrimp/voronoi_cells.png?600 \|Division of space in KKR formalism}}
|
|
|
therein expanded in real spherical harmonics $`Y_L(\hat{r})`$.
|
|
|

|
|
|
|
|
|
## Impurity embedding
|
|
|
|
... | ... | @@ -95,9 +95,9 @@ contribution and a multiple scattering or backscattering contribution. |
|
|
Then the charge density at the atomic site $`n`$ is given by
|
|
|
|
|
|
```math
|
|
|
\rho_L^{n}(r)=-\frac{1}{\pi}\int_{-\infty}^{E_F}\mathrm{d}E\left\[
|
|
|
\rho_L^{n}(r)=-\frac{1}{\pi}\int_{-\infty}^{E_F}\mathrm{d}E\left[
|
|
|
\underline{R}_L^n(r;E)\underline{\overline{S}}_L^n(r;E)+\underline{R}_L^n(r;E)\underline{\underline{G}}^{nn}\underline{\overline{G}}_L^n(r;E)
|
|
|
\right\]
|
|
|
\right]
|
|
|
```
|
|
|
Where the expression in square brackets is the Trace over
|
|
|
the Green function and the first part is called single-site contribution
|
... | ... | @@ -115,8 +115,8 @@ positions vanish, i.e. $`\Delta t=0`$. This allows us to embed the |
|
|
impurity in a finite real space cluster into the host system. The
|
|
|
calculation is then done as follows.
|
|
|
|
|
|
* Compute the host systems Green function and write out the structural Green function as well as the single-site $`t`$ matrix of the host $`t_{\mathrm{host}}`$.
|
|
|
* From the impurity potential compute the $`t`$-matrix of the impurity and construct $`\Delta t=t_{\mathrm{host}}-t_{\mathrm{imp}}`$
|
|
|
* Solve the impurity Dyson equation: $`\underline{\underline{G}}=\underline{\underline{G}}_{\mathrm{host}}+\underline{\underline{G}}_{\mathrm{host}}\Delta t\underline{\underline{G}}`$
|
|
|
* Compute the new impurity potential from the Green function and update the input potential
|
|
|
* Repeat steps 2.-4. until the impurity potential converges |
|
|
- Compute the host systems Green function and write out the structural Green function as well as the single-site $`t`$ matrix of the host $`t_{\mathrm{host}}`$.
|
|
|
- From the impurity potential compute the $`t`$-matrix of the impurity and construct $`\Delta t=t_{\mathrm{host}}-t_{\mathrm{imp}}`$
|
|
|
- Solve the impurity Dyson equation: $`\underline{\underline{G}}=\underline{\underline{G}}_{\mathrm{host}}+\underline{\underline{G}}_{\mathrm{host}}\Delta t\underline{\underline{G}}`$
|
|
|
- Compute the new impurity potential from the Green function and update the input potential
|
|
|
- Repeat steps 2.-4. until the impurity potential converges |