Changes
Page history
Fix KKRimp KKRsusc and KKRnano file
authored
Sep 11, 2019
by
Philipp Rüssmann
Hide whitespace changes
Inline
Side-by-side
kkrsusc/theory.md
View page @
2110ad3f
#####
# KKRsusc program: Theory
{#kkrsusc_program_theory}
# KKRsusc program: Theory
This page should give you a brief introduction to the theoretical
background of the KKRsusc program. To find more details on the theory
and a detailed description on the method follow these links:
`
*
`
[
`S.`` ``Lounis`` ``et`` ``al.,`` ``Phys.`` ``Rev.`` ``Lett.`` ``105,`` ``
187205
`` ``
(2010)
`
](
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.187205
"wikilink"
)
\
`
*
`
[
`S.`` ``Lounis`` ``et`` ``al.,`` ``Phys.`` ``Rev.`` ``B`` ``83,`` ``
035109
`` ``
(2011)
`
](
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.035109
"wikilink"
)
\
`
*
`
[
`B.`` ``
Schweflinghaus
`` ``et`` ``al.,`` ``Phys.`` ``Rev.`` ``B`` ``89,`` ``
235439
`` ``
(2014)
`
](
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.235439
"wikilink"
)
*
[
S. Lounis et al., Phys. Rev. Lett. 105,
187205
(2010)
](
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.187205
)
*
[
S. Lounis et al., Phys. Rev. B 83,
035109
(2011)
](
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.035109
)
*
[
B.
Schweflinghaus
et al., Phys. Rev. B 89,
235439
(2014)
](
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.235439
)
###
## Projected Green function
{#projected_green_function}
## Projected Green function
The Kohn-Sham (KS) Green function (GF) is the resolvent of the
corresponding Hamiltonian,
\$
G
\
_
{
\
\
text{KS}}(E) = (E -
\
\
mathcal{H}
\
_
{
\
\
text{KS}})
\^
{-1}
\
$
. In the Korringa-Kohn-Rostoker Green
corresponding Hamiltonian,
$
`G
_{\text{KS}}(E) = (E -
\mathcal{H}_{\text{KS}})\^{-1}$
`
. In the Korringa-Kohn-Rostoker Green
function (KKR-GF) method, space is partitioned into nonoverlapping
regions surrounding the atoms, labeled
\$
i
\$
. These regions are taken as
regions surrounding the atoms, labeled
$
`i$`
. These regions are taken as
spherical in the atomic sphere approximation (ASA), and the KS potential
is also assumed to be spherical around each atom,
\
$
V
\^
{
\
\
text{KS}}
\
_
i(r)
\
$
, with
\
$
r =
\
|\
\
vec{r}
\
\
,
\|\$
and
\$\
\
hat{r} =
\
\
vec{r}/r
\
$
. Then the KS GF is expressed in terms of energy-dependent
$
`
V\^{\text{KS}}_i(r)$
`
, with $
`
r = |\vec{r}\
,|$`
and
$
`
\hat{r} =
\vec{r}/r$
`
. Then the KS GF is expressed in terms of energy-dependent
scattering solutions for each atomic potential,
\$
R
\
_
{i
\
\
ell}
\^\
\
sigma(r;E)
\
\
,Y
\
_
{L}(
\
\
hat{r})
\
$
and
\$
H
\
_
{i
\
\
ell}
\^\
\
sigma(r;E)
\
\
,Y
\
_
{L}(
\
\
hat{r})
\
$
, which are products of
radial functions and (real) spherical harmonics, for each spin
\$\
\
sigma
=
\
\
;
\
\
uparrow,
\
\
,
\
\
downarrow
\
$
and angular momentum
\
$
L = (
\
\
ell,m)
\
$
.
\$
R
\
_
{i
\
\
ell}
\^\
\
sigma(r;E)
\
$
is regular at the center of the ASA
sphere, and
\$
H
\
_
{i
\
\
ell}
\^\
\
sigma(r;E)
\
$
diverges there.
The Korringa-Kohn-Rostoker Green function is given by
\\
begin{eqnarray}
`
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &=& \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \nonumber\
\`
\
`
&&\hspace{-4em} + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}') \; ,
`
\\
end{eqnarray}
where
\$
r
\
_\<
=
\
\
min(r,r
\'
)
\
$
and
\$
r
\
_\>
=
\
\
max(r,r
\'
)
\
$
, and
\
$
G
\^
{
\
\
sigma,
\
\
text{str}}
\
_
{iL,jL
\'
}(E)
\
$
is the
$
`R
_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$
`
and
$
`H
_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$
`
, which are products of
radial functions and (real) spherical harmonics, for each spin
$
`
\sigma
= \
;
\uparrow,\,\downarrow$
`
and angular momentum $
`
L = (\ell,m)$
`
.
$
`R
_{i\ell}\^\sigma(r;E)$
`
is regular at the center of the ASA
sphere, and
$
`H
_{i\ell}\^\sigma(r;E)$
`
diverges there.
The Korringa-Kohn-Rostoker Green function is given by
```
math
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &=& \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \nonumber\
&&\hspace{-4em} + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}') \; ,
```
where
$
`r
_\< = \min(r,r\')$
`
and
$
`r
_\> =
\max(r,r\')$
`
, and $
`
G\^{\sigma,\text{str}}_{iL,jL\'}(E)$
`
is the
structural GF, describing backscattering effects.
Near the Fermi energy (
\$
E
\_\
\
text{F}
\
$
) one may approximate
\$
R
\
_
{i
\
\
ell}
\^\
\
sigma(r;E)
\
\
approx
R
\
_
{i
\
\
ell}
\^\
\
sigma(r;E
\
_\
\
text{F})
\
$
.
Near the Fermi energy (
$
`E_
\text{F}$
`
) one may approximate
$
`R
_{i\ell}\^\sigma(r;E) \approx
R_{i\ell}\^\sigma(r;E_\text{F})$
`
.
###
## Susceptibility
## Susceptibility
###
#
Kohn-Sham susceptibility
{#kohn_sham_susceptibility}
### Kohn-Sham susceptibility
The transverse magnetic Kohn-Sham susceptibility is given by
\\
begin{eqnarray}
` \chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r}\,,\vec{r}\,';\omega)`
\
`
&
=
&
-\frac{1}{\pi}\!\int^{E_\text{F}}\!\!\!\!\text{d}E \nonumber \\`
\
`
& & \hspace{-6em}\Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big) \, .
`
```
math
\chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r}\,,\vec{r}\,';\omega)
&=& -\frac{1}{\pi}\!\int^{E_\text{F}}\!\!\!\!\text{d}E \nonumber \
\
&
&
\hspace{-6em}\Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big) \, .
`
`
`
\\
end{eqnarray}
Here, $
`\chi\^{\uparrow\downarrow}$`
and
$
`\chi\^{\downarrow\uparrow}$`
correspond to $
`\chi\^{+-}$`
and
$
`\chi\^{-+}$`
, respectively.
Here,
\$\\
chi
\^
{
\\
uparrow
\\
downarrow}
\$
and
\$\\
chi
\^
{
\\
downarrow
\\
uparrow}
\$
correspond to
\$\\
chi
\^
{+-}
\$
and
\$\\
chi
\^
{-+}
\$
, respectively.
### Dyson-like equation
####
Dyson-like equation {#dyson_like_equation}
####
Electron Self-energy
##### Electron Self-energy {#electron_self_energy}
#### Dyson equation {#dyson_equation}
#### Dyson equation
Let us turn our attention to the Dyson equation for the GF, including
the self-energy describing the coupling to the magnetic excitations:
\\
begin{eqnarray}
` G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E)`
\
` &=& G_{0,ij}^\sigma(\vec{r}\,,\vec{r}\,';E) + \sum_{pq}\!\int\!\!\text{d}\vec{r}_1\!\int\!\!\text{d}\vec{r}_2\; \times \nonumber\\`
\
` & & \hspace{-6em}\times G_{0,ip}^\sigma(\vec{r}\,,\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}\,';E) \; .`
\\
end{eqnarray}
```
math
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E)
&=& G_{0,ij}^\sigma(\vec{r}\,,\vec{r}\,';E) + \sum_{pq}\!\int\!\!\text{d}\vec{r}_1\!\int\!\!\text{d}\vec{r}_2\; \times \nonumber\
& & \hspace{-6em}\times G_{0,ip}^\sigma(\vec{r}\,,\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}\,';E) \; .
```