Fix KKRimp KKRsusc and KKRnano file authored by Philipp Rüssmann's avatar Philipp Rüssmann
###### KKRsusc program: Theory {#kkrsusc_program_theory}
# KKRsusc program: Theory
This page should give you a brief introduction to the theoretical
background of the KKRsusc program. To find more details on the theory
and a detailed description on the method follow these links:
` * `[`S.`` ``Lounis`` ``et`` ``al.,`` ``Phys.`` ``Rev.`` ``Lett.`` ``105,`` ``187205`` ``(2010)`](http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.187205 "wikilink")\
` * `[`S.`` ``Lounis`` ``et`` ``al.,`` ``Phys.`` ``Rev.`` ``B`` ``83,`` ``035109`` ``(2011)`](http://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.035109 "wikilink")\
` * `[`B.`` ``Schweflinghaus`` ``et`` ``al.,`` ``Phys.`` ``Rev.`` ``B`` ``89,`` ``235439`` ``(2014)`](http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.235439 "wikilink")
* [S. Lounis et al., Phys. Rev. Lett. 105, 187205 (2010)](http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.187205)
* [S. Lounis et al., Phys. Rev. B 83, 035109 (2011)](http://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.035109)
* [B. Schweflinghaus et al., Phys. Rev. B 89, 235439 (2014)](http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.235439)
##### Projected Green function {#projected_green_function}
## Projected Green function
The Kohn-Sham (KS) Green function (GF) is the resolvent of the
corresponding Hamiltonian, \$G\_{\\text{KS}}(E) = (E -
\\mathcal{H}\_{\\text{KS}})\^{-1}\$. In the Korringa-Kohn-Rostoker Green
corresponding Hamiltonian, $`G_{\text{KS}}(E) = (E -
\mathcal{H}_{\text{KS}})\^{-1}$`. In the Korringa-Kohn-Rostoker Green
function (KKR-GF) method, space is partitioned into nonoverlapping
regions surrounding the atoms, labeled \$i\$. These regions are taken as
regions surrounding the atoms, labeled $`i$`. These regions are taken as
spherical in the atomic sphere approximation (ASA), and the KS potential
is also assumed to be spherical around each atom,
\$V\^{\\text{KS}}\_i(r)\$, with \$r = \|\\vec{r}\\,\|\$ and \$\\hat{r} =
\\vec{r}/r\$. Then the KS GF is expressed in terms of energy-dependent
$`V\^{\text{KS}}_i(r)$`, with $`r = |\vec{r}\,|$` and $`\hat{r} =
\vec{r}/r$`. Then the KS GF is expressed in terms of energy-dependent
scattering solutions for each atomic potential,
\$R\_{i\\ell}\^\\sigma(r;E)\\,Y\_{L}(\\hat{r})\$ and
\$H\_{i\\ell}\^\\sigma(r;E)\\,Y\_{L}(\\hat{r})\$, which are products of
radial functions and (real) spherical harmonics, for each spin \$\\sigma
= \\;\\uparrow,\\,\\downarrow\$ and angular momentum \$L = (\\ell,m)\$.
\$R\_{i\\ell}\^\\sigma(r;E)\$ is regular at the center of the ASA
sphere, and \$H\_{i\\ell}\^\\sigma(r;E)\$ diverges there.
The Korringa-Kohn-Rostoker Green function is given by \\begin{eqnarray}
` G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &=& \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \nonumber\\`\
` &&\hspace{-4em} + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}') \; ,`
\\end{eqnarray} where \$r\_\< = \\min(r,r\')\$ and \$r\_\> =
\\max(r,r\')\$, and \$G\^{\\sigma,\\text{str}}\_{iL,jL\'}(E)\$ is the
$`R_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$` and
$`H_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$`, which are products of
radial functions and (real) spherical harmonics, for each spin $`\sigma
= \;\uparrow,\,\downarrow$` and angular momentum $`L = (\ell,m)$`.
$`R_{i\ell}\^\sigma(r;E)$` is regular at the center of the ASA
sphere, and $`H_{i\ell}\^\sigma(r;E)$` diverges there.
The Korringa-Kohn-Rostoker Green function is given by
```math
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &=& \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \nonumber\
&&\hspace{-4em} + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}') \; ,
```
where $`r_\< = \min(r,r\')$` and $`r_\> =
\max(r,r\')$`, and $`G\^{\sigma,\text{str}}_{iL,jL\'}(E)$` is the
structural GF, describing backscattering effects.
Near the Fermi energy (\$E\_\\text{F}\$) one may approximate
\$R\_{i\\ell}\^\\sigma(r;E) \\approx
R\_{i\\ell}\^\\sigma(r;E\_\\text{F})\$.
Near the Fermi energy ($`E_\text{F}$`) one may approximate
$`R_{i\ell}\^\sigma(r;E) \approx
R_{i\ell}\^\sigma(r;E_\text{F})$`.
##### Susceptibility
## Susceptibility
#### Kohn-Sham susceptibility {#kohn_sham_susceptibility}
### Kohn-Sham susceptibility
The transverse magnetic Kohn-Sham susceptibility is given by
\\begin{eqnarray}
` \chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r}\,,\vec{r}\,';\omega)`\
` &=& -\frac{1}{\pi}\!\int^{E_\text{F}}\!\!\!\!\text{d}E \nonumber \\`\
` & & \hspace{-6em}\Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big) \, .`
```math
\chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r}\,,\vec{r}\,';\omega)
&=& -\frac{1}{\pi}\!\int^{E_\text{F}}\!\!\!\!\text{d}E \nonumber \\
& & \hspace{-6em}\Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big) \, .
```
\\end{eqnarray}
Here, $`\chi\^{\uparrow\downarrow}$` and
$`\chi\^{\downarrow\uparrow}$` correspond to $`\chi\^{+-}$` and
$`\chi\^{-+}$`, respectively.
Here, \$\\chi\^{\\uparrow\\downarrow}\$ and
\$\\chi\^{\\downarrow\\uparrow}\$ correspond to \$\\chi\^{+-}\$ and
\$\\chi\^{-+}\$, respectively.
### Dyson-like equation
#### Dyson-like equation {#dyson_like_equation}
#### Electron Self-energy
##### Electron Self-energy {#electron_self_energy}
#### Dyson equation {#dyson_equation}
#### Dyson equation
Let us turn our attention to the Dyson equation for the GF, including
the self-energy describing the coupling to the magnetic excitations:
\\begin{eqnarray}
` G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E)`\
` &=& G_{0,ij}^\sigma(\vec{r}\,,\vec{r}\,';E) + \sum_{pq}\!\int\!\!\text{d}\vec{r}_1\!\int\!\!\text{d}\vec{r}_2\; \times \nonumber\\`\
` & & \hspace{-6em}\times G_{0,ip}^\sigma(\vec{r}\,,\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}\,';E) \; .`
\\end{eqnarray}
```math
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E)
&=& G_{0,ij}^\sigma(\vec{r}\,,\vec{r}\,';E) + \sum_{pq}\!\int\!\!\text{d}\vec{r}_1\!\int\!\!\text{d}\vec{r}_2\; \times \nonumber\
& & \hspace{-6em}\times G_{0,ip}^\sigma(\vec{r}\,,\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}\,';E) \; .
```