Changes
Page history
Update theory
authored
Jan 30, 2025
by
Johannes Wasmer
Hide whitespace changes
Inline
Side-by-side
kkrsusc/theory.md
View page @
34f35c23
# KKRsusc program: Theory
This page should give you a brief introduction to the theoretical
background of the KKRsusc program. To find more details on the theory
and a detailed description on the method follow these links:
*
[
S. Lounis et al., Phys. Rev. Lett. 105, 187205 (2010)
](
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.187205
)
*
[
S. Lounis et al., Phys. Rev. B 83, 035109 (2011)
](
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.035109
)
*
[
B. Schweflinghaus et al., Phys. Rev. B 89, 235439 (2014)
](
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.235439
)
## Projected Green function
The Kohn-Sham (KS) Green function (GF) is the resolvent of the
corresponding Hamiltonian, $
`G_{\text{KS}}(E) = (E -
\mathcal{H}_{\text{KS}})\^{-1}
$
`
. In the Korringa-Kohn-Rostoker Green
function (KKR-GF) method, space is partitioned into nonoverlapping
regions surrounding the atoms, labeled $
`i$`
. These regions are taken as
spherical in the atomic sphere approximation (ASA), and the KS potential
is also assumed to be spherical around each atom,
$
`V\^{\text{KS}}_i(r)$`
, with $
`r = |\vec{r}\,|$`
and $
`\hat{r} =
\vec{r}/r$`
. Then the KS GF is expressed in terms of energy-dependent
scattering solutions for each atomic potential,
$
`R_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$`
and
$
`H_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$`
, which are products of
radial functions and (real) spherical harmonics, for each spin $
`\sigma
= \;\uparrow,\,\downarrow$`
and angular momentum $
`L = (\ell,m)$`
.
$
`R_{i\ell}\^\sigma(r;E)$`
is regular at the center of the ASA
sphere, and $
`H_{i\ell}\^\sigma(r;E)$`
diverges there.
The Korringa-Kohn-Rostoker Green function is given by
```
math
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &=& \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \nonumber\
&&\hspace{-4em} + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}') \; ,
```
where $
`r_\< = \min(r,r\')$`
and $
`r_\> =
\max(r,r\')$`
, and $
`G\^{\sigma,\text{str}}_{iL,jL\'}(E)$`
is the
structural GF, describing backscattering effects.
Near the Fermi energy ($
`E_\text{F}$`
) one may approximate
$
`R_{i\ell}\^\sigma(r;E) \approx
R_{i\ell}\^\sigma(r;E_\text{F})$`
.
## Susceptibility
### Kohn-Sham susceptibility
The transverse magnetic Kohn-Sham susceptibility is given by
```
math
\chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r}\,,\vec{r}\,';\omega)
&=& -\frac{1}{\pi}\!\int^{E_\text{F}}\!\!\!\!\text{d}E \nonumber \\
& & \hspace{-6em}\Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big) \, .
```
Here, $
`\chi\^{\uparrow\downarrow}$`
and
$
`\chi\^{\downarrow\uparrow}$`
correspond to $
`\chi\^{+-}$`
and
$
`\chi\^{-+}$`
, respectively.
### Dyson-like equation
#### Electron Self-energy
#### Dyson equation
Let us turn our attention to the Dyson equation for the GF, including
the self-energy describing the coupling to the magnetic excitations:
```
math
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E)
&=& G_{0,ij}^\sigma(\vec{r}\,,\vec{r}\,';E) + \sum_{pq}\!\int\!\!\text{d}\vec{r}_1\!\int\!\!\text{d}\vec{r}_2\; \times \nonumber\
& & \hspace{-6em}\times G_{0,ip}^\sigma(\vec{r}\,,\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}\,';E) \; .
```
# KKRsusc program: Theory
This page should give you a brief introduction to the theoretical
background of the KKRsusc program. To find more details on the theory
and a detailed description on the method follow these links:
*
[
S. Lounis et al., Phys. Rev. Lett. 105, 187205 (2010)
](
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.187205
)
*
[
S. Lounis et al., Phys. Rev. B 83, 035109 (2011)
](
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.035109
)
*
[
B. Schweflinghaus et al., Phys. Rev. B 89, 235439 (2014)
](
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.235439
)
## Projected Green function
The Kohn-Sham (KS) Green function (GF) is the resolvent of the
corresponding Hamiltonian, $
`G_{\text{KS}}(E) = (E -
\mathcal{H}_{\text{KS}})\^{-1}`
$
. In the Korringa-Kohn-Rostoker Green
function (KKR-GF) method, space is partitioned into nonoverlapping
regions surrounding the atoms, labeled $
`i$`
. These regions are taken as
spherical in the atomic sphere approximation (ASA), and the KS potential
is also assumed to be spherical around each atom,
$
`V\^{\text{KS}}_i(r)$`
, with $
`r = |\vec{r}\,|$`
and $
`\hat{r} =
\vec{r}/r$`
. Then the KS GF is expressed in terms of energy-dependent
scattering solutions for each atomic potential,
$
`R_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$`
and
$
`H_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$`
, which are products of
radial functions and (real) spherical harmonics, for each spin $
`\sigma
= \;\uparrow,\,\downarrow$`
and angular momentum $
`L = (\ell,m)$`
.
$
`R_{i\ell}\^\sigma(r;E)$`
is regular at the center of the ASA
sphere, and $
`H_{i\ell}\^\sigma(r;E)$`
diverges there.
The Korringa-Kohn-Rostoker Green function is given by
```
math
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &=& \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \nonumber\
&&\hspace{-4em} + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}') \; ,
```
where $
`r_\< = \min(r,r\')$`
and $
`r_\> =
\max(r,r\')$`
, and $
`G\^{\sigma,\text{str}}_{iL,jL\'}(E)$`
is the
structural GF, describing backscattering effects.
Near the Fermi energy ($
`E_\text{F}$`
) one may approximate
$
`R_{i\ell}\^\sigma(r;E) \approx
R_{i\ell}\^\sigma(r;E_\text{F})$`
.
## Susceptibility
### Kohn-Sham susceptibility
The transverse magnetic Kohn-Sham susceptibility is given by
```
math
\chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r}\,,\vec{r}\,';\omega)
&=& -\frac{1}{\pi}\!\int^{E_\text{F}}\!\!\!\!\text{d}E \nonumber \\
& & \hspace{-6em}\Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big) \, .
```
Here, $
`\chi\^{\uparrow\downarrow}$`
and
$
`\chi\^{\downarrow\uparrow}$`
correspond to $
`\chi\^{+-}$`
and
$
`\chi\^{-+}$`
, respectively.
### Dyson-like equation
#### Electron Self-energy
#### Dyson equation
Let us turn our attention to the Dyson equation for the GF, including
the self-energy describing the coupling to the magnetic excitations:
```
math
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E)
&=& G_{0,ij}^\sigma(\vec{r}\,,\vec{r}\,';E) + \sum_{pq}\!\int\!\!\text{d}\vec{r}_1\!\int\!\!\text{d}\vec{r}_2\; \times \nonumber\
& & \hspace{-6em}\times G_{0,ip}^\sigma(\vec{r}\,,\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}\,';E) \; .
```