Update theory authored by Johannes Wasmer's avatar Johannes Wasmer
# KKRsusc program: Theory # KKRsusc program: Theory
This page should give you a brief introduction to the theoretical This page should give you a brief introduction to the theoretical
background of the KKRsusc program. To find more details on the theory background of the KKRsusc program. To find more details on the theory
and a detailed description on the method follow these links: and a detailed description on the method follow these links:
* [S. Lounis et al., Phys. Rev. Lett. 105, 187205 (2010)](http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.187205) * [S. Lounis et al., Phys. Rev. Lett. 105, 187205 (2010)](http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.187205)
* [S. Lounis et al., Phys. Rev. B 83, 035109 (2011)](http://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.035109) * [S. Lounis et al., Phys. Rev. B 83, 035109 (2011)](http://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.035109)
* [B. Schweflinghaus et al., Phys. Rev. B 89, 235439 (2014)](http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.235439) * [B. Schweflinghaus et al., Phys. Rev. B 89, 235439 (2014)](http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.235439)
## Projected Green function ## Projected Green function
The Kohn-Sham (KS) Green function (GF) is the resolvent of the The Kohn-Sham (KS) Green function (GF) is the resolvent of the
corresponding Hamiltonian, $`G_{\text{KS}}(E) = (E - corresponding Hamiltonian, $`G_{\text{KS}}(E) = (E -
\mathcal{H}_{\text{KS}})\^{-1}$`. In the Korringa-Kohn-Rostoker Green \mathcal{H}_{\text{KS}})\^{-1}`$. In the Korringa-Kohn-Rostoker Green
function (KKR-GF) method, space is partitioned into nonoverlapping function (KKR-GF) method, space is partitioned into nonoverlapping
regions surrounding the atoms, labeled $`i$`. These regions are taken as regions surrounding the atoms, labeled $`i$`. These regions are taken as
spherical in the atomic sphere approximation (ASA), and the KS potential spherical in the atomic sphere approximation (ASA), and the KS potential
is also assumed to be spherical around each atom, is also assumed to be spherical around each atom,
$`V\^{\text{KS}}_i(r)$`, with $`r = |\vec{r}\,|$` and $`\hat{r} = $`V\^{\text{KS}}_i(r)$`, with $`r = |\vec{r}\,|$` and $`\hat{r} =
\vec{r}/r$`. Then the KS GF is expressed in terms of energy-dependent \vec{r}/r$`. Then the KS GF is expressed in terms of energy-dependent
scattering solutions for each atomic potential, scattering solutions for each atomic potential,
$`R_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$` and $`R_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$` and
$`H_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$`, which are products of $`H_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$`, which are products of
radial functions and (real) spherical harmonics, for each spin $`\sigma radial functions and (real) spherical harmonics, for each spin $`\sigma
= \;\uparrow,\,\downarrow$` and angular momentum $`L = (\ell,m)$`. = \;\uparrow,\,\downarrow$` and angular momentum $`L = (\ell,m)$`.
$`R_{i\ell}\^\sigma(r;E)$` is regular at the center of the ASA $`R_{i\ell}\^\sigma(r;E)$` is regular at the center of the ASA
sphere, and $`H_{i\ell}\^\sigma(r;E)$` diverges there. sphere, and $`H_{i\ell}\^\sigma(r;E)$` diverges there.
The Korringa-Kohn-Rostoker Green function is given by The Korringa-Kohn-Rostoker Green function is given by
```math ```math
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &=& \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \nonumber\ G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &=& \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \nonumber\
&&\hspace{-4em} + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}') \; , &&\hspace{-4em} + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}') \; ,
``` ```
where $`r_\< = \min(r,r\')$` and $`r_\> = where $`r_\< = \min(r,r\')$` and $`r_\> =
\max(r,r\')$`, and $`G\^{\sigma,\text{str}}_{iL,jL\'}(E)$` is the \max(r,r\')$`, and $`G\^{\sigma,\text{str}}_{iL,jL\'}(E)$` is the
structural GF, describing backscattering effects. structural GF, describing backscattering effects.
Near the Fermi energy ($`E_\text{F}$`) one may approximate Near the Fermi energy ($`E_\text{F}$`) one may approximate
$`R_{i\ell}\^\sigma(r;E) \approx $`R_{i\ell}\^\sigma(r;E) \approx
R_{i\ell}\^\sigma(r;E_\text{F})$`. R_{i\ell}\^\sigma(r;E_\text{F})$`.
## Susceptibility ## Susceptibility
### Kohn-Sham susceptibility ### Kohn-Sham susceptibility
The transverse magnetic Kohn-Sham susceptibility is given by The transverse magnetic Kohn-Sham susceptibility is given by
```math ```math
\chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r}\,,\vec{r}\,';\omega) \chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r}\,,\vec{r}\,';\omega)
&=& -\frac{1}{\pi}\!\int^{E_\text{F}}\!\!\!\!\text{d}E \nonumber \\ &=& -\frac{1}{\pi}\!\int^{E_\text{F}}\!\!\!\!\text{d}E \nonumber \\
& & \hspace{-6em}\Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big) \, . & & \hspace{-6em}\Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big) \, .
``` ```
Here, $`\chi\^{\uparrow\downarrow}$` and Here, $`\chi\^{\uparrow\downarrow}$` and
$`\chi\^{\downarrow\uparrow}$` correspond to $`\chi\^{+-}$` and $`\chi\^{\downarrow\uparrow}$` correspond to $`\chi\^{+-}$` and
$`\chi\^{-+}$`, respectively. $`\chi\^{-+}$`, respectively.
### Dyson-like equation ### Dyson-like equation
#### Electron Self-energy #### Electron Self-energy
#### Dyson equation #### Dyson equation
Let us turn our attention to the Dyson equation for the GF, including Let us turn our attention to the Dyson equation for the GF, including
the self-energy describing the coupling to the magnetic excitations: the self-energy describing the coupling to the magnetic excitations:
```math ```math
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E)
&=& G_{0,ij}^\sigma(\vec{r}\,,\vec{r}\,';E) + \sum_{pq}\!\int\!\!\text{d}\vec{r}_1\!\int\!\!\text{d}\vec{r}_2\; \times \nonumber\ &=& G_{0,ij}^\sigma(\vec{r}\,,\vec{r}\,';E) + \sum_{pq}\!\int\!\!\text{d}\vec{r}_1\!\int\!\!\text{d}\vec{r}_2\; \times \nonumber\
& & \hspace{-6em}\times G_{0,ip}^\sigma(\vec{r}\,,\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}\,';E) \; . & & \hspace{-6em}\times G_{0,ip}^\sigma(\vec{r}\,,\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}\,';E) \; .
``` ```