Update theory (inline math $`x$` --> $x$ remove backticks) authored by Johannes Wasmer's avatar Johannes Wasmer
...@@ -17,28 +17,28 @@ function (KKR-GF) method, space is partitioned into nonoverlapping ...@@ -17,28 +17,28 @@ function (KKR-GF) method, space is partitioned into nonoverlapping
regions surrounding the atoms, labeled $i$. These regions are taken as regions surrounding the atoms, labeled $i$. These regions are taken as
spherical in the atomic sphere approximation (ASA), and the KS potential spherical in the atomic sphere approximation (ASA), and the KS potential
is also assumed to be spherical around each atom, is also assumed to be spherical around each atom,
$`V\^{\text{KS}}_i(r)$`, with $`r = |\vec{r}\,|$` and $`\hat{r} = $V\^{\text{KS}}_i(r)$, with $r = |\vec{r}\,|$ and $\hat{r} =
\vec{r}/r$`. Then the KS GF is expressed in terms of energy-dependent \vec{r}/r$. Then the KS GF is expressed in terms of energy-dependent
scattering solutions for each atomic potential, scattering solutions for each atomic potential,
$`R_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$` and $R_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$ and
$`H_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$`, which are products of $H_{i\ell}\^\sigma(r;E)\,Y_{L}(\hat{r})$, which are products of
radial functions and (real) spherical harmonics, for each spin $`\sigma radial functions and (real) spherical harmonics, for each spin $\sigma
= \;\uparrow,\,\downarrow$` and angular momentum $`L = (\ell,m)$`. = \;\uparrow,\,\downarrow$ and angular momentum $L = (\ell,m)$.
$`R_{i\ell}\^\sigma(r;E)$` is regular at the center of the ASA $R_{i\ell}\^\sigma(r;E)$ is regular at the center of the ASA
sphere, and $`H_{i\ell}\^\sigma(r;E)$` diverges there. sphere, and $H_{i\ell}\^\sigma(r;E)$ diverges there.
The Korringa-Kohn-Rostoker Green function is given by The Korringa-Kohn-Rostoker Green function is given by
```math ```math
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &=& \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \nonumber\ G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &=& \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \nonumber\
&&\hspace{-4em} + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}') \; , &&\hspace{-4em} + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}') \; ,
``` ```
where $`r_\< = \min(r,r\')$` and $`r_\> = where $r_\< = \min(r,r\')$ and $r_\> =
\max(r,r\')$`, and $`G\^{\sigma,\text{str}}_{iL,jL\'}(E)$` is the \max(r,r\')$, and $G\^{\sigma,\text{str}}_{iL,jL\'}(E)$ is the
structural GF, describing backscattering effects. structural GF, describing backscattering effects.
Near the Fermi energy ($`E_\text{F}$`) one may approximate Near the Fermi energy ($E_\text{F}$) one may approximate
$`R_{i\ell}\^\sigma(r;E) \approx $R_{i\ell}\^\sigma(r;E) \approx
R_{i\ell}\^\sigma(r;E_\text{F})$`. R_{i\ell}\^\sigma(r;E_\text{F})$.
## Susceptibility ## Susceptibility
...@@ -51,9 +51,9 @@ The transverse magnetic Kohn-Sham susceptibility is given by ...@@ -51,9 +51,9 @@ The transverse magnetic Kohn-Sham susceptibility is given by
& & \hspace{-6em}\Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big) \, . & & \hspace{-6em}\Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big) \, .
``` ```
Here, $`\chi\^{\uparrow\downarrow}$` and Here, $\chi\^{\uparrow\downarrow}$ and
$`\chi\^{\downarrow\uparrow}$` correspond to $`\chi\^{+-}$` and $\chi\^{\downarrow\uparrow}$ correspond to $\chi\^{+-}$ and
$`\chi\^{-+}$`, respectively. $\chi\^{-+}$, respectively.
### Dyson-like equation ### Dyson-like equation
... ...
......