Changes
Page history
Update theory reformat math blocks
authored
Jan 30, 2025
by
Johannes Wasmer
Show whitespace changes
Inline
Side-by-side
kkrsusc/theory.md
View page @
9ebe2857
...
...
@@ -31,11 +31,12 @@ The Korringa-Kohn-Rostoker Green function is given by
```
math
\begin{aligned}
G_{ij}^\sigma(\vec{r}
\,
,\vec{r}
\,
';E) &= \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_
<
;E)\,H_{i\ell}^\sigma(r_
>
;E)\delta_{ij}\delta_{LL'} \\
G_{ij}^\sigma(\vec{r},\vec{r}';E) &= \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_
{\text{min}}
;E)\,H_{i\ell}^\sigma(r_
{\text{max}}
;E)\delta_{ij}\delta_{LL'} \\
&\quad + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}')
\end{aligned}
```
where $r_
\<
=
\m
in(r,r
\'
)$ and $r_
\>
=
\m
ax(r,r
\'
)$, and $G
\^
{
\s
igma,
\t
ext{str}}_{iL,jL
\'
}(E)$ is the
structural GF, describing backscattering effects.
...
...
@@ -52,12 +53,13 @@ The transverse magnetic Kohn-Sham susceptibility is given by
```
math
\begin{aligned}
\chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r}
\,
,\vec{r}
\,
';\omega) &= -\frac{1}{\pi}\
!\
int^{E_\text{F}}
\!\!\!\!
\text{d}E \\
&\quad \Big(G_{ij}^{\bar\sigma}(\vec{r}
\,
,\vec{r}
\,
';E+\omega+\mathrm{i}
0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}
\,
',\vec{r}
\,
;E) \\
&\quad\quad + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}
\,
,\vec{r}
\,
';E)\,G_{ji}^{\sigma}(\vec{r}
\,
',\vec{r}
\,
;E-\omega-\mathrm{i}
0)\Big)
\chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r},\vec{r}';\omega) &= -\frac{1}{\pi}\int^{E_
{
\text{F}}
}
\text{d}E \\
&\quad \Big(G_{ij}^{\bar\sigma}(\vec{r},\vec{r}';E+\omega+\mathrm{i}0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}',\vec{r};E) \\
&\quad\quad + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r},\vec{r}';E)\,G_{ji}^{\sigma}(\vec{r}',\vec{r};E-\omega-\mathrm{i}0)\Big)
\end{aligned}
```
Here, $
\c
hi
\^
{
\u
parrow
\d
ownarrow}$ and
$
\c
hi
\^
{
\d
ownarrow
\u
parrow}$ correspond to $
\c
hi
\^
{+-}$ and
$
\c
hi
\^
{-+}$, respectively.
...
...
@@ -73,8 +75,9 @@ the self-energy describing the coupling to the magnetic excitations:
```
math
\begin{aligned}
G_{ij}^\sigma(\vec{r}
\,
,\vec{r}
\,
';E) &= G_{0,ij}^\sigma(\vec{r}
\,
,\vec{r}
\,
';E) + \sum_{pq}\
!\
int\
!\!\
text{d}\vec{r}_1\
!\
int\
!\!\
text{d}\vec{r}_2 \\
&\quad \times G_{0,ip}^\sigma(\vec{r}
\,
,\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}
\,
';E)
G_{ij}^\sigma(\vec{r},\vec{r}';E) &= G_{0,ij}^\sigma(\vec{r},\vec{r}';E) + \sum_{pq}\int\text{d}\vec{r}_1\int\text{d}\vec{r}_2 \\
&\quad \times G_{0,ip}^\sigma(\vec{r},\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}';E)
\end{aligned}
```