... | ... | @@ -30,8 +30,10 @@ sphere, and $H_{i\ell}\^\sigma(r;E)$ diverges there. |
|
|
The Korringa-Kohn-Rostoker Green function is given by
|
|
|
|
|
|
```math
|
|
|
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &=& \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \nonumber\
|
|
|
&&\hspace{-4em} + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}') \; ,
|
|
|
\begin{aligned}
|
|
|
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &= \sum_{LL'}Y_L(\hat{r}) \big(\sqrt{E}\,R_{i\ell}^\sigma(r_<;E)\,H_{i\ell}^\sigma(r_>;E)\delta_{ij}\delta_{LL'} \\
|
|
|
&\quad + R_{i\ell}^\sigma(r;E)\,G^{\sigma,\text{str}}_{iL,jL'}(E)\,R_{j\ell'}^\sigma(r';E)\big) Y_{L'}(\hat{r}')
|
|
|
\end{aligned}
|
|
|
```
|
|
|
|
|
|
where $r_\< = \min(r,r\')$ and $r_\> =
|
... | ... | @@ -49,9 +51,11 @@ R_{i\ell}\^\sigma(r;E_\text{F})$. |
|
|
The transverse magnetic Kohn-Sham susceptibility is given by
|
|
|
|
|
|
```math
|
|
|
\chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r}\,,\vec{r}\,';\omega)
|
|
|
&=& -\frac{1}{\pi}\!\int^{E_\text{F}}\!\!\!\!\text{d}E \nonumber \\
|
|
|
& & \hspace{-6em}\Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big) \, .
|
|
|
\begin{aligned}
|
|
|
\chi^{\sigma\bar{\sigma}}_{0,ij}(\vec{r}\,,\vec{r}\,';\omega) &= -\frac{1}{\pi}\!\int^{E_\text{F}}\!\!\!\!\text{d}E \\
|
|
|
&\quad \Big(G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E+\omega+\mathrm{i} 0)\,\text{Im}\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E) \\
|
|
|
&\quad\quad + \text{Im}\,G_{ij}^{\bar\sigma}(\vec{r}\,,\vec{r}\,';E)\,G_{ji}^{\sigma}(\vec{r}\,',\vec{r}\,;E-\omega-\mathrm{i} 0)\Big)
|
|
|
\end{aligned}
|
|
|
```
|
|
|
|
|
|
Here, $\chi\^{\uparrow\downarrow}$ and
|
... | ... | @@ -68,7 +72,9 @@ Let us turn our attention to the Dyson equation for the GF, including |
|
|
the self-energy describing the coupling to the magnetic excitations:
|
|
|
|
|
|
```math
|
|
|
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E)
|
|
|
&=& G_{0,ij}^\sigma(\vec{r}\,,\vec{r}\,';E) + \sum_{pq}\!\int\!\!\text{d}\vec{r}_1\!\int\!\!\text{d}\vec{r}_2\; \times \nonumber\
|
|
|
& & \hspace{-6em}\times G_{0,ip}^\sigma(\vec{r}\,,\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}\,';E) \; .
|
|
|
\begin{aligned}
|
|
|
G_{ij}^\sigma(\vec{r}\,,\vec{r}\,';E) &= G_{0,ij}^\sigma(\vec{r}\,,\vec{r}\,';E) + \sum_{pq}\!\int\!\!\text{d}\vec{r}_1\!\int\!\!\text{d}\vec{r}_2 \\
|
|
|
&\quad \times G_{0,ip}^\sigma(\vec{r}\,,\vec{r}_1;E)\,\Sigma_{pq}^\sigma(\vec{r}_1,\vec{r}_2;E)\,G_{qj}^\sigma(\vec{r}_2,\vec{r}\,';E)
|
|
|
\end{aligned}
|
|
|
```
|
|
|
|