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Session Thermodynamic Observables

The opening talk was given by Prof. Karsten Reuter. He outlined the context, the
potential, and the challenges of machine learning (ML) methods in material sciences
from the well established machine learned interatomic potentials (MLIPs) as efficient
surrogate models for the potential energy surface (PES) to ML models predicting
observable properties directly.  His  talk emphasized the importance of moving on
from  the  simplified,  idealized  simulation  models  to  more  realistic  systems  in
particular with respect to interfaces and surfaces. ML methods are indispensable for
embracing  complexity  in  atomistic  simulations  and  approaching  the  real-life
experimental samples.
Moreover,  Prof.  Reuter  stressed  the  significance  of  multi-scale  modelling  for
approaching  experimental  length  and  timescales.  Automated  process  exploration
techniques can bridge the gap between first principles modelling and microkinetic
simulations  to  derive  thermodynamic  properties  as  well  as  spectroscopic
observables  of  complex,  dynamic  systems  and  empowering  a  higher  level  of
complexity in high-throughput virtual screening. 

Dr. Michele Simoncelli presented how the unified Wigner theory of thermal transport
can be combined with MLIPs to predict the thermal and vibrational properties of solid
materials with variable degree of disorder in the atomic bonds, ranging from perfect
crystals to amorphous glasses . He showed that the macroscopic thermomechanical
properties can be engineered by modifying the degree of atomistic disorder. 

Dr. Christian Carbogno continued on the topic of thermal transport focusing on the
impact of strong anharmonic and vibronic effects on heat transport. He demonstrated
that  MLIPs  trained  on  anharmonic  training  data  sampling  the  PES  beyond  the
ground state minimum regions can model heat transport in a variety of materials.
With  a  combination  of  symbolic  regression  and  sensitivity  analysis,  material
screening for optimal transport properties can be facilitated.

Prof.  Nong  Artrith  reiterated  the  significance  of  considering  the  complexity  of
structural  space when studying phase diagrams and ionic  conductivity  of  battery
materials. MLIPs are an invaluable tool for sampling amorphous phase space and
elucidating structure-composition-property relationships. To bridge the gap between
theory and experiment, an X-ray absorption spectra (XAS) database facilitates the
correlation  between  theoretically  modelled  structural  motifs  and  experimental
samples.

After  discussing  some  specific  questions  concerning  the  individual  talks,  the
discussion soon focused on the data for training ML models. Several databases such
as materials  project,  Aflow, open catalyst  project,  and different  data repositories,
where datasets of publications or entire trajectory data are published, were pointed
out.  However,  concerns were raised with  respect to  comparability,  reliability,  and
completeness of the data in particular of uncurated databases and of data based on
higher level calculations such as spin-polarized. It is not always guaranteed that the
calculations in those datasets were conducted correctly, are sufficiently converged
and  metadata  about  the  settings  might  be  missing.  The  same  applies  to
experimental databases, where metadata might be incomplete and the accuracy and
reproducibility  of  the  experiment  in  doubt.  Publishing  workflows  instead  of  or  in
addition to datasets makes the datasets reproducible,  allows users to repeat  the
calculations and extend existing datasets by more data points. It was pointed out that



especially for areas, where calculations beyond the ground state or higher level or
extremely  accurate  calculations  are  required,  such  as  thermodynamics,
spectroscopy,  and  magnetism,  the  available  data  is  rather  sparse  both
experimentally and theoretically. 

The question of how to climb up the multi-scale ladder and to achieve experimentally
relevant  properties  with  modelling  was  raised.  The  gap  between  the  idealized,
simplified  models  in  simulation  and  real  samples  was  still  considered  to  be
significant. Following the statements by Prof. Reuter and Prof. Artrith, including a
higher level of complexity in theoretical simulations was deemed essential. For more
complex systems such as multi-phase boundaries, ML models that are transferable,
universal, and linear scaling with number of species, are a powerful tool. So-called
foundation models such as MACE-MP-0 are already available but might not have
sufficient accuracy for predicting certain properties. However, foundation models are
a great and effective starting point for active learning approaches, which customize
the ML model  to the system of interest and increase the accuracy for a specific
problem. On the other hand, both theoreticians and experimentalists need to move
towards each other, the theoreticians modelling more complex systems as well as
the experimentalists studying more simplified samples to understand fundamental
relationships and processes. A lot still needs to be done in the area of modelling
properties  determined  by  the  materials’  nano-  or  microstructure,  to  bridge  first
principles calculations to larger length and timescales, where ML promises a large
potential for efficient upscaling.

Structural complexity was also discussed in the context of heat transport not only in
amorphous  materials  as  presented  by  Dr.  Simoncelli  but  also  in  polycrystalline
systems with grain boundaries and interfaces. A number of approximate models for
simulating  heat  transport  in  these  systems  exist,  but  they  all  rely  on
phenomenological assumptions. Overcoming the phenomenological approximations
employed  in  these  models  is  an  open  problem which  might  benefit  from recent
developments in MLIPs.



Session Electronic Structure & Long 
Range Interactions I
The  session  started  with  the  overview  talk  given  by  Prof.  Gábor  Csányi,  who
introduced the recently developed concept of foundation atomistic models for MLIPs
based  on  the  MACE architecture,  which  combines  equivariant  message  passing
neural networks with higher body-order local descriptors derived from atomic cluster
expansion.  Foundation  models,  such as MACE-MP-0 for  inorganic  materials  and
MACE-OFF for organic molecules, are trained on highly diverse training sets of small
systems yet show excellent transferability, stability, generalisability, and universality
with  qualitative  to  quantitative  accuracy  for  a  broad  range  of  applications.  In
particular, MACE-MP-0, which encompasses the entire materials project database, is
a powerful model for pre-screening or as a starting point for fine-tuning the MLIPs for
a specific  application with iterative or active learning methods. By combining the
MLIPs with spectroscopic properties, the bridge to experimental observables is built. 

Prof.  Janine  George  picked  up  on  the  topic  of  descriptors  of  local  atomic
environments and introduced the quantum-mechanical bond analysis to understand
and model magnetic materials beyond the Goodenough-Kanamori rules. Based on
MAGNDATA, a database of magnetic structures, Prof. George discussed the impact
of different geometrical and atomistic features on magnetic properties and introduced
standardised workflow and analysis tools for reproducible materials simulations. 

Sergey Pozdnyakov challenged the necessity of explicit  rotational equivariance in
atomistic machine learning models. Based on knowledge from 3D point clouds, the
Point Edge Transformer model based on an ensemble of local coordination systems
and  message  passing  networks  of  higher  order  inherently  learns  approximate
rotational equivariance for both rotational invariant as well  as equivariant targets.
The inaccuracy due to lack of explicit rotational symmetry of the model is deemed
negligible  for  most  applications  and  does  not  impact  the  stability  of  molecular
dynamics  (MD)  trajectories.  Alternatively,  an  a  posteriori  exact  symmetrization
scheme can be applied, which however adds to the computational cost. 

Prof.  Kulbir  Ghuman  focused  on  the  importance  of  incorporating  defects  and
amorphism  in  theoretical  structure  models  in  particular  in  the  areas  of  energy
materials, electrochemistry, and catalysis. Since the properties and functionality of
materials crucially depend on these aperiodicities, structure models need to be as
realistic as possible embracing complexity to enable simulation of realistic properties.
Prof. Ghuman demonstrated the potential of combining first principles calculations
with ML methods first for the examples of modelling Fe-Ru alloy catalysts for NH 3

synthesis balancing NH3 poisoning and catalytic activity and second for N2 adsorption
on doped Cu-Ni alloys. 

The panel discussion started with the potential and challenges of foundation models
as  introduced  by  Prof.  Csányi.  Generalized  models  such  as  MACE-MP-0  are
computationally much faster and scale better than density functional theory (DFT)
calculations  with  a  certain  loss  in  accuracy.  On  the  other  hand,  they  are
computationally still less efficient than classical force fields although they are more
accurate. The trade-off between efficiency and accuracy as well as transferability of
MLIPs was targeted. In order to compare models and analyse their performance, a
Pareto front analysis of computational cost versus accuracy was recommended. As
potential  areas  of  application,  which  would  justify  the  transferable,  yet
computationally expensive models, qualitative pre-screening methods for materials



screening as well  as MLIP/molecular mechanics (MLIP/MM) embedding replacing
quantum  mechanics/molecular  mechanics (QM/MM)  methods  were  suggested.
Additionally, several applications have already proven the benefit of using foundation
models  as  starting  point  for  active  learning  schemes  tailoring  the  universal
foundation models to fit a specific group of materials, while reducing the required
amount of training data by orders of magnitude. The initial MACE-MP-0 proofed too
soft  for  describing  phonons,  but  additional  learning,  e.g.  with  workflows such as
introduced by Prof. George, showed improved accuracy for phonon predictions. Prof.
George also gave a short outlook on more complex bond analysis methods for more
efficient force constant and phonon predictions.

The extrapolation properties of the MACE method, which contains few non-linearities
and tends to yield smoother models in comparison to highly non-linear models with
more parameters, were discussed. However, a direct comparison of total number of
parameters of different ML models was discouraged, since parameters in different
model  architectures  such  as  linear  and  non-linear  are  rather  different  and  not
comparable.  The  question  whether  to  improve  models  with  more  data  or  more
physics,  e.g.  by  multi-fidelity  models,  was  raised.  In  contrast,  Pozdnyakov’s  talk
prompted the question, whether reducing the amount of explicit physical constraints,
such as rotational symmetry, would not be an option to simplify models and increase
efficiency while not reducing the accuracy significantly. 

The  models  unconstrained  by  rotational  symmetry  were  discussed  next  with  a
particular focus on where they would fit in the cost-accuracy Pareto front analysis.
The improvement in efficiency and the reduction in complexity of MLIPs naturally
results in an additional error by releasing the rotational equivariance constrain. But
this additional uncertainty can be quantified and was demonstrated to be marginal in
comparison to the overall  uncertainty of the ML model for several examples. The
potential  impact  of  the  lack  of  explicit  rotational  symmetry  on  the  extrapolation
properties of ML models was discussed controversially. 

Possible areas of application of foundation models and of MLIPs in general were
debated  in  the  context  of  Prof.  Ghuman’s  talk  on  the  importance  of  realistic,
aperiodic,  yet complex model  systems. Point defect might still  be manageable to
simulate with small, static systems and first principles. Surfaces and interfaces such
as  grain-grain  boundaries  based  on  DFT  bulk  structures  however  are  entirely
unrealistic due to enormous strain and require equilibration, which in most cases is
beyond  the  scope  of  ab  initio  MD  but  necessitates  MLIPs.  Especially  when
simultaneously  considering  impurities  or  multi-phase  boundaries  of  different
materials, foundation models which cover the entire periodic system are a versatile
and efficient tool for streamlining simulations. 



Session Electronic Structure & Long 
Range Interactions II
In his overview talk, Prof. Michele Ceriotti picked up on the topic of MLIPs from the
previous  session.  Based  on  the  common  features  of  different  local  atomic
descriptors,  he  elucidated  their  common  problems.  First,  degenerate,  non-
distinguishable structures, which can be resolved with message passing networks or
three-centre ensembles. Second, the exponentially growing number of coefficients,
which can be circumvented with Wigner kernels. Finally, the finite range problem,
which  can  be  addressed  by  higher  order  descriptors  in  reciprocal  space.
Alternatively, Prof. Ceriotti proposed to develop ML models that instead of the PES
directly target  more complex properties connected to the electronic  structure.  He
demonstrated, that  a ML model  trained on the ground state electronic density of
states can simulate free energies at a finite electron temperature. When developing
a ML model to predict the Hamiltonian, Prof. Ceriotti stressed that it is advantageous
to optimize the model with respect to basis-independet observables of interest rather
than the matrix elements and to include physically-motivated components, such as
the  orbital  structure,  to  teach  the  ML  model  MO theory.  Independent  on  which
property the ML for Hamiltonians was trained, the predicted Hamiltonians can be
used  to  compute  other  electron  density  related  properties,  such  as  excitation
energies. 

Alexander Knoll introduced the high-dimensional neural network potentials (HDNNP)
as  another  class  of  MLIPs.  While  already  the  previous  generations  of  HDNNPs
included local atomic charges, only the latest 4th generation also covers long range
interactions  such  as  dispersion,  electrostatics,  and  non-local  charge  transfer  by
coupling  the  short-range  atomic  neural  network  with  a  second  neural  network
predicting the long range electrostatic energy contribution based on an equilibration
of atomic charges. Knoll  demonstrated the functionality of the 4G-HDNNP on the
wetting properties of a gold dimer on MgO and oxygen diffusion in PrCeO. However,
including  long-range  interactions  in  MLIPs  as  well  as  extending  the  predictable
properties to atomic charges and spins not only increases the computational cost but
also  the  complexity  of  the  models  significantly  at  the  cost  of  user-friendliness,
robustness,  and  reproducibility.  Hence,  Knoll  emphasized  the  importance  of
automatized  workflows  and  analysis  procedures  introducing  RuNNer2.0  and
runnerase. 

Prof.  Reinhard  Maurer  picked  up  on  the  Prof.  Ceriotti’s  topic  of  learning  the
electronic  wave  function  via  the  Hamiltonian.  He  encouraged  the  community  to
reevaluate some decisions and conventions that were made a long time ago for first
principles methods but might no longer be relevant for modern methods, such as
Gaussian orbitals. He demonstrated the potential of electronic structure surrogate
models with the NQCDynamics.jl toolbox for applications in the area of non-adiabatic
processes, such as hot electron dynamics, surface reactions, electronic excitations,
electron-phonon coupling, and electronic friction. 

William Baldwin presented an overview of how long-range interactions are included
in the MLIPs, categorizing the approaches in fixed point and charge equilibration
schemes. Implementations of different complexity were compared, as implemented
in  the  MACE  framework.  These  surrogate  models  account  for  self-consistent
Coulomb  interactions  and  more  faithfully  describe  a  structure’s  response  to  an
external  electric  field.  Baldwin  applied  the  method to  examples  from the  charge



distribution of metal clusters in water to dipoles and screening potentials of water on
metallic surfaces in an external electric field. 

The initial  discussion focused on the long range interactions.  While important for
specific materials and systems, the increased complexity and computational cost of
ML models including long range interactions was critically discussed. A hierarchy of
methods or embedding procedures for the more sophisticated long-range MLIPs was
suggested. The discussion about the significance of long range interactions raised
the question of how to evaluate, whether your model is accurate enough for your
system  of  interest.  Knoll  suggested  to  validate  ML  models  with  experimental
observables  to  verify,  that  the  model  can reproduce physics,  while  Prof.  Ceriotti
pointed out a heuristic approach utilizing the dynamical matrix. Long story short, if
you can create a reliable model with sufficient accuracy for your purpose without
long range interactions, the discussion suggested to neglect them in favour of more
simple and effective, purely local methods. But there are applications, where this is
not possible. 

Next,  the  discussion  turned  to  ML  models  for  the  Hamiltonian  and  electronic
structure in contrast to learning the observables of interest directly. Models that learn
properties such as the band gap directly do not learn inherent physical properties
such as  symmetry  and lack  transferability.  Deriving  observables from a  machine
learned Hamiltonian might suffer  from a certain amount of  error propagation, but
learning the Hamiltonian is more stable, transferable, and gives you access to any
property you can derive from the Hamiltonian, its eigenvalues or the electron density.
On the other hand, the model might be too flexible, therefore including symmetry and
optimized weights  can stabilize  the models.  The benefit  of  direct  learning of  the
Hamiltonian is that you can design the loss function with different eigenvalues or
regularize the eigenvalues. But there are also some technical difficulties with the
diagonalization procedure.  Even the  first  foundation models for  Hamiltonians are
already available. 

When the local additive ansatz of MLIPs was compared to the rotational symmetry
constraint as another inductive bias, the consequences of dropping the local additive
ansatz  were  discussed.  When  neglecting  rotational  symmetry,  Pozdnyakov  had
shown  in  the  previous  session  that  ML  models  can  learn  inherent  rotational
equivariance. However, the local additive ansatz is a prerequisite for a model to be
size extensive, i.e.  to be trained on small  structures but be transferable to large
systems.  Data  augmentation  schemes  to  teach  the  model  size  extensive
characteristics might be possible, but certainly very costly.

Prof.  Ceriotti  raised the  point,  that  there  has  not  been much activity  to  connect
atomistic machine learning with cheminformatics approaches, which go beyond the
electronic structure and target higher level properties such as solubility or toxicity.
This kindled a discussion on the gap between atomistic descriptors and complex,
high-level, large scale experimental observables by including more physics in ML
models and working with experimental data instead of first principles data.

Finally, the issue of collaboration and insufficient exchange of codes and data within
the community was debated. The idea to champion open source publication of both
codes and datasets as well as minimum standards of documentation, curation, and
continuous  integration  was  supported.  But  on  the  other  hand,  the  effort  to
accomplish this goal and to motivate scientists to invest their time was discussed
controversially.



Session Magnetic Observables
The  overview  talk  by  Prof.  Stefano  Sanvito  introduced  the  different  properties
characterising a magnetic material as well as the challenges inherent in predicting
these magnetic properties with first principles methods. First,  magnetic properties
depend critically on extremely accurate energy calculations often requiring high-level
methods such as coupled cluster (CCSD(T)) or spin-orbit coupling interactions on
the level  of  spin-polarised or  even non-collinear  electronic  structure  calculations.
Second, magnetic materials often necessitate the simulation of large systems and
depend on long range interactions. Third, multiple magnetic phenomena pose open-
boundary condition problems and complex, higher-order interactions such as spin-
lattice interactions.

Prof. Sanvito presented the concept of non-self-consistent field (non-SCF) DFT first
principles  simulations.  Based  on  the  linear  scaling,  physically  interpretable,
transferable, rotationally invariant Jacobi-Legendre (JL) polynomial cluster expansion
model, ML models can predict the ground state electron density, spin densities, and
even non-collinear spin vector fields as initial guess providing a massive speed-up of
DFT  calculations.  Due  to  the  excellent  extrapolation  properties  and  analytical
derivatives of JL, the ML models are transferable and also accurate for phonon and
transition state predictions. With JL and similar spin force fields (FF), spin dynamics
can be simulated. 

Johannes Wasmer picked up on the cluster expansion and compared several ML
models such as ACE, MACE, and SOAP for the example of learning the exchange
interaction of magnetic impurities in a topological insulator Bi2Te3 in order to predict
the critical temperature. He put particular emphasis on the importance of exchange,
dissemination, and benchmarking of atomistic machine learning codes, workflows,
tools, and datasets introducing the JuDFTteam (https://github.com/JuDFTteam/best-
of-atomistic-machine-learning) and DAEMON network (cost-daemon.eu) activities. 

Prof.  Alessandro  Lunghi  moved  on  to  magnetic  single  molecules  and  their  spin
relaxation based on spin-lattice decoherence. Linear scaling SNAP ML models are
applied to learn not only the potential energy surface, but also phonons, components
of the spin Hamiltonian, as well as the derivative of magnetic properties. Uncertainty-
aware  active  learning  strategies  yield  models  that  perform very  well  both  in  the
structural  space  as  well  as  in  the  chemical  space,  i.e.  in  the  context  of  high-
throughput screening of new material candidates.

Finally, Shuping Guo presented her work on predicting magnetic properties of double
perovskites. Including onsite energies and d-state transfer integrals in the learning
process, the double perovskites are first  classified as anti-/ferromagnetic and the
transition  as  well  as  the  Weiss  temperatures  are  predicted.  Several  of  the
compounds are identified as magnetically frustrated. 

After discussing some specific questions concerning the individual talks and models,
the discussion soon focused on the potential of ML models for the electron density.
Based  on  the  transferability  of  electron  density  predicting  models,  they  can
significantly speed up phase diagram investigations with a non-SCF DFT approach,
even though the accuracy of the predicted electron density and energy might not be
sufficient to determine the convex hull entirely without first principles. In principle, ML
models  predicting  Hamiltonians  and  electron  densities  are  equivalent.  However,
Hamiltonians depend on a basis, whereas the electron density though defined on a
grid is more universal and is sufficient as input for several DFT codes to start from.



Besides, codes such as the Materials Learning Algorithms (MALA) can learn the
local density of states, from which other properties can be derived without a final
SCF cycle at the end. In other cases, learning the observable or property of interest
directly, such as exchange coupling, can be easier or advantageous. 

However,  many  magnetic  properties  depend  on  exceptionally  accurate  energy
calculations necessitating high-level calculations. Furthermore, calculated properties,
energies,  and  electron  densities  are  naturally  highly  sensitive  to  physical
approximations, such as exchange-correlation functional, which have to be chosen
depending on the property of interest as well as the material system. Nevertheless,
the first principles training and testing data for the ML models need to be robust and
ideally generated automatically. But for example the automatized determination of
the chemical active space (CAS) in CAS-SCF calculation is not always reliable and
can  taint  the  datasets.  Considering  the  computational  expense of  high-level  first
principles calculations for magnetic properties,  ML models are still  located in the
small data regime and need to be of limited complexity and not overly parametrized.
Interesting future projects could work on ML datasets for active spaces or on ML on
full configuration interaction (CI) to identify, which contributions actually matter. 

Following  Wasmer’s  introduction  to  best-of-atomistic-machine-learning  and cost-
daemon,  the  role  of  well  curated  repositories  collecting,  benchmarking,  and
disseminating codes and datasets in the area of atomistic ML was addressed again.
Despite their undisputed importance, their cost in invested time and manpower was
criticized. Funding rarely stretches to code or repository maintenance and very often
code or data repositories and their maintainers and depositors are not given any
credit in subsequent publications, especially when code or data were not published
as journal contribution before. Furthermore, increased interaction with the users was
recommended, where users can comment on experience, quality, usability of data
and codes. 

Based on the talks by Wasmer and Guo, the discussion moved to the Heisenberg
model, which does not consider longitudinal spin relaxation and neglects electron-
hole excitations. However, it is an easy approximation, which provides good results
for many problems as well as decent thermodynamics. 

The plenary discussion was closed with the outlook that there is still a long way to go
to replace the full time-dependent (TD) DFT simulations of magnetic systems with
coupled spin-lattice MLIPs MD. 



Session Spectroscopic Observables I
The first session on spectroscopic observables was opened by Prof. Patrick Rinke,
who in his overview talk introduced general concepts, successes, and challenges of
ML applications in spectroscopy. ML can be applied to facilitate the two main goals
and workflows at the interface between theoretical and experimental spectroscopy:
firstly,  spectra prediction, which is common in computational  materials modelling,
and secondly, property inference from spectra, which is more typical for experimental
approaches. The latter predicts material structures and properties from spectral input
or classifies the input according to different categories. The former can be facilitated
by ML in different ways. The most common are: directly learning structure-spectrum
correlations, accelerating the spectroscopy method itself or learning the Hamiltonian,
from  which  spectral  properties  can  be  derived.  One  example  of  accelerated
methodology is infrared (IR) spectroscopy, for which MLIPs can be trained and then
used to speed up MD calculations. Paired with an ML model for the dipole, the IR
spectrum can  then  be  extracted  from the  auto-correlation  function  over  the  MD
trajectory. 
Prof. Rinke illustrated the different concepts with examples from a broad range of
spectroscopy  methods,  such  as  molecular  excitation  spectra,  core  electron
spectroscopy,  UV/Vis  spectroscopy,  and  structure/property  inference  from  2D
nuclear magnetic resonance (NMR) spectroscopy. He emphasized the sparsity and
lack of diversity in available spectroscopic datasets as well as the computational cost
of establishing accurate first principles data sets, e.g. on the level of G0W0 theory, as
prominent problems. 

Dr. Tigany Zarrouk presented another example of ML facilitated structure inference
from  spectral  data  -  X-ray  photoelectron  spectroscopy (XPS)  on  oxygenated
amorphous  carbon.  He  combined  a  ML-based  XPS  model  trained  from  first
principles GW data with a MLIP for the C-O system. With a grand-canonical Monte
Carlo within a modified Hamiltonian formalism, the XPS spectra are deconvoluted
into  motif  contributions  bridging  the  gap  between  experiment  and  theory  and
providing  access to  realistic  structural  models  by  an experiment-driven materials
modelling approach. 

Prof. Rose Cersonsky moved on to the rather new research field of optical properties
of  photonic  crystals,  which  requires  the  efficient  computation  of  photonic  band
structures for three-dimensional patterns of materials with different permittivity. ML
models show a big potential on providing surrogate models for photonic structures to
derive  new  insights  into  the  structure-property  landscape.  However,  the  scale-
covariance of the governing equations poses a challenge for ML models.

Finally,  the  application  of  ML  models  in  the  area  of  X-ray  spectroscopy  was
presented by Clelia Middleton. She illustrated how the ML model XANESNET, which
predicts K- and L-edges of various transition metals based on the atomistic structure,
was extended to  light,  non-metallic  elements by the introduction of  an additional
descriptor for the electronic properties. The descriptor is based on the partial density
of states (p-DOS) and enables the prediction of sulphur K-edges, which Middleton
demonstrated for the analysis of the products of the photosimulated ring-opening of
thiophenone with X-ray absorption near edge structure (XANES) spectroscopy. 

Based  on  the  conceptual  strategies  of  how  to  integrate  ML  in  theoretical
spectroscopy introduced by Prof.  Rinke, the discussion started on which was the
correct or optimal strategy. The best possible strategy depends on the availability of



data or the cost of generating the required data for training the model and the trade
off of the cost of data generation versus the gain in efficiency by the ML model. 

The  advantages  and  disadvantages  of  learning  a  spectrum  as  a  whole  versus
learning  of  the  state  eigenvalues  were  debated.  Learning  eigenvalues  over  a
chemical space is challenging since the number of relevant states varies for each
system. Additionally, the intensity and line broadening of peaks need to be learned,
simulated or ultimately fitted. This raised the question of how to compare spectra and
quantify agreement. Systematic shifts, different line broadening or different intensity
ratio decreases the direct overlap of two spectra, although the agreement from a
spectroscopist’s point of view might still be quite good. Different loss functions and
similarity  coefficients are available.  The approach to identify candidate structures
with best similarity, provide them with a ranking, and ceding the final judgement to
the user was suggested, but this approach can only find already known structures
and does not allow for the identification of new compounds. 

In  the  context  of  comparing  spectra,  the  issue  of  reproducibility,  accuracy,  and
reliability  of  experimental  spectra  and  their  sensitivity  to  different  spectrometers,
sample  preparation,  and references were  controversially  discussed.  But  also  the
accuracy of theoretical spectra was under scrutiny. In particular, the finite cluster
approach with H-saturation by Prof. Rinke was addressed. The approach, which is
necessary  to  saturate  dangling  bonds  and  ensure  closed-shell  configurations,  in
general does not result in additional artifacts in the spectroscopic calculations but
can influence the convergence. 

The increased complexity of recently studied materials and the ensuing challenges
to spectroscopic calculations as well  as ML predictions were debated. The more
local the spectroscopic observable, e.g. core electron energies, the more reliably the
property can be expressed in the local descriptor expansion and computed in finite
model systems. Less local properties might be more challenging. Another factor is
the scaling property of the ML models with number of species and system size. 

Since most ML models presented in this and previous sessions were based on first
principles training data, the relevance of experimental data was disputed. Naturally,
all the ML models for spectroscopic observables are ultimately motivated by bridging
theoretical models of material systems with experimental observations for validating
theoretical models as well as facilitating the interpretation of experimental spectra
(inference).  The  question  how to  make  experimental  data  more  relevant  for  ML
model training was addressed and resulted in a detailed discussion about FAIR data
management and the significance of  documented metadata,  in  particular  of  prior
technical or expert knowledge. Moreover, intensified communication to understand
the  scientific  questions,  technical  details,  and  experimental  problems better  was
emphasized.  Even  a  basic  definition  such  as,  what  is  a  material,  might  be
fundamentally different between experiment and modelling and the transfer between
an  experimental  sample  and  the  atomistic  structure  is  often  not  straightforward.
Finally,  determining  the  reproducibility  of  experimental  data  by  repeating  the
measurement on the same sample as well as an identically produced sample was
suggested,  as  it  would  increase  confidence  in  experimental  data,  provide  an
uncertainty measure, and help identify outliers and false data. 



Session Spectroscopic Observables II
The  second  overview  talk  about  spectroscopic  observables  was  given  by  Prof.
Rebecca  Nicholls.  She  introduced  core-loss  spectroscopy  by  electron  or  X-ray
beams,  which  can  provide  information  about  bonding  and  atomistic  structure  of
materials. Depending on the applied energy, phonons, plasmons or single electron
excitations are addressed and the depth of excitation in the material varies making it
a surface sensitive method. Electron energy loss spectra (EELS) can be simulated
from  first  principles  by  computing  the  double  differential  cross  section  and
comparison  with  calculated  p-DOS  allows  for  conclusions  about  the  bonding
situation.  Prof.  Nicholls  presented  the  significance  of  theoretical  simulations  for
experimental analysis with examples for understanding superconductivity in REBCO
materials, the surface structure of LiNiO2  battery materials, and the Zr suboxide in
the ZrO2/Zr interface. While theoretical simulations can facilitate the interpretation of
experiments, Prof. Nicholls stresses the importance of keeping the scientific question
in focus. Considering the computational cost of EELS simulations and the materials’
complexity in many applications, ML has a large potential of streamlining core-loss
spectroscopic computations and boosting the understanding and design of materials.

Prof.  Josef  Granwehr  presented  electron  paramagnetic  resonance (EPR)
spectroscopy as a method for spectro-electrochemical in operando spectroscopy of
organic  radical  batteries.  The  experimentally  measurable  g-value  proofs  to  be
sensitive to the state-of-charge (SoC). In order to elucidate the correlation between
SoC  and  structural  and  redox  information,  MD  simulations  combined  with  DFT-
trained ML models predicting g-values from atomistic structures demonstrate, that
the g-values is not only sensitive to the global radical concentration but also to local,
heterogeneous concentrations during cycling, which also impacts the line shape. The
accuracy of the ML model for predicting g-values is comparable if not superior to
experimental uncertainties and transferable to different radical concentrations. Prof.
Granwehr also introduced the neighbourhood analysis in order to unravel the impact
of local structural features on the observable hyperfine coupling. 

Prof. Claudia Draxl discussed the challenge of defining and quantifying similarity or
discrepancies in spectra. Both experimental and theoretical spectra generation are
subject  to  errors  and  inaccuracies  due  to  deviating  experimental  conditions  or
different computational methods. By introducing spectral fingerprinting and different
similarity  coefficients  such as  the  Tanimoto  similarity,  the  comparison of  spectra
becomes  more  reproducible  and  robust.  Un-/supervised  learning  of  fingerprints
allows  to  find  patterns  and  trends  rather  than  absolute  differences.  Prof.  Draxl
illustrated the spectral fingerprinting on screening for similar DOS of perovskites, on
optical spectra of layered boron nitride, and different spectra of Ag. She referenced
the C2DB database of 2D materials and presented the NOMAD infrastructure for
FAIR dataset management. 

Prof. Stefan Sandfeld’s talk extended the session to ML applications beyond first
principles atomistic applications. He highlighted the general challenges of scientific
ML in contrast to computer science, such as sparse or noisy data, the necessity to
generate accurate, transferable models that show an efficiency gain with respect to
classical models, and the trend towards highly specialized models which are difficult
to generalize to other scientific domains. Prof. Sandfeld presented examples from
the area of image processing of electron microscopy, where U-net architectures are
successfully  applied  for  feature  detection  in  time-series  data  and  synthetic  data
generation replace time-consuming and less reproducible labelling procedures. For
inverse problems and inverse dimensionality reduction, he illustrated a GAN model



that produces Ising systems for specific temperatures and pointed out the potential
of latent space design.

The panel discussion started with the sensitivity of spectroscopy in general and the
DOS and EELS in particular to temperature, defects,  and surfaces and how well
theoretical methods can replicate those effects. Of course, theoretical methods are
based on certain approximation such as periodic boundary conditions, nevertheless
they are in principle able to model complex systems as long as the atomistic model
of  the  system  is  as  close  to  the  real  sample  in  experiment  as  possible.  The
importance  of  sharing  real  data  not  only  idealized,  perfect  results  on  both  the
experimental  as  well  as  theoretical  side  was emphasized.  The interesting  things
happen, when results are unexpected and not ideal. Furthermore, it is also important
to  learn  from failures.  Therefore,  recording  of  as  much  metadata  as  possible  is
necessary to identify the cause of failures or deviations. 

The discussion then focused on the interface between experiment and theory and
the  process  of  sharing  data.  In  the  crystallography  community,  frameworks  and
platforms  for  sharing  and  documenting  data  already  exist  and  work  quite  well.
However,  data  once  published  are  rarely  updated  with  further  knowledge  or
commented  by  users.  Materials,  which  are  not  perfect  but  feature  impurities  or
dopants  are  rarely  published  or  more  specific  metadata  is  missing.  There  are
infrastructures such as NOMAD for data and metadata management also including
additional  information  such as  synthesis  procedures.  Since scientists  from many
disciplines such as chemistry, computational sciences, and physics come together in
material science, also the documentation of essential knowledge about the material,
experimental  procedure  or  simulation  was deemed necessary,  that  might  not  be
obvious to people from a different field of research. 

Finally,  the  lack  of  motivation  to  invest  time  and  resources  in  diligent  and
comprehensive data management was critically discussed. In other areas such as
the  food  industry,  pressure  applied  by  official  agencies  has  resulted  in
documentation of data and traceability of supply chains. The pressure in science was
deemed insufficient also since consistent quality standards for data management are
not  defined.  Moreover,  methods to  unify  data  from different  sources need to  be
developed and established. Documentation of datasets is key as well as generally
accepted reference data, reference codes, and reference samples or examples. 



Session Electronic Structure & Long 
Range Interactions III
Luca  Leoni  presented  his  work  on  utilizing  MLIPs  for  the  simulation  of  polaron
hopping dynamics. The simulation of polaron mobility with first principles methods is
difficult  due to the charge and excess magnetic moment of the polaron, requires
large  supercells,  and  is  computation-intensive.  Leoni  demonstrated  the  gain  in
efficiency  by  replacing  first  principles  methods  with  MLIPs  based  on  equivariant
graph neural networks and trained on ab initio MD (AIMD), where the local descriptor
is extended by the polaron degree of freedom. Applications on small polaron mobility
in MgO, TiO2, and F-doped TiO2 illustrate the accelerated performance as well as
good accuracy. 

The ensuing discussion addressed the description of the polaron degree of freedom
in  the  feature  vector  of  the  local  descriptor.  An  explicit  encoding of  the  polaron
localization  is  necessary,  since the  geometric  distortions  due  to  the  polaron  are
much  smaller  than  thermal  displacements.  Hence,  the  polaron  position  is  not
indirectly encoded in and cannot be inferred from the atomic structure. In the current
descriptor, the polaron position is encoded as a kind of charge state encoding with a
0/1 integer added to the local atomic descriptor for whether the polaron is localized
on this atom or not. The integer makes the energy landscape discontinuous with an
energy discontinuity on the order of meV/structure. Defining the polaron position with
a floating point  number improves continuity but  also allows for the description of
polaron delocalization. However, quantifying the amount of polaron localization from
DFT calculations is not straightforward and unambiguous. Alternatively, a ML model
predicting the charge density could be applied, but would loose efficiency for long
timescale MD simulations. 

In order to improve the energy barrier predictions in the TiO2 example, additional
sampling around the energy barrier had been applied. Sampling of the PES purely
by  AIMD  naturally  puts  a  strong  emphasize  on  the  minimum  energy  areas.
Especially when upscaling the method to larger structures, pure AIMD training might
not be the method of choice, since you need at least one jump of the type you are
looking for in the training data. Replacement or extension of the AIMD training data
with nudged elastic band (NEB) might be a solution for more homogeneous, effective
sampling and training of the model.

The question about the suitability of the ML model for large polarons was answered
negatively by Leoni. Even if the model may be able to treat such cases it would be
impossible to create a database needed for training due to the need of supercells
that, to this day, not allow for long enough MD runs or even NEB computations to be
performed in a suitable time. Alternatively, large polarons could be described via a
ML model for the Hamiltonian.

Bartosz Brzoza introduced the MALA package, a graph neural network based ML
framework for predicting electronic structures. By combining SNAP descriptors with
multi-layer perceptrons mapping the bispectrum components to local DOS (LDOS), a
linear  scaling,  rotationally  invariant  ML  model  for  the  electronic  structure  is
generated. First applications to the liquid-solid phase diagram of molecular hydrogen
at various pressures and temperatures show good results at chemical accuracy and
illustrate  that  the  attention  neural  network  model  selectively  focuses on  relevant
pieces of  information.  The extension  to  SE(3)-equivariant  models  by  tensor  field
network convolution can directly predict higher rank observables as well as LDOS. 



The subsequent discussion initially focused on placing the MALA model in the bigger
picture of ML models for electronic structure. There are other graph neural network
models around. Whether there is already a model  available that combines SE(3)
equivariance  and  attention  graph  neural  networks  and  how  MALA  compares
performance-wise was left  open. Brzoza introduced the number of electrons as a
metric for the error of the model, derived by integrating over the electron DOS to get
the LDOS, which not always reproduces the correct number of electrons but was
deemed  manageable.  The  temperature  degree  of  freedom  of  the  LDOS  was
mentioned,  which raises or  lowers the electron energy levels independent  of  the
ionic temperature and can be included in the model. 

The extension of the MALA package to multi-species systems was addressed. It will
change  the  scaling  properties  but  enable  the  application  to  the  future  periodic
systems of interest such as proteins and superconductors. 



Session Databases & Reaction 
Networks
The final session was opened by Prof. Johannes Margraf presenting the topic of ML
in  chemical  reaction  space.  He  introduced  the  exploration  of  chemical  reaction
networks  of  organic  molecules  as  a  crucial  step  within  the  multi-scale  approach
towards  microkinetics  of  simulating  gas  phase  reactions  and  heterogeneous
catalysis.  By  thoroughly  sampling  of  the  PES  of  the  reactants  including  global
optimization  of  the  conformational  space  as  well  as  rare-event  sampling  for  the
kinetics, the rather complex reaction networks, that grow exponentially with number
of atoms, can be simplified and pruned systematically. However, in order to study
reactivity, radicals and open-shell molecules need to be considered, too. ML models
allow  the  efficient  exploration  of  larger  reaction  networks.  Prof.  Margraf
demonstrated  on  various  examples,  such  as  combustion  and  heterogeneous
catalysis on Rh surfaces, that ML models trained on atomic energies are superior in
predicting  reaction  energies  and  that  atomic  energies  are  superior  weights  for
reaction paths than total energies. Furthermore, he compared different free energy
approximation and demonstrated their impact on kinetic rate constants. 

Dr.  Jonathan  Schmidt  presented  a  prototype-based  high-throughput  material
screening for perovskites as well as mixed perovskites with graph attention neural
networks searching for thermodynamically stable and metastable materials in convex
hull  simulations. Symbolic regression models identified DOS, Fermi level  and the
element  in  the  Z-position  as  decisive  for  thermodynamic  stability  and
superconductivity  properties.  In  the  course  of  those  and  similar  projects,  the
Alexandria database was developed, which comprises 4.5 Mio crystal structures as
well as convex hull data for over 115,000 structures on the level of PBE, SCAN, and
PBEsol.  More  recently,  the  database was extended by  2D and 1D materials  by
transfer  learning.  In  combination  with  other  datasets  such  as  ICSD  or
materials.colabfit.org,  it  was  used  to  train  and  benchmark  universal  MLIPs  and
generative models such as MatterGen and MatterSim. 

Prof. Olexandr Isayev introduced the latest developments in the AIMNet family of
chemically  inspired  deep  neural  network  potentials.  The  universal,  transferable
MLIPs for the most common elements in organic molecules are trained on highly
accurate  (e.g.  def2-tzvpp,  CCSD(T))  first  principles  calculations.  The  recent
advances of AIMNet, the fully reactive, linear scaling AIMNet2, also considers open-
shell as well as charged molecules of different multiplicity and adds physics-based
long-range terms to the ML-parametrized, additive short-range energy. Prof. Isayev
demonstrated the potential and transferability of various AIMNet models for chemical
reaction network exploration, transition state optimization, reaction thermochemistry,
and even identification of key reaction mechanisms in complex reactions such as
Diels-Alder,  click chemistry,  and Suzuki  cross-coupling reactions.  By combination
with  nano-reactor  MD,  the  MLIPs  are  extended  to  extreme  dynamics  at  high
temperature. 

Finally, Dr. Pierre-Paul De Breuck addressed the scarcity, limited transferability, and
comparability of datasets. In all  the areas of material science, high-fidelity data is
much scarcer than low-fidelity data both in theory and experiment. Furthermore, first
principles data is  usually  not  directly  comparable with  experimental  data.  Dr.  De
Breuck  presented  MODNet,  a  feed-forward  neural  network  based  on  material-
optimal,  physically  meaningful  features  and  joint  learning,  which  balances  small
datasets with multi-fidelity datasets of varying accuracy and simultaneously provides



a  confidence  measure.  The  method  is  benchmarked  for  electronic  band  gap
predictions and refractive indices of optical materials as well as TRIP-TWIP Ti alloys.

The panel discussion picked up on the last talk by Dr. De Breuck and enlarged upon
transfer  learning  versus  delta  learning  and  the  onion  model  approach  with
asymptotic error. The denoising approach with multi-fidelity data was debated, which
provided good results but is difficult to analyse and to reproduce for different data.
Also, whether the deviation of different DFT data and in particular with respect to
experimental  data  could  be  defined  as  noise  despite  lacking  a  typical  noise
distribution was discussed. Experimental data is also particularly difficult to assign
with  individual  fidelity  labels.  If  consistent  metadata  is  missing,  it  requires  the
analysis of the original publications. The data requirements for transfer learning of
multi-fidelity data depend very much on the distribution of the data in the fidelity
space. The larger the difference between the high and low fidelity data, the more
data in general and the more data in particular in the high fidelity class are required
for reliable accuracy. 

The transfer learning was also addressed in the context of Dr. Schmidt’s study of
thermodynamic stability to transfer convex hulls to convex hulls of increased fidelity.
For magnetic materials, the convex hull can also serve as starting point for iterating
through different magnetic configurations in supercells. 

Prof.  Isayev’s state-of-the-art  AIMNet models including charge and spin attracted
further interest. In contrast to previous AIMNet generations, the second generation is
trained on hybrid DFT, since CCSD(T) is unsuitable for open-shell datasets. A single
model can predict different spin states, open-shell systems, and biradicals as well as
differently charged and neutral components simultaneously. The larger error on the
transition state prediction is not only due to the higher degree of flexibility but also
due to the large radical structure, which requires extrapolating of the AIMNet model,
which is trained on small organic structures with less than 50 atoms. 

The impact of  solvent on Prof.  Isayev’s examples on click chemistry and Suzuki
coupling were debated. The AIMNet models are exclusively trained on gas phase
molecules  and also  the predictions  neglect  solvents.  Solvents  might  be  included
implicitly in the neural network, which also allows for description of the response to
charges. 

Similarly, the approximation of a static catalyst surface in Prof. Margraf’s modelling
of adsorbates and catalytic reaction networks was addressed. An explicit treatment
of  the  surface  activity  might  be  feasible  for  small  reaction  networks,  but  is  still
beyond the computation limits for complex catalytic reactions. 

The ML models presented in this and previous sessions focused on predicting the
target  properties  and  thermodynamic  stability.  More  advanced  approaches  are
suggested to additionally include kinetic information about the synthesizability in the
prediction  score  as  well  as  knowledge  about  which  elements  the  experimental
community usually works with. 

Finally, the discussion moved again to the foundation models. For several of the
presented applications, the MACE-MP-0 or similar foundation models do not work
out  of  the box.  Either  the accuracy is  not  sufficient  or  the system is  not  stable.
Nevertheless, the foundation models proof to be good starting points for fine-tuning
with active learning and adaption of the models for the specific application. 



We thank all the participants, online and in person, for their contributions
to the panel discussions and the speakers for their commitment and the
lively exchange.
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