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Session Thermodynamic Observables

The opening talk was given by Prof. Karsten Reuter. He outlined the context, the
potential, and the challenges of machine learning (ML) methods in material sciences
from the well established machine learned interatomic potentials (MLIPs) as efficient
surrogate models for the potential energy surface (PES) to ML models predicting
observable properties directly. His talk emphasized the importance of moving on
from the simplified, idealized simulation models to more realistic systems in
particular with respect to interfaces and surfaces. ML methods are indispensable for
embracing complexity in atomistic simulations and approaching the real-life
experimental samples.

Moreover, Prof. Reuter stressed the significance of multi-scale modelling for
approaching experimental length and timescales. Automated process exploration
technigues can bridge the gap between first principles modelling and microkinetic
simulations to derive thermodynamic properties as well as spectroscopic
observables of complex, dynamic systems and empowering a higher level of
complexity in high-throughput virtual screening.

Dr. Michele Simoncelli presented how the unified Wigner theory of thermal transport
can be combined with MLIPs to predict the thermal and vibrational properties of solid
materials with variable degree of disorder in the atomic bonds, ranging from perfect
crystals to amorphous glasses . He showed that the macroscopic thermomechanical
properties can be engineered by modifying the degree of atomistic disorder.

Dr. Christian Carbogno continued on the topic of thermal transport focusing on the
impact of strong anharmonic and vibronic effects on heat transport. He demonstrated
that MLIPs trained on anharmonic training data sampling the PES beyond the
ground state minimum regions can model heat transport in a variety of materials.
With a combination of symbolic regression and sensitivity analysis, material
screening for optimal transport properties can be facilitated.

Prof. Nong Artrith reiterated the significance of considering the complexity of
structural space when studying phase diagrams and ionic conductivity of battery
materials. MLIPs are an invaluable tool for sampling amorphous phase space and
elucidating structure-composition-property relationships. To bridge the gap between
theory and experiment, an X-ray absorption spectra (XAS) database facilitates the
correlation between theoretically modelled structural motifs and experimental
samples.

After discussing some specific questions concerning the individual talks, the
discussion soon focused on the data for training ML models. Several databases such
as materials project, Aflow, open catalyst project, and different data repositories,
where datasets of publications or entire trajectory data are published, were pointed
out. However, concerns were raised with respect to comparability, reliability, and
completeness of the data in particular of uncurated databases and of data based on
higher level calculations such as spin-polarized. It is not always guaranteed that the
calculations in those datasets were conducted correctly, are sufficiently converged
and metadata about the settings might be missing. The same applies to
experimental databases, where metadata might be incomplete and the accuracy and
reproducibility of the experiment in doubt. Publishing workflows instead of or in
addition to datasets makes the datasets reproducible, allows users to repeat the
calculations and extend existing datasets by more data points. It was pointed out that



especially for areas, where calculations beyond the ground state or higher level or
extremely accurate calculations are required, such as thermodynamics,
spectroscopy, and magnetism, the available data is rather sparse both
experimentally and theoretically.

The question of how to climb up the multi-scale ladder and to achieve experimentally
relevant properties with modelling was raised. The gap between the idealized,
simplified models in simulation and real samples was still considered to be
significant. Following the statements by Prof. Reuter and Prof. Artrith, including a
higher level of complexity in theoretical simulations was deemed essential. For more
complex systems such as multi-phase boundaries, ML models that are transferable,
universal, and linear scaling with number of species, are a powerful tool. So-called
foundation models such as MACE-MP-0 are already available but might not have
sufficient accuracy for predicting certain properties. However, foundation models are
a great and effective starting point for active learning approaches, which customize
the ML model to the system of interest and increase the accuracy for a specific
problem. On the other hand, both theoreticians and experimentalists need to move
towards each other, the theoreticians modelling more complex systems as well as
the experimentalists studying more simplified samples to understand fundamental
relationships and processes. A lot still needs to be done in the area of modelling
properties determined by the materials’ nano- or microstructure, to bridge first
principles calculations to larger length and timescales, where ML promises a large
potential for efficient upscaling.

Structural complexity was also discussed in the context of heat transport not only in
amorphous materials as presented by Dr. Simoncelli but also in polycrystalline
systems with grain boundaries and interfaces. A number of approximate models for
simulating heat transport in these systems exist, but they all rely on
phenomenological assumptions. Overcoming the phenomenological approximations
employed in these models is an open problem which might benefit from recent
developments in MLIPs.



Session Electronic Structure & Long
Range Interactions |

The session started with the overview talk given by Prof. Gabor Csanyi, who
introduced the recently developed concept of foundation atomistic models for MLIPs
based on the MACE architecture, which combines equivariant message passing
neural networks with higher body-order local descriptors derived from atomic cluster
expansion. Foundation models, such as MACE-MP-0 for inorganic materials and
MACE-OFF for organic molecules, are trained on highly diverse training sets of small
systems yet show excellent transferability, stability, generalisability, and universality
with qualitative to quantitative accuracy for a broad range of applications. In
particular, MACE-MP-0, which encompasses the entire materials project database, is
a powerful model for pre-screening or as a starting point for fine-tuning the MLIPs for
a specific application with iterative or active learning methods. By combining the
MLIPs with spectroscopic properties, the bridge to experimental observables is built.

Prof. Janine George picked up on the topic of descriptors of local atomic
environments and introduced the quantum-mechanical bond analysis to understand
and model magnetic materials beyond the Goodenough-Kanamori rules. Based on
MAGNDATA, a database of magnetic structures, Prof. George discussed the impact
of different geometrical and atomistic features on magnetic properties and introduced
standardised workflow and analysis tools for reproducible materials simulations.

Sergey Pozdnyakov challenged the necessity of explicit rotational equivariance in
atomistic machine learning models. Based on knowledge from 3D point clouds, the
Point Edge Transformer model based on an ensemble of local coordination systems
and message passing networks of higher order inherently learns approximate
rotational equivariance for both rotational invariant as well as equivariant targets.
The inaccuracy due to lack of explicit rotational symmetry of the model is deemed
negligible for most applications and does not impact the stability of molecular
dynamics (MD) trajectories. Alternatively, an a posteriori exact symmetrization
scheme can be applied, which however adds to the computational cost.

Prof. Kulbir Ghuman focused on the importance of incorporating defects and
amorphism in theoretical structure models in particular in the areas of energy
materials, electrochemistry, and catalysis. Since the properties and functionality of
materials crucially depend on these aperiodicities, structure models need to be as
realistic as possible embracing complexity to enable simulation of realistic properties.
Prof. Ghuman demonstrated the potential of combining first principles calculations
with ML methods first for the examples of modelling Fe-Ru alloy catalysts for NH3
synthesis balancing NH; poisoning and catalytic activity and second for N, adsorption
on doped Cu-Ni alloys.

The panel discussion started with the potential and challenges of foundation models
as introduced by Prof. Csanyi. Generalized models such as MACE-MP-0 are
computationally much faster and scale better than density functional theory (DFT)
calculations with a certain loss in accuracy. On the other hand, they are
computationally still less efficient than classical force fields although they are more
accurate. The trade-off between efficiency and accuracy as well as transferability of
MLIPs was targeted. In order to compare models and analyse their performance, a
Pareto front analysis of computational cost versus accuracy was recommended. As
potential areas of application, which would justify the transferable, yet
computationally expensive models, qualitative pre-screening methods for materials



screening as well as MLIP/molecular mechanics (MLIP/MM) embedding replacing
guantum mechanics/molecular mechanics (QM/MM) methods were suggested.
Additionally, several applications have already proven the benefit of using foundation
models as starting point for active learning schemes tailoring the universal
foundation models to fit a specific group of materials, while reducing the required
amount of training data by orders of magnitude. The initial MACE-MP-0 proofed too
soft for describing phonons, but additional learning, e.g. with workflows such as
introduced by Prof. George, showed improved accuracy for phonon predictions. Prof.
George also gave a short outlook on more complex bond analysis methods for more
efficient force constant and phonon predictions.

The extrapolation properties of the MACE method, which contains few non-linearities
and tends to yield smoother models in comparison to highly non-linear models with
more parameters, were discussed. However, a direct comparison of total number of
parameters of different ML models was discouraged, since parameters in different
model architectures such as linear and non-linear are rather different and not
comparable. The question whether to improve models with more data or more
physics, e.g. by multi-fidelity models, was raised. In contrast, Pozdnyakov’s talk
prompted the question, whether reducing the amount of explicit physical constraints,
such as rotational symmetry, would not be an option to simplify models and increase
efficiency while not reducing the accuracy significantly.

The models unconstrained by rotational symmetry were discussed next with a
particular focus on where they would fit in the cost-accuracy Pareto front analysis.
The improvement in efficiency and the reduction in complexity of MLIPs naturally
results in an additional error by releasing the rotational equivariance constrain. But
this additional uncertainty can be quantified and was demonstrated to be marginal in
comparison to the overall uncertainty of the ML model for several examples. The
potential impact of the lack of explicit rotational symmetry on the extrapolation
properties of ML models was discussed controversially.

Possible areas of application of foundation models and of MLIPs in general were
debated in the context of Prof. Ghuman’'s talk on the importance of realistic,
aperiodic, yet complex model systems. Point defect might still be manageable to
simulate with small, static systems and first principles. Surfaces and interfaces such
as grain-grain boundaries based on DFT bulk structures however are entirely
unrealistic due to enormous strain and require equilibration, which in most cases is
beyond the scope of ab initio MD but necessitates MLIPs. Especially when
simultaneously considering impurities or multi-phase boundaries of different
materials, foundation models which cover the entire periodic system are a versatile
and efficient tool for streamlining simulations.



Session Electronic Structure & Long
Range Interactions I

In his overview talk, Prof. Michele Ceriotti picked up on the topic of MLIPs from the
previous session. Based on the common features of different local atomic
descriptors, he elucidated their common problems. First, degenerate, non-
distinguishable structures, which can be resolved with message passing networks or
three-centre ensembles. Second, the exponentially growing number of coefficients,
which can be circumvented with Wigner kernels. Finally, the finite range problem,
which can be addressed by higher order descriptors in reciprocal space.
Alternatively, Prof. Ceriotti proposed to develop ML models that instead of the PES
directly target more complex properties connected to the electronic structure. He
demonstrated, that a ML model trained on the ground state electronic density of
states can simulate free energies at a finite electron temperature. When developing
a ML model to predict the Hamiltonian, Prof. Ceriotti stressed that it is advantageous
to optimize the model with respect to basis-independet observables of interest rather
than the matrix elements and to include physically-motivated components, such as
the orbital structure, to teach the ML model MO theory. Independent on which
property the ML for Hamiltonians was trained, the predicted Hamiltonians can be
used to compute other electron density related properties, such as excitation
energies.

Alexander Knoll introduced the high-dimensional neural network potentials (HDNNP)
as another class of MLIPs. While already the previous generations of HDNNPs
included local atomic charges, only the latest 4™ generation also covers long range
interactions such as dispersion, electrostatics, and non-local charge transfer by
coupling the short-range atomic neural network with a second neural network
predicting the long range electrostatic energy contribution based on an equilibration
of atomic charges. Knoll demonstrated the functionality of the 4G-HDNNP on the
wetting properties of a gold dimer on MgO and oxygen diffusion in PrCeO. However,
including long-range interactions in MLIPs as well as extending the predictable
properties to atomic charges and spins not only increases the computational cost but
also the complexity of the models significantly at the cost of user-friendliness,
robustness, and reproducibility. Hence, Knoll emphasized the importance of
automatized workflows and analysis procedures introducing RuNNer2.0 and
runnerase.

Prof. Reinhard Maurer picked up on the Prof. Ceriotti's topic of learning the
electronic wave function via the Hamiltonian. He encouraged the community to
reevaluate some decisions and conventions that were made a long time ago for first
principles methods but might no longer be relevant for modern methods, such as
Gaussian orbitals. He demonstrated the potential of electronic structure surrogate
models with the NQCDynamics.jl toolbox for applications in the area of non-adiabatic
processes, such as hot electron dynamics, surface reactions, electronic excitations,
electron-phonon coupling, and electronic friction.

William Baldwin presented an overview of how long-range interactions are included
in the MLIPs, categorizing the approaches in fixed point and charge equilibration
schemes. Implementations of different complexity were compared, as implemented
in the MACE framework. These surrogate models account for self-consistent
Coulomb interactions and more faithfully describe a structure’s response to an
external electric field. Baldwin applied the method to examples from the charge



distribution of metal clusters in water to dipoles and screening potentials of water on
metallic surfaces in an external electric field.

The initial discussion focused on the long range interactions. While important for
specific materials and systems, the increased complexity and computational cost of
ML models including long range interactions was critically discussed. A hierarchy of
methods or embedding procedures for the more sophisticated long-range MLIPs was
suggested. The discussion about the significance of long range interactions raised
the question of how to evaluate, whether your model is accurate enough for your
system of interest. Knoll suggested to validate ML models with experimental
observables to verify, that the model can reproduce physics, while Prof. Ceriotti
pointed out a heuristic approach utilizing the dynamical matrix. Long story short, if
you can create a reliable model with sufficient accuracy for your purpose without
long range interactions, the discussion suggested to neglect them in favour of more
simple and effective, purely local methods. But there are applications, where this is
not possible.

Next, the discussion turned to ML models for the Hamiltonian and electronic
structure in contrast to learning the observables of interest directly. Models that learn
properties such as the band gap directly do not learn inherent physical properties
such as symmetry and lack transferability. Deriving observables from a machine
learned Hamiltonian might suffer from a certain amount of error propagation, but
learning the Hamiltonian is more stable, transferable, and gives you access to any
property you can derive from the Hamiltonian, its eigenvalues or the electron density.
On the other hand, the model might be too flexible, therefore including symmetry and
optimized weights can stabilize the models. The benefit of direct learning of the
Hamiltonian is that you can design the loss function with different eigenvalues or
regularize the eigenvalues. But there are also some technical difficulties with the
diagonalization procedure. Even the first foundation models for Hamiltonians are
already available.

When the local additive ansatz of MLIPs was compared to the rotational symmetry
constraint as another inductive bias, the consequences of dropping the local additive
ansatz were discussed. When neglecting rotational symmetry, Pozdnyakov had
shown in the previous session that ML models can learn inherent rotational
equivariance. However, the local additive ansatz is a prerequisite for a model to be
size extensive, i.e. to be trained on small structures but be transferable to large
systems. Data augmentation schemes to teach the model size extensive
characteristics might be possible, but certainly very costly.

Prof. Ceriotti raised the point, that there has not been much activity to connect
atomistic machine learning with cheminformatics approaches, which go beyond the
electronic structure and target higher level properties such as solubility or toxicity.
This kindled a discussion on the gap between atomistic descriptors and complex,
high-level, large scale experimental observables by including more physics in ML
models and working with experimental data instead of first principles data.

Finally, the issue of collaboration and insufficient exchange of codes and data within
the community was debated. The idea to champion open source publication of both
codes and datasets as well as minimum standards of documentation, curation, and
continuous integration was supported. But on the other hand, the effort to
accomplish this goal and to motivate scientists to invest their time was discussed
controversially.



Session Magnetic Observables

The overview talk by Prof. Stefano Sanvito introduced the different properties
characterising a magnetic material as well as the challenges inherent in predicting
these magnetic properties with first principles methods. First, magnetic properties
depend critically on extremely accurate energy calculations often requiring high-level
methods such as coupled cluster (CCSD(T)) or spin-orbit coupling interactions on
the level of spin-polarised or even non-collinear electronic structure calculations.
Second, magnetic materials often necessitate the simulation of large systems and
depend on long range interactions. Third, multiple magnetic phenomena pose open-
boundary condition problems and complex, higher-order interactions such as spin-
lattice interactions.

Prof. Sanvito presented the concept of non-self-consistent field (non-SCF) DFT first
principles simulations. Based on the linear scaling, physically interpretable,
transferable, rotationally invariant Jacobi-Legendre (JL) polynomial cluster expansion
model, ML models can predict the ground state electron density, spin densities, and
even non-collinear spin vector fields as initial guess providing a massive speed-up of
DFT calculations. Due to the excellent extrapolation properties and analytical
derivatives of JL, the ML models are transferable and also accurate for phonon and
transition state predictions. With JL and similar spin force fields (FF), spin dynamics
can be simulated.

Johannes Wasmer picked up on the cluster expansion and compared several ML
models such as ACE, MACE, and SOAP for the example of learning the exchange
interaction of magnetic impurities in a topological insulator Bi.Tes in order to predict
the critical temperature. He put particular emphasis on the importance of exchange,
dissemination, and benchmarking of atomistic machine learning codes, workflows,
tools, and datasets introducing the JuDFTteam (https://github.com/JuDFTteam/best-
of-atomistic-machine-learning) and DAEMON network (cost-daemon.eu) activities.

Prof. Alessandro Lunghi moved on to magnetic single molecules and their spin
relaxation based on spin-lattice decoherence. Linear scaling SNAP ML models are
applied to learn not only the potential energy surface, but also phonons, components
of the spin Hamiltonian, as well as the derivative of magnetic properties. Uncertainty-
aware active learning strategies yield models that perform very well both in the
structural space as well as in the chemical space, i.e. in the context of high-
throughput screening of new material candidates.

Finally, Shuping Guo presented her work on predicting magnetic properties of double
perovskites. Including onsite energies and d-state transfer integrals in the learning
process, the double perovskites are first classified as anti-/ferromagnetic and the
transition as well as the Weiss temperatures are predicted. Several of the
compounds are identified as magnetically frustrated.

After discussing some specific questions concerning the individual talks and models,
the discussion soon focused on the potential of ML models for the electron density.
Based on the transferability of electron density predicting models, they can
significantly speed up phase diagram investigations with a non-SCF DFT approach,
even though the accuracy of the predicted electron density and energy might not be
sufficient to determine the convex hull entirely without first principles. In principle, ML
models predicting Hamiltonians and electron densities are equivalent. However,
Hamiltonians depend on a basis, whereas the electron density though defined on a
grid is more universal and is sufficient as input for several DFT codes to start from.



Besides, codes such as the Materials Learning Algorithms (MALA) can learn the
local density of states, from which other properties can be derived without a final
SCF cycle at the end. In other cases, learning the observable or property of interest
directly, such as exchange coupling, can be easier or advantageous.

However, many magnetic properties depend on exceptionally accurate energy
calculations necessitating high-level calculations. Furthermore, calculated properties,
energies, and electron densities are naturally highly sensitive to physical
approximations, such as exchange-correlation functional, which have to be chosen
depending on the property of interest as well as the material system. Nevertheless,
the first principles training and testing data for the ML models need to be robust and
ideally generated automatically. But for example the automatized determination of
the chemical active space (CAS) in CAS-SCF calculation is not always reliable and
can taint the datasets. Considering the computational expense of high-level first
principles calculations for magnetic properties, ML models are still located in the
small data regime and need to be of limited complexity and not overly parametrized.
Interesting future projects could work on ML datasets for active spaces or on ML on
full configuration interaction (CI) to identify, which contributions actually matter.

Following Wasmer’s introduction to best-of-atomistic-machine-learning and cost-
daemon, the role of well curated repositories collecting, benchmarking, and
disseminating codes and datasets in the area of atomistic ML was addressed again.
Despite their undisputed importance, their cost in invested time and manpower was
criticized. Funding rarely stretches to code or repository maintenance and very often
code or data repositories and their maintainers and depositors are not given any
credit in subsequent publications, especially when code or data were not published
as journal contribution before. Furthermore, increased interaction with the users was
recommended, where users can comment on experience, quality, usability of data
and codes.

Based on the talks by Wasmer and Guo, the discussion moved to the Heisenberg
model, which does not consider longitudinal spin relaxation and neglects electron-
hole excitations. However, it is an easy approximation, which provides good results
for many problems as well as decent thermodynamics.

The plenary discussion was closed with the outlook that there is still a long way to go
to replace the full time-dependent (TD) DFT simulations of magnetic systems with
coupled spin-lattice MLIPs MD.



Session Spectroscopic Observables |

The first session on spectroscopic observables was opened by Prof. Patrick Rinke,
who in his overview talk introduced general concepts, successes, and challenges of
ML applications in spectroscopy. ML can be applied to facilitate the two main goals
and workflows at the interface between theoretical and experimental spectroscopy:
firstly, spectra prediction, which is common in computational materials modelling,
and secondly, property inference from spectra, which is more typical for experimental
approaches. The latter predicts material structures and properties from spectral input
or classifies the input according to different categories. The former can be facilitated
by ML in different ways. The most common are: directly learning structure-spectrum
correlations, accelerating the spectroscopy method itself or learning the Hamiltonian,
from which spectral properties can be derived. One example of accelerated
methodology is infrared (IR) spectroscopy, for which MLIPs can be trained and then
used to speed up MD calculations. Paired with an ML model for the dipole, the IR
spectrum can then be extracted from the auto-correlation function over the MD
trajectory.

Prof. Rinke illustrated the different concepts with examples from a broad range of
spectroscopy methods, such as molecular excitation spectra, core electron
spectroscopy, UV/Vis spectroscopy, and structure/property inference from 2D
nuclear magnetic resonance (NMR) spectroscopy. He emphasized the sparsity and
lack of diversity in available spectroscopic datasets as well as the computational cost
of establishing accurate first principles data sets, e.g. on the level of GoW,theory, as
prominent problems.

Dr. Tigany Zarrouk presented another example of ML facilitated structure inference
from spectral data - X-ray photoelectron spectroscopy (XPS) on oxygenated
amorphous carbon. He combined a ML-based XPS model trained from first
principles GW data with a MLIP for the C-O system. With a grand-canonical Monte
Carlo within a modified Hamiltonian formalism, the XPS spectra are deconvoluted
into motif contributions bridging the gap between experiment and theory and
providing access to realistic structural models by an experiment-driven materials
modelling approach.

Prof. Rose Cersonsky moved on to the rather new research field of optical properties
of photonic crystals, which requires the efficient computation of photonic band
structures for three-dimensional patterns of materials with different permittivity. ML
models show a big potential on providing surrogate models for photonic structures to
derive new insights into the structure-property landscape. However, the scale-
covariance of the governing equations poses a challenge for ML models.

Finally, the application of ML models in the area of X-ray spectroscopy was
presented by Clelia Middleton. She illustrated how the ML model XANESNET, which
predicts K- and L-edges of various transition metals based on the atomistic structure,
was extended to light, non-metallic elements by the introduction of an additional
descriptor for the electronic properties. The descriptor is based on the partial density
of states (p-DOS) and enables the prediction of sulphur K-edges, which Middleton
demonstrated for the analysis of the products of the photosimulated ring-opening of
thiophenone with X-ray absorption near edge structure (XANES) spectroscopy.

Based on the conceptual strategies of how to integrate ML in theoretical
spectroscopy introduced by Prof. Rinke, the discussion started on which was the
correct or optimal strategy. The best possible strategy depends on the availability of



data or the cost of generating the required data for training the model and the trade
off of the cost of data generation versus the gain in efficiency by the ML model.

The advantages and disadvantages of learning a spectrum as a whole versus
learning of the state eigenvalues were debated. Learning eigenvalues over a
chemical space is challenging since the number of relevant states varies for each
system. Additionally, the intensity and line broadening of peaks need to be learned,
simulated or ultimately fitted. This raised the question of how to compare spectra and
guantify agreement. Systematic shifts, different line broadening or different intensity
ratio decreases the direct overlap of two spectra, although the agreement from a
spectroscopist’'s point of view might still be quite good. Different loss functions and
similarity coefficients are available. The approach to identify candidate structures
with best similarity, provide them with a ranking, and ceding the final judgement to
the user was suggested, but this approach can only find already known structures
and does not allow for the identification of new compounds.

In the context of comparing spectra, the issue of reproducibility, accuracy, and
reliability of experimental spectra and their sensitivity to different spectrometers,
sample preparation, and references were controversially discussed. But also the
accuracy of theoretical spectra was under scrutiny. In particular, the finite cluster
approach with H-saturation by Prof. Rinke was addressed. The approach, which is
necessary to saturate dangling bonds and ensure closed-shell configurations, in
general does not result in additional artifacts in the spectroscopic calculations but
can influence the convergence.

The increased complexity of recently studied materials and the ensuing challenges
to spectroscopic calculations as well as ML predictions were debated. The more
local the spectroscopic observable, e.g. core electron energies, the more reliably the
property can be expressed in the local descriptor expansion and computed in finite
model systems. Less local properties might be more challenging. Another factor is
the scaling property of the ML models with number of species and system size.

Since most ML models presented in this and previous sessions were based on first
principles training data, the relevance of experimental data was disputed. Naturally,
all the ML models for spectroscopic observables are ultimately motivated by bridging
theoretical models of material systems with experimental observations for validating
theoretical models as well as facilitating the interpretation of experimental spectra
(inference). The question how to make experimental data more relevant for ML
model training was addressed and resulted in a detailed discussion about FAIR data
management and the significance of documented metadata, in particular of prior
technical or expert knowledge. Moreover, intensified communication to understand
the scientific questions, technical details, and experimental problems better was
emphasized. Even a basic definition such as, what is a material, might be
fundamentally different between experiment and modelling and the transfer between
an experimental sample and the atomistic structure is often not straightforward.
Finally, determining the reproducibility of experimental data by repeating the
measurement on the same sample as well as an identically produced sample was
suggested, as it would increase confidence in experimental data, provide an
uncertainty measure, and help identify outliers and false data.



Session Spectroscopic Observables Il

The second overview talk about spectroscopic observables was given by Prof.
Rebecca Nicholls. She introduced core-loss spectroscopy by electron or X-ray
beams, which can provide information about bonding and atomistic structure of
materials. Depending on the applied energy, phonons, plasmons or single electron
excitations are addressed and the depth of excitation in the material varies making it
a surface sensitive method. Electron energy loss spectra (EELS) can be simulated
from first principles by computing the double differential cross section and
comparison with calculated p-DOS allows for conclusions about the bonding
situation. Prof. Nicholls presented the significance of theoretical simulations for
experimental analysis with examples for understanding superconductivity in REBCO
materials, the surface structure of LiNiO. battery materials, and the Zr suboxide in
the ZrO,/Zr interface. While theoretical simulations can facilitate the interpretation of
experiments, Prof. Nicholls stresses the importance of keeping the scientific question
in focus. Considering the computational cost of EELS simulations and the materials’
complexity in many applications, ML has a large potential of streamlining core-loss
spectroscopic computations and boosting the understanding and design of materials.

Prof. Josef Granwehr presented electron paramagnetic resonance (EPR)
spectroscopy as a method for spectro-electrochemical in operando spectroscopy of
organic radical batteries. The experimentally measurable g-value proofs to be
sensitive to the state-of-charge (SoC). In order to elucidate the correlation between
SoC and structural and redox information, MD simulations combined with DFT-
trained ML models predicting g-values from atomistic structures demonstrate, that
the g-values is not only sensitive to the global radical concentration but also to local,
heterogeneous concentrations during cycling, which also impacts the line shape. The
accuracy of the ML model for predicting g-values is comparable if not superior to
experimental uncertainties and transferable to different radical concentrations. Prof.
Granwehr also introduced the neighbourhood analysis in order to unravel the impact
of local structural features on the observable hyperfine coupling.

Prof. Claudia Draxl discussed the challenge of defining and quantifying similarity or
discrepancies in spectra. Both experimental and theoretical spectra generation are
subject to errors and inaccuracies due to deviating experimental conditions or
different computational methods. By introducing spectral fingerprinting and different
similarity coefficients such as the Tanimoto similarity, the comparison of spectra
becomes more reproducible and robust. Un-/supervised learning of fingerprints
allows to find patterns and trends rather than absolute differences. Prof. Draxl
illustrated the spectral fingerprinting on screening for similar DOS of perovskites, on
optical spectra of layered boron nitride, and different spectra of Ag. She referenced
the C2DB database of 2D materials and presented the NOMAD infrastructure for
FAIR dataset management.

Prof. Stefan Sandfeld’'s talk extended the session to ML applications beyond first
principles atomistic applications. He highlighted the general challenges of scientific
ML in contrast to computer science, such as sparse or noisy data, the necessity to
generate accurate, transferable models that show an efficiency gain with respect to
classical models, and the trend towards highly specialized models which are difficult
to generalize to other scientific domains. Prof. Sandfeld presented examples from
the area of image processing of electron microscopy, where U-net architectures are
successfully applied for feature detection in time-series data and synthetic data
generation replace time-consuming and less reproducible labelling procedures. For
inverse problems and inverse dimensionality reduction, he illustrated a GAN model



that produces Ising systems for specific temperatures and pointed out the potential
of latent space design.

The panel discussion started with the sensitivity of spectroscopy in general and the
DOS and EELS in particular to temperature, defects, and surfaces and how well
theoretical methods can replicate those effects. Of course, theoretical methods are
based on certain approximation such as periodic boundary conditions, nevertheless
they are in principle able to model complex systems as long as the atomistic model
of the system is as close to the real sample in experiment as possible. The
importance of sharing real data not only idealized, perfect results on both the
experimental as well as theoretical side was emphasized. The interesting things
happen, when results are unexpected and not ideal. Furthermore, it is also important
to learn from failures. Therefore, recording of as much metadata as possible is
necessary to identify the cause of failures or deviations.

The discussion then focused on the interface between experiment and theory and
the process of sharing data. In the crystallography community, frameworks and
platforms for sharing and documenting data already exist and work quite well.
However, data once published are rarely updated with further knowledge or
commented by users. Materials, which are not perfect but feature impurities or
dopants are rarely published or more specific metadata is missing. There are
infrastructures such as NOMAD for data and metadata management also including
additional information such as synthesis procedures. Since scientists from many
disciplines such as chemistry, computational sciences, and physics come together in
material science, also the documentation of essential knowledge about the material,
experimental procedure or simulation was deemed necessary, that might not be
obvious to people from a different field of research.

Finally, the lack of motivation to invest time and resources in diligent and
comprehensive data management was critically discussed. In other areas such as
the food industry, pressure applied by official agencies has resulted in
documentation of data and traceability of supply chains. The pressure in science was
deemed insufficient also since consistent quality standards for data management are
not defined. Moreover, methods to unify data from different sources need to be
developed and established. Documentation of datasets is key as well as generally
accepted reference data, reference codes, and reference samples or examples.



Session Electronic Structure & Long
Range Interactions lli

Luca Leoni presented his work on utilizing MLIPs for the simulation of polaron
hopping dynamics. The simulation of polaron mobility with first principles methods is
difficult due to the charge and excess magnetic moment of the polaron, requires
large supercells, and is computation-intensive. Leoni demonstrated the gain in
efficiency by replacing first principles methods with MLIPs based on equivariant
graph neural networks and trained on ab initio MD (AIMD), where the local descriptor
is extended by the polaron degree of freedom. Applications on small polaron mobility
in MgO, TiO,, and F-doped TiO: illustrate the accelerated performance as well as
good accuracy.

The ensuing discussion addressed the description of the polaron degree of freedom
in the feature vector of the local descriptor. An explicit encoding of the polaron
localization is necessary, since the geometric distortions due to the polaron are
much smaller than thermal displacements. Hence, the polaron position is not
indirectly encoded in and cannot be inferred from the atomic structure. In the current
descriptor, the polaron position is encoded as a kind of charge state encoding with a
0/1 integer added to the local atomic descriptor for whether the polaron is localized
on this atom or not. The integer makes the energy landscape discontinuous with an
energy discontinuity on the order of meV/structure. Defining the polaron position with
a floating point number improves continuity but also allows for the description of
polaron delocalization. However, quantifying the amount of polaron localization from
DFT calculations is not straightforward and unambiguous. Alternatively, a ML model
predicting the charge density could be applied, but would loose efficiency for long
timescale MD simulations.

In order to improve the energy barrier predictions in the TiO, example, additional
sampling around the energy barrier had been applied. Sampling of the PES purely
by AIMD naturally puts a strong emphasize on the minimum energy areas.
Especially when upscaling the method to larger structures, pure AIMD training might
not be the method of choice, since you need at least one jump of the type you are
looking for in the training data. Replacement or extension of the AIMD training data
with nudged elastic band (NEB) might be a solution for more homogeneous, effective
sampling and training of the model.

The question about the suitability of the ML model for large polarons was answered
negatively by Leoni. Even if the model may be able to treat such cases it would be
impossible to create a database needed for training due to the need of supercells
that, to this day, not allow for long enough MD runs or even NEB computations to be
performed in a suitable time. Alternatively, large polarons could be described via a
ML model for the Hamiltonian.

Bartosz Brzoza introduced the MALA package, a graph neural network based ML
framework for predicting electronic structures. By combining SNAP descriptors with
multi-layer perceptrons mapping the bispectrum components to local DOS (LDOS), a
linear scaling, rotationally invariant ML model for the electronic structure is
generated. First applications to the liquid-solid phase diagram of molecular hydrogen
at various pressures and temperatures show good results at chemical accuracy and
illustrate that the attention neural network model selectively focuses on relevant
pieces of information. The extension to SE(3)-equivariant models by tensor field
network convolution can directly predict higher rank observables as well as LDOS.



The subsequent discussion initially focused on placing the MALA model in the bigger
picture of ML models for electronic structure. There are other graph neural network
models around. Whether there is already a model available that combines SE(3)
equivariance and attention graph neural networks and how MALA compares
performance-wise was left open. Brzoza introduced the number of electrons as a
metric for the error of the model, derived by integrating over the electron DOS to get
the LDOS, which not always reproduces the correct number of electrons but was
deemed manageable. The temperature degree of freedom of the LDOS was
mentioned, which raises or lowers the electron energy levels independent of the
lonic temperature and can be included in the model.

The extension of the MALA package to multi-species systems was addressed. It will
change the scaling properties but enable the application to the future periodic
systems of interest such as proteins and superconductors.



Session Databases & Reaction
Networks

The final session was opened by Prof. Johannes Margraf presenting the topic of ML
in chemical reaction space. He introduced the exploration of chemical reaction
networks of organic molecules as a crucial step within the multi-scale approach
towards microkinetics of simulating gas phase reactions and heterogeneous
catalysis. By thoroughly sampling of the PES of the reactants including global
optimization of the conformational space as well as rare-event sampling for the
kinetics, the rather complex reaction networks, that grow exponentially with number
of atoms, can be simplified and pruned systematically. However, in order to study
reactivity, radicals and open-shell molecules need to be considered, too. ML models
allow the efficient exploration of larger reaction networks. Prof. Margraf
demonstrated on various examples, such as combustion and heterogeneous
catalysis on Rh surfaces, that ML models trained on atomic energies are superior in
predicting reaction energies and that atomic energies are superior weights for
reaction paths than total energies. Furthermore, he compared different free energy
approximation and demonstrated their impact on kinetic rate constants.

Dr. Jonathan Schmidt presented a prototype-based high-throughput material
screening for perovskites as well as mixed perovskites with graph attention neural
networks searching for thermodynamically stable and metastable materials in convex
hull simulations. Symbolic regression models identified DOS, Fermi level and the
element in the Z-position as decisive for thermodynamic stability and
superconductivity properties. In the course of those and similar projects, the
Alexandria database was developed, which comprises 4.5 Mio crystal structures as
well as convex hull data for over 115,000 structures on the level of PBE, SCAN, and
PBEsol. More recently, the database was extended by 2D and 1D materials by
transfer learning. In combination with other datasets such as ICSD or
materials.colabfit.org, it was used to train and benchmark universal MLIPs and
generative models such as MatterGen and MatterSim.

Prof. Olexandr Isayev introduced the latest developments in the AIMNet family of
chemically inspired deep neural network potentials. The universal, transferable
MLIPs for the most common elements in organic molecules are trained on highly
accurate (e.g. def2-tzvpp, CCSD(T)) first principles calculations. The recent
advances of AIMNet, the fully reactive, linear scaling AIMNet2, also considers open-
shell as well as charged molecules of different multiplicity and adds physics-based
long-range terms to the ML-parametrized, additive short-range energy. Prof. Isayev
demonstrated the potential and transferability of various AIMNet models for chemical
reaction network exploration, transition state optimization, reaction thermochemistry,
and even identification of key reaction mechanisms in complex reactions such as
Diels-Alder, click chemistry, and Suzuki cross-coupling reactions. By combination
with nano-reactor MD, the MLIPs are extended to extreme dynamics at high
temperature.

Finally, Dr. Pierre-Paul De Breuck addressed the scarcity, limited transferability, and
comparability of datasets. In all the areas of material science, high-fidelity data is
much scarcer than low-fidelity data both in theory and experiment. Furthermore, first
principles data is usually not directly comparable with experimental data. Dr. De
Breuck presented MODNet, a feed-forward neural network based on material-
optimal, physically meaningful features and joint learning, which balances small
datasets with multi-fidelity datasets of varying accuracy and simultaneously provides



a confidence measure. The method is benchmarked for electronic band gap
predictions and refractive indices of optical materials as well as TRIP-TWIP Ti alloys.

The panel discussion picked up on the last talk by Dr. De Breuck and enlarged upon
transfer learning versus delta learning and the onion model approach with
asymptotic error. The denoising approach with multi-fidelity data was debated, which
provided good results but is difficult to analyse and to reproduce for different data.
Also, whether the deviation of different DFT data and in particular with respect to
experimental data could be defined as noise despite lacking a typical noise
distribution was discussed. Experimental data is also particularly difficult to assign
with individual fidelity labels. If consistent metadata is missing, it requires the
analysis of the original publications. The data requirements for transfer learning of
multi-fidelity data depend very much on the distribution of the data in the fidelity
space. The larger the difference between the high and low fidelity data, the more
data in general and the more data in particular in the high fidelity class are required
for reliable accuracy.

The transfer learning was also addressed in the context of Dr. Schmidt's study of
thermodynamic stability to transfer convex hulls to convex hulls of increased fidelity.
For magnetic materials, the convex hull can also serve as starting point for iterating
through different magnetic configurations in supercells.

Prof. Isayev’'s state-of-the-art AIMNet models including charge and spin attracted
further interest. In contrast to previous AIMNet generations, the second generation is
trained on hybrid DFT, since CCSD(T) is unsuitable for open-shell datasets. A single
model can predict different spin states, open-shell systems, and biradicals as well as
differently charged and neutral components simultaneously. The larger error on the
transition state prediction is not only due to the higher degree of flexibility but also
due to the large radical structure, which requires extrapolating of the AIMNet model,
which is trained on small organic structures with less than 50 atoms.

The impact of solvent on Prof. Isayev's examples on click chemistry and Suzuki
coupling were debated. The AIMNet models are exclusively trained on gas phase
molecules and also the predictions neglect solvents. Solvents might be included
implicitly in the neural network, which also allows for description of the response to
charges.

Similarly, the approximation of a static catalyst surface in Prof. Margraf's modelling
of adsorbates and catalytic reaction networks was addressed. An explicit treatment
of the surface activity might be feasible for small reaction networks, but is still
beyond the computation limits for complex catalytic reactions.

The ML models presented in this and previous sessions focused on predicting the
target properties and thermodynamic stability. More advanced approaches are
suggested to additionally include kinetic information about the synthesizability in the
prediction score as well as knowledge about which elements the experimental
community usually works with.

Finally, the discussion moved again to the foundation models. For several of the
presented applications, the MACE-MP-0 or similar foundation models do not work
out of the box. Either the accuracy is not sufficient or the system is not stable.
Nevertheless, the foundation models proof to be good starting points for fine-tuning
with active learning and adaption of the models for the specific application.



We thank all the participants, online and in person, for their contributions
to the panel discussions and the speakers for their commitment and the
lively exchange.
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