diff --git a/presentation/backmatter/discussion.tex b/presentation/backmatter/discussion.tex
index 17f279a13878da78f6d18359d1725941e068f56f..75d500bd380533598cb1c281342dfc5604deff90 100644
--- a/presentation/backmatter/discussion.tex
+++ b/presentation/backmatter/discussion.tex
@@ -11,7 +11,7 @@
 % KKR theory slide from mavropoulous dft20 kkr lecture; backup slides
 {
   \setbeamercolor{background canvas}{bg=}
-  \includepdf[pages={15,17,19,27-28,30-31}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf}
+  \includepdf[pages={15,17,19,27-28,29,31}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf}
 }
 
 
diff --git a/presentation/frontmatter/slides-repo.tex b/presentation/frontmatter/slides-repo.tex
index 831fae45350bee3ef8e778c06f6beeed5b8711f2..9bb73ff6134b5acd68b299c496a78beb46f9fa8c 100644
--- a/presentation/frontmatter/slides-repo.tex
+++ b/presentation/frontmatter/slides-repo.tex
@@ -3,7 +3,7 @@
   % \frametitle{Slides metadata}
 
   \begin{center}
-  Talk held at hzdr-casus group meeting for ongoing collaboration project via
+  Talk held at HZDR-CASUS \href{https://sites.google.com/view/mlmd}{MLMD} group meeting for ongoing collaboration project via
   HIDA Trainee Network.
 
   \vspace*{2em}
diff --git a/presentation/mainmatter/introduction.tex b/presentation/mainmatter/introduction.tex
index 1068d96adc473cc53f7493f0ac6a2a33c6eb4e90..b77e4cd35ab372d15b6ceb84cb39ae5df21b69d3 100644
--- a/presentation/mainmatter/introduction.tex
+++ b/presentation/mainmatter/introduction.tex
@@ -48,6 +48,76 @@
   \end{columns}
 \end{frame}
 
+% Slide funding % Section introduction
+\begin{frame}[c,plain]
+  \frametitle{My funding}
+  % \framesubtitle{HIDA, HDSLEE, AIDAS, DAEMON}
+  \vspace*{0em}
+  \begin{columns}[c]
+    \begin{column}{0.3\linewidth}
+      \textbf{\color{fzjblue}{This research visit}}
+
+      {\small HIDA Trainee Network}
+
+      \vspace*{1em}
+
+      \begin{center}
+        \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hida/HiDA_Logo_RGB_kompakt-cropped.png}\vspace*{1em}
+        % \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Solo_RGB_cropped.pdf}\vspace*{1em}
+        % \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Text_RGB_cropped.pdf}
+      \end{center}
+
+      \vspace*{1em}\hrule{}\vspace*{2em}
+
+      \textbf{\color{fzjblue}{My PhD}}
+
+      {\small HIDA Grad School HDSLEE \&}
+
+      {\small EU Joint Virtual Lab}
+
+      \vspace*{1em}
+
+      \includegraphics[width=0.8\textwidth]{../resources/fig/logos/aidas/AIDAS-72dpi-no-bg.png}%
+      % {\color{fzjblue}{on Artificial Intelligence, Data Analytics and Scalable Simulation}}
+
+    \end{column}
+    \vrule{}\hspace*{2em}
+    \begin{column}{0.6\linewidth}
+      % left side. DAEMON Network
+      \begin{columns}[c]
+        \begin{column}{0.35\linewidth}
+          \vspace*{3em}
+          \begin{center}
+            % \includegraphics[width=0.7\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2023-09-05.png}%
+            \includegraphics[width=1.0\textwidth]{../resources/fig/cost-daemon/daemon-working-groups-circle.png}%
+            \vspace*{1em}
+            Join via \\\large{\href{https://cost-daemon.eu/}{cost-daemon.eu}}
+          \end{center}
+        \end{column}
+
+        \begin{column}{0.6\linewidth}
+          \begin{center}
+            \includegraphics[width=0.45\textwidth]{../resources/fig/logos/cost-daemon/cost-daemon-logo-2025.png}%
+            \hspace*{1em}
+            \includegraphics[width=0.3\textwidth]{../resources/fig/logos/cost-eu/cost-eu-logo-no-bg.png}%
+          \end{center}
+          \emph{European network for data-driven materials science}\vspace*{1em}
+          {\footnotesize
+            \begin{itemize}
+              % \setlength\itemsep{1em}
+            \item[\textbf{\faPlay{} WG1:}] Community standards: data, workflows and codes for materials design.
+            \item[\textbf{\faPlay{} WG2:}] Representations and algorithms for materials design for “single-modality” use.
+            \item[\textbf{WG3:}] Multi-modal machine learning methods for advanced materials design.
+            \item[\textbf{WG4:}] Process-structure-property relationships in materials. Novel insights and applications.
+            \item[\textbf{WG5:}] Training, Dissemination, Exploitation, Outreach
+            \end{itemize}
+          }
+        \end{column}
+      \end{columns}
+    \end{column}
+  \end{columns}
+\end{frame}
+
 
 
 % Slide my research group % Section introduction
@@ -155,83 +225,25 @@
     \end{columns}
 
     \vspace*{0em}
-    {\large \faGithub{} \href{https://github.com/JuDFTteam}{JuDFTteam}}
+    {\large \href{http://judft.de}{judft.de} \quad \textbf{//} \quad \faGithub{} \href{https://github.com/JuDFTteam}{JuDFTteam}}
+    % {\large \faGithub{} \href{https://github.com/JuDFTteam}{JuDFTteam}}
   \end{center}
 \end{frame}
 
-
-% Slide funding % Section introduction
+% Slide all-electron DFT % Section phd-project
 \begin{frame}[c,plain]
-  \frametitle{My funding}
-  % \framesubtitle{HIDA, HDSLEE, AIDAS, DAEMON}
-  \vspace*{0em}
-  \begin{columns}[c]
-    \begin{column}{0.3\linewidth}
-      \textbf{\color{fzjblue}{This research visit}}
-
-      {\small HIDA Trainee Network}
-
-      \vspace*{1em}
-
-      \begin{center}
-        \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hida/HiDA_Logo_RGB_kompakt-cropped.png}\vspace*{1em}
-        % \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Solo_RGB_cropped.pdf}\vspace*{1em}
-        % \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Text_RGB_cropped.pdf}
-      \end{center}
-
-      \vspace*{1em}\hrule{}\vspace*{2em}
-
-      \textbf{\color{fzjblue}{My PhD}}
-
-      {\small HIDA Grad School HDSLEE \&}
-
-      {\small EU Joint Virtual Lab}
-
-      \vspace*{1em}
+  \frametitle{JuDFT codes accuracy}
+  % frametitle notes: PhD project flowchart
 
-      \includegraphics[width=0.8\textwidth]{../resources/fig/logos/aidas/AIDAS-72dpi-no-bg.png}%
-      % {\color{fzjblue}{on Artificial Intelligence, Data Analytics and Scalable Simulation}}
+  FLEUR and JuKKR are all-electron, full-potential open-source codes.
+  \vspace*{0em}
 
-    \end{column}
-    \vrule{}\hspace*{2em}
-    \begin{column}{0.6\linewidth}
-      % left side. DAEMON Network
-      \begin{columns}[c]
-        \begin{column}{0.35\linewidth}
-          \vspace*{3em}
-          \begin{center}
-            % \includegraphics[width=0.7\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2023-09-05.png}%
-            \includegraphics[width=1.0\textwidth]{../resources/fig/cost-daemon/daemon-working-groups-circle.png}%
-            \vspace*{1em}
-            Join via \\\large{\href{https://cost-daemon.eu/}{cost-daemon.eu}}
-          \end{center}
-        \end{column}
+  \includegraphics[width=0.8\textwidth]{../resources/fig/external/papers/bosoniHowVerifyPrecision2024/fig4-clip1.pdf}\footcite{bosoniHowVerifyPrecision2024}
 
-        \begin{column}{0.6\linewidth}
-          \begin{center}
-            \includegraphics[width=0.45\textwidth]{../resources/fig/logos/cost-daemon/cost-daemon-logo-2025.png}%
-            \hspace*{1em}
-            \includegraphics[width=0.3\textwidth]{../resources/fig/logos/cost-eu/cost-eu-logo-no-bg.png}%
-          \end{center}
-          \emph{European network for data-driven materials science}\vspace*{1em}
-          {\footnotesize
-            \begin{itemize}
-              % \setlength\itemsep{1em}
-            \item[\textbf{\faPlay{} WG1:}] Community standards: data, workflows and codes for materials design.
-            \item[\textbf{\faPlay{} WG2:}] Representations and algorithms for materials design for “single-modality” use.
-            \item[\textbf{WG3:}] Multi-modal machine learning methods for advanced materials design.
-            \item[\textbf{WG4:}] Process-structure-property relationships in materials. Novel insights and applications.
-            \item[\textbf{WG5:}] Training, Dissemination, Exploitation, Outreach
-            \end{itemize}
-          }
-        \end{column}
-      \end{columns}
-    \end{column}
-  \end{columns}
+  \vspace*{0em}
 \end{frame}
 
 
-
 % Slide AiiDA engine % Section introduction
 \begin{frame}[plain,c]
   % \frametitle{{\small AiiDA}}
@@ -281,45 +293,6 @@
 \end{frame}
 
 
-
-% Slide PhD project flowchart % Section phd-project
-\begin{frame}
-  \frametitle{My PhD project}
-  % frametitle notes: PhD project flowchart
-  \framesubtitle{\href{https://go.fzj.de/wasmer}{go.fzj.de/wasmer}}
-  \vspace*{0em}
-
-  \includegraphics[width=1.0\textwidth]{../resources/fig/presentation-2023-02/atomistic-ml/classification-of-atomistic-ml_presentation-2023-02_02-emph-both_ktikz.pdf}
-
-  \vspace*{2em}
-  \begin{columns}[t]
-    \hspace{1em}
-    \begin{column}{0.6\linewidth}
-      \begin{center}
-        Electronic structure emulator
-
-        for fast SCF convergence
-      \end{center}
-    \end{column}
-    \vrule{}
-    \hspace{1em}
-    \begin{column}{0.39\linewidth}
-      \begin{center}
-        Magnetic property prediction
-
-        for spin dynamics simulation
-      \end{center}
-    \end{column}
-  \end{columns}
-\end{frame}
-
-% Slide MTIs (magnetic topological insulators) % Section co-doping
-{
-  \setbeamercolor{background canvas}{bg=}
-  \includepdf[pages=1]{../resources/fig/presentation-2023-03/ruess/ruess-TIs.pdf}
-}
-
-
 %%% Local Variables:
 %%% mode: latex
 %%% TeX-master: "../presentation"
diff --git a/presentation/mainmatter/jij-prediction.tex b/presentation/mainmatter/jij-prediction.tex
new file mode 100644
index 0000000000000000000000000000000000000000..8c1dbb4f0aaebadcdf4fb5baedae2641e687a0d6
--- /dev/null
+++ b/presentation/mainmatter/jij-prediction.tex
@@ -0,0 +1,263 @@
+\section{Machine learning exchange interactions}
+\label{sec:ml-exc-inter}
+
+% Slide PhD project flowchart % Section phd-project
+\begin{frame}
+  \frametitle{Vision: Electronic structure learning}
+  % frametitle notes: PhD project flowchart
+  \framesubtitle{as integrated, high-level multiscale workflows}
+  \vspace*{0em}
+
+  \includegraphics[width=1.0\textwidth]{../resources/fig/presentation-2023-02/atomistic-ml/classification-of-atomistic-ml_presentation-2023-02_02-emph-both_ktikz.pdf}
+
+  \vspace*{2em}
+  \begin{columns}[t]
+    \hspace{1em}
+    \begin{column}{0.6\linewidth}
+      \begin{center}
+        Better \enquote{initial guess}
+
+        for fast SCF convergence
+      \end{center}
+    \end{column}
+    \vrule{}
+    \hspace{1em}
+    \begin{column}{0.39\linewidth}
+      \begin{center}
+        Magnetic property prediction
+
+        (ML-Exc) for spin dynamics
+      \end{center}
+    \end{column}
+  \end{columns}
+\end{frame}
+
+
+% Slide MTIs (magnetic topological insulators) % Section co-doping
+{
+  \setbeamercolor{background canvas}{bg=}
+  \includepdf[pages=1]{../resources/fig/presentation-2023-03/ruess/ruess-TIs.pdf}
+}
+
+% Slide study design % Section co-doping
+\begin{frame}[plain,c]
+  \frametitle{Project \enquote{ML-Exc}}
+  \framesubtitle{Magnetic co-doping of topological insulators}
+
+  \hspace*{1em} \ce{Bi2Te3} \hspace*{3em} Dimer clusters of \(3d\), \(4d\) transition
+  metal defects\vspace*{-1em}
+
+  \begin{columns}[c]
+    \hspace*{1em}
+    \begin{column}{0.6\textwidth}
+      \begin{center}
+        \includegraphics[width=0.35\textheight]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/Fig1-a.pdf}%
+      \hspace*{-0.5em}
+        \includegraphics[width=0.80\textwidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA3-extract-6.pdf}%
+      \end{center}
+    \end{column}
+    \hspace*{3em}
+    \begin{column}{0.4\textwidth}
+      {\small
+        Single-impurity dabase, N=2'000.
+        \href{https://go.fzj.de/judit}{go.fzj.de/judit}\vspace*{1em}
+
+        Dimer database, N=2'000\footcite{mozumderHighthroughputMagneticCodoping2024}.\vspace*{3em}
+
+        Co-doping can help to control
+
+        \begin{itemize}
+        \item critical \(T_c\) of QAHE
+        \item exchange splitting \(\Delta_{xc}\)
+        \item long-range magnetic ordering
+        \end{itemize}\vspace*{1em}
+
+        for applications in spintronics and
+
+        fault-tolerant quantum computing.
+      }
+    \end{column}
+  \end{columns}
+\end{frame}
+
+% Slide AiiDA-KKR workflows % Section co-doping
+\begin{frame}[plain,c]
+  \frametitle{Project \enquote{ML-Exc}}
+  \framesubtitle{\logoAiida{}-KKR workflows\footcite{russmannAiiDAKKRPluginIts2021}}
+  \vspace*{-1em}
+  \begin{columns}[t]
+    \hspace*{-2em}
+    \begin{column}{0.3\linewidth}
+      % {\footnotesize Single impurity}
+      \begin{center}
+        \includegraphics[width=0.8\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}
+      \end{center}
+    \end{column}
+    \begin{column}{0.5\linewidth}
+    \hspace*{-3em}
+      \begin{center}
+        % {\footnotesize \(N+1\) impurities}
+        \includegraphics[width=0.8\linewidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA2-no-subfigure-labels.pdf}%
+      \end{center}
+    \end{column}
+  \end{columns}
+  \vspace*{-0em}
+  \begin{flushright}
+    Extended Heisenberg Hamiltonian.
+    \(H = -\frac{1}{2}\sum_{i,j}J_{ij} \, \vec{S}_i \cdot \vec{S}_j
+    -\frac{1}{2}\sum_{i,j}\vec{D}_{ij} \cdot \left( \vec{S}_i \times \vec{S}_j \right)
+    \)
+
+    Exchange constants from method of infinitesimal rotations\footcite{liechtensteinLocalSpinDensity1987}.
+    \( % Liechtenstein infinitesimal roation Jij from KKR-GF
+    \mathcal{J}_{ij} = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E_F}
+    \mathrm{d} E \operatorname{Tr}[\delta t_i G_{ij} \delta t_j G_{ji}]
+    \)
+  \end{flushright}
+\end{frame}
+
+% Slide results Jijs 1 % Section co-doping
+{
+  \setbeamercolor{background canvas}{bg=}
+  \includepdf[pages=1]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/originals/Fig4.pdf}
+}
+
+% Slide AiiDA-Spirit workflows % Section jij-prediction
+\begin{frame}[plain,c]
+  \frametitle{Spin dynamics with \logoAiida{}-\raisebox{-0.4em}{\logoSpiritWithText{}}\footcite{russmannAiiDASpiritPluginAutomated2022}}
+  \vspace*{-2em}
+  \begin{columns}[t]
+    \begin{column}{0.4\linewidth}
+      \begin{center}
+        \includegraphics[width=1.0\linewidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA2-no-subfigure-labels.pdf}%
+        % \includegraphics[width=1.0\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}\footcite{russmannAiiDAKKRPluginIts2021}
+
+        \vspace*{1em}
+        Liechtenstein formula
+        \[
+          \mathcal{J}_{ij} = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E_F}
+          \mathrm{d} E \operatorname{Tr}[\delta t_i G_{ij} \delta t_j G_{ji}]
+        \]
+
+        ML-IAP approach. \(E_k = \sum_k E_k \longrightarrow J_{ij} =
+    \sum_k \left( J_{ij} \right)_k\)
+
+
+      \end{center}
+    \end{column}
+    \begin{column}{0.55\linewidth}
+      \begin{center}
+        \includegraphics[width=1.0\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-spirit-paper-workflow.pdf}%
+
+        Landau-Lifshitz-Gilbert equation
+        \[
+          \frac{\partial \vec{S}_i}{\partial t}=-\gamma^{\prime} \vec{S}_i \times \vec{B}_i^{\text {eff }}-\lambda \vec{S}_i \times\left(\vec{S}_i \times \vec{B}_i^{\text {eff }}\right)
+        \]
+
+        % \vspace*{2em}
+          \normalsize{\href{https://juspin.de}{juspin.de}}
+      \end{center}
+    \end{column}
+  \end{columns}
+\end{frame}
+
+
+
+
+
+
+% Slide project design % Section jij-prediction
+\begin{frame}[plain,c]
+  \frametitle{Project \enquote{ML-Exc}}
+  \framesubtitle{Model selection}
+
+  \begin{table}[H]
+    \resizebox{\columnwidth}{!}{%
+      \centering
+      \input{../resources/table/jij-prediction-model-selection}%
+      % \caption[short caption]{Long caption.}
+      % \label{tab:model-selection}
+    }
+  \end{table}
+\end{frame}
+
+
+% Slide exc-int tensor prediction % Section jij-prediction
+\begin{frame}
+  \frametitle{Project \enquote{ML-Exc}}
+  \framesubtitle{Tensorial interaction}
+  Heisenberg Hamiltonian in tensor form.
+
+  \[\mathcal{H}_H=-\sum_{j>i} \vec{m}_i \cdot \mathcal{J}_{i j} \vec{m}_j\]
+
+  Tensor components: isotropic, anti-symmetric (DMI) and anisotropic or
+  traceless symmetric part (neglected so far).
+
+  \[\mathcal{J}_{i j}=J_{i j} \mathbb{1} + \mathcal{J}_{i j}^A+\mathcal{J}_{i
+      j}^S\]
+
+  with \(J_{i j}^{x x}=J_{i j}^{y y}=J_{i j}^{z z}=\frac{1}{3} J_{i j}\) and
+
+  \[\mathcal{J}_{i j}^A=\left[\begin{array}{ccc}
+    0 & J_{i j}^{x y} & J_{i j}^{x z} \\
+    J_{i j}^{y x} & 0 & J_{i j}^{y z} \\
+    J_{i j}^{z x} & J_{i j}^{z y} & 0
+  \end{array}\right]=\left[\begin{array}{ccc}
+    0 & J_{i j}^{x y} & -J_{i j}^{z x} \\
+    -J_{i j}^{x y} & 0 & J_{i j}^{y z} \\
+    J_{i j}^{z x} & -J_{i j}^{y z} & 0
+  \end{array}\right]=\left[\begin{array}{ccc}
+    0 & -D_{i j}^z & D_{i j}^y \\
+    D_{i j}^z & 0 & -D_{i j}^x \\
+    -D_{i j}^y & D_{i j}^x & 0
+  \end{array}\right]\]
+
+\end{frame}
+
+% Slide higher-order exchange interactions
+{
+  \setbeamercolor{background canvas}{bg=}
+  \includepdf[pages=1]{../resources/fig/external/presentations/spinqx23/hkatsumoto/spinqx23-hkatsumoto-page24.pdf}
+}
+
+% Slide relativistic exchange interactions
+{
+  \setbeamercolor{background canvas}{bg=}
+  \includepdf[pages=1]{../resources/fig/external/presentations/spinqx23/hkatsumoto/spinqx23-hkatsumoto-page25.pdf}
+}
+
+
+% Slide best-of-aml % Section odds-and-ends
+\begin{frame}[plain,c]
+  \frametitle{Community resources}
+  \framesubtitle{Best of atomistic machine learning}
+  \vspace*{-4em}
+  \begin{columns}[c]
+    \begin{column}{0.5\linewidth}
+      \vspace*{3em}
+      \begin{center}
+        % \includegraphics[width=0.7\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2023-09-05.png}%
+        \includegraphics[width=0.9\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2024-07-08.png}%
+
+        Largest list of atomistic ML tools on the web (400+), auto-ranked,
+        regular updates\footcite{wasmerBestAtomisticMachine2023}
+
+        \vspace*{2em}
+          \Large{\href{https://go.fzj.de/best-of-aml}{go.fzj.de/baml}}
+      \end{center}
+
+    \end{column}
+
+    \begin{column}{0.4\linewidth}
+      \includegraphics[width=0.85\textwidth]{../resources/fig/github/best-of-aml-contents-2024-07-08.png}%
+    \end{column}
+  \end{columns}
+\end{frame}
+
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "../presentation"
+%%% mode: flyspell
+%%% ispell-local-dictionary: "english"
+%%% End:
diff --git a/presentation/mainmatter/kkr-jlcdm.tex b/presentation/mainmatter/kkr-jlcdm.tex
index 5aea89a9f3b025be30a3627e442ab390e378aa61..378446a47b912ff0e80e9e07829de2a72132cd2d 100644
--- a/presentation/mainmatter/kkr-jlcdm.tex
+++ b/presentation/mainmatter/kkr-jlcdm.tex
@@ -1,35 +1,88 @@
-\section{KKR-JLCDM}
+\section{Better initial guess}
 \label{sec:kkr-jlcdm}
 
-% Slide outlook vimp-prediction % Section odds-and-ends
+% Slide PhD project flowchart % Section phd-project
+\begin{frame}
+  \frametitle{Vision: Electronic structure learning}
+  % frametitle notes: PhD project flowchart
+  \framesubtitle{as integrated, high-level multiscale workflows}
+  \vspace*{0em}
+
+  \includegraphics[width=1.0\textwidth]{../resources/fig/presentation-2023-02/atomistic-ml/classification-of-atomistic-ml_presentation-2023-02_02-emph-both_ktikz.pdf}
+
+  \vspace*{2em}
+  \begin{columns}[t]
+    \hspace{1em}
+    \begin{column}{0.6\linewidth}
+      \begin{center}
+        Better \enquote{initial guess}
+
+        for fast SCF convergence
+      \end{center}
+    \end{column}
+    \vrule{}
+    \hspace{1em}
+    \begin{column}{0.39\linewidth}
+      \begin{center}
+        Magnetic property prediction
+
+        (ML-Exc) for spin dynamics
+      \end{center}
+    \end{column}
+  \end{columns}
+\end{frame}
+
+% Slide AiiDA-KKR workflows % kkr-theory
+\begin{frame}[plain,c]
+  \frametitle{Project \enquote{Better initial guess}}
+  \framesubtitle{\logoAiida{}-KKR workflows}
+  \vspace*{0em}
+  \begin{columns}[t]
+    \vspace*{-1em}
+    \begin{column}{0.3\linewidth}
+      % {\footnotesize Single impurity}
+      \begin{center}
+        \includegraphics[width=0.95\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}\footcite{russmannAiiDAKKRPluginIts2021}
+      \end{center}
+    \end{column}
+    \begin{column}{0.5\linewidth}
+      \vspace*{-2em}
+      \begin{center}
+        \includegraphics[width=0.75\textheight]{../resources/fig/aiida-kkr/graph//kkr_imp_wc.pdf}%
+      \end{center}
+      % \framezoom<1><2>(3.5cm,0.5cm)(4.5cm,3.25cm) % upper part, kkr_scf workflow
+      % \framezoom<1><3>(4.5cm,3.5cm)(4.5cm,5.25cm) % lower part, kkr_imp workflow
+  \end{column}
+\end{columns}
+\vspace*{-0em}
+\end{frame}
+
+
+% Slide dataset generation (single-impurity-database)
 \begin{frame}[plain]
-  \frametitle{Electronic structure emulator}
+  \frametitle{Project \enquote{Better initial guess}}
+  \framesubtitle{Data generation}
   % frametitle notes: Vimp-prediction qnd
 
   \begin{columns}[c]
     \begin{column}{0.45\linewidth}
       {\small
-      \textbf{Task} Predict electron potential difference \(\Delta
-      V_{imp}(\vec{r})\) \& use as initial guess for \logoAiida -KKR\logoKKRimpCircled{}\vspace{0.5em}
-
-        \textbf{Data} 10'000 single impurity in elemental crystal combinations
-        (\(60 \times 40\) elements) from DFT\vspace{0.5em}
-
-        \textbf{Challenges}
-        \begin{itemize}
-         \item[\textcolor{fzjblue}{\faFlag}] \textbf{Collaboration} Adapt the linear Jacobi-Legendre Charge Density
-          Model (JLCDM)\footcite{focassioLinearJacobiLegendreExpansion2023a} to
-          all-electron DFT
-        \item Large chemical feature space
-        \item From radial to full equivariant potential
-        \item Intermediate SCF results
-        \item Should be code-agnostic
-        \item From collinear to noco magnetism
-        \end{itemize}\vspace{0.5em}
+        \textbf{Data} 10'000 impurity embeddings into elemental crystals\vspace{0.5em}
 
+      \textbf{Target} Electron potential difference \(\Delta
+      V_{imp}(\vec{r})\)  \vspace{0.5em}
       }
+
+      \includegraphics[width=1.0\linewidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_scale-factor_count_linscale_annot.pdf}%
+
+      \begin{center}
+        {\footnotesize \textcolor{fzjgray50}{Dataset map. Rows: Element of host crystal,
+            columns: impurity atom, color: num. calculations.}}
+      \end{center}
     \end{column}
+
     \begin{column}{0.55\linewidth}
+      \vspace*{-2em}
       \begin{columns}
         \begin{column}{0.25\linewidth}
           \hspace*{2.0em}
@@ -57,22 +110,47 @@
         {\footnotesize \textcolor{fzjgray50}{Spherical impurity potentials in first Voronoi cell of \ce{Hg}:\ce{X}
         embeddings,\\left upper to bottom right: \(V\), \(V\!-\!V^0\), \(|V|\), \(|V\!-\!V^0|\).}}
       \end{center}
-
-      % \includegraphics[width=0.8\linewidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_scale-factor_count_linscale.pdf}%
     \end{column}
   \end{columns}
 \end{frame}
 
-\begin{frame}[plain]
-  % \frametitle{Dataset analysis}
-  % \framesubtitle{}
-  \emph{Single-impurity database} \(\boldsymbol{\vert}\) Charge doping
-  \vspace{-1em}
-  \begin{center}
-    \includegraphics[width=0.88\textwidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_charge-neutrality-imp_linscale.pdf}%
-  \end{center}
+% Slide Jacobi-Legendre framework
+\begin{frame}[plain,c]
+  \frametitle{The Jacobi-Legendre framework\footcite{dominaJacobiLegendreFrameworkMachine2024}}
+  \framesubtitle{for electronic structure representation}
+  \vspace*{0em}
+  \begin{columns}[c]
+    \begin{column}{0.68\linewidth}
+      \begin{center}
+      %   \includegraphics[width=1.0\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig5.1-with-polynomials.png}%
+
+      \includegraphics[width=0.9\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/originals/fig4.1.pdf}%
+      \vspace*{0.0em}
+      \includegraphics[width=0.9\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig-5.1-first-row-only.png}%
+      \end{center}
+    \end{column}
+    \vrule{}                    % vertical separator line
+    \hspace*{1em}
+    \begin{column}{0.32\linewidth}
+      \vspace*{0em}
+
+      \includegraphics[width=0.75\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig6.2-300dpi-narrower-1.png}%
+    \end{column}
+  \end{columns}
+  \vspace*{0em}
 \end{frame}
 
+
+% \begin{frame}[plain]
+%   % \frametitle{Dataset analysis}
+%   % \framesubtitle{}
+%   \emph{Single-impurity database} \(\boldsymbol{\vert}\) Charge doping
+%   \vspace{-1em}
+%   \begin{center}
+%     \includegraphics[width=0.88\textwidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_charge-neutrality-imp_linscale.pdf}%
+%   \end{center}
+% \end{frame}
+
 \begin{frame}[plain]
   \frametitle{Atom-based JLCDM}
 
diff --git a/presentation/mainmatter/kkr-theory.tex b/presentation/mainmatter/kkr-theory.tex
index ecbb168e84db7ff4f4ce58a76b312750af98a00a..cc9b5547aae466903a41934dbdbcbea9dab5aed2 100644
--- a/presentation/mainmatter/kkr-theory.tex
+++ b/presentation/mainmatter/kkr-theory.tex
@@ -16,33 +16,9 @@
 % KKR theory slide from mavropoulous dft20 kkr lecture
 {
   \setbeamercolor{background canvas}{bg=}
-  \includepdf[pages={5-8,10-14,18,21-22}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf}
+  \includepdf[pages={5-8,10-14,18,21-22,24,30}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf}
 }
 
-% Slide AiiDA-KKR workflows % kkr-theory
-\begin{frame}[plain,c]
-  % \frametitle{\logoAiida{}-KKR workflows\footcite{russmannAiiDAKKRPluginIts2021}}
-  \frametitle{\logoAiida{}-KKR workflows}
-  \vspace*{0em}
-  \begin{columns}[t]
-    \vspace*{-1em}
-    \begin{column}{0.3\linewidth}
-      % {\footnotesize Single impurity}
-      \begin{center}
-        \includegraphics[width=0.95\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}\footcite{russmannAiiDAKKRPluginIts2021}
-      \end{center}
-    \end{column}
-    \begin{column}{0.5\linewidth}
-      \vspace*{-2em}
-      \begin{center}
-        \includegraphics[width=0.8\textheight]{../resources/fig/aiida-kkr/graph//kkr_imp_wc.pdf}%
-      \end{center}
-      % \framezoom<1><2>(3.5cm,0.5cm)(4.5cm,3.25cm) % upper part, kkr_scf workflow
-      % \framezoom<1><3>(4.5cm,3.5cm)(4.5cm,5.25cm) % lower part, kkr_imp workflow
-  \end{column}
-\end{columns}
-\vspace*{-0em}
-\end{frame}
 
 
 %%% Local Variables:
diff --git a/presentation/presentation.tex b/presentation/presentation.tex
index 21b2805a557e26c7bbd17ec5a802857aa5791a63..249bca6d1f7588b2b764d3fd5d123461a6e34881 100644
--- a/presentation/presentation.tex
+++ b/presentation/presentation.tex
@@ -180,6 +180,7 @@
 \input{mainmatter/introduction}
 \input{mainmatter/kkr-theory}
 \input{mainmatter/kkr-jlcdm}
+\input{mainmatter/jij-prediction}
 
 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 % BACKMATTER