diff --git a/presentation/backmatter/discussion.tex b/presentation/backmatter/discussion.tex index 17f279a13878da78f6d18359d1725941e068f56f..75d500bd380533598cb1c281342dfc5604deff90 100644 --- a/presentation/backmatter/discussion.tex +++ b/presentation/backmatter/discussion.tex @@ -11,7 +11,7 @@ % KKR theory slide from mavropoulous dft20 kkr lecture; backup slides { \setbeamercolor{background canvas}{bg=} - \includepdf[pages={15,17,19,27-28,30-31}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf} + \includepdf[pages={15,17,19,27-28,29,31}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf} } diff --git a/presentation/frontmatter/slides-repo.tex b/presentation/frontmatter/slides-repo.tex index 831fae45350bee3ef8e778c06f6beeed5b8711f2..9bb73ff6134b5acd68b299c496a78beb46f9fa8c 100644 --- a/presentation/frontmatter/slides-repo.tex +++ b/presentation/frontmatter/slides-repo.tex @@ -3,7 +3,7 @@ % \frametitle{Slides metadata} \begin{center} - Talk held at hzdr-casus group meeting for ongoing collaboration project via + Talk held at HZDR-CASUS \href{https://sites.google.com/view/mlmd}{MLMD} group meeting for ongoing collaboration project via HIDA Trainee Network. \vspace*{2em} diff --git a/presentation/mainmatter/introduction.tex b/presentation/mainmatter/introduction.tex index 1068d96adc473cc53f7493f0ac6a2a33c6eb4e90..b77e4cd35ab372d15b6ceb84cb39ae5df21b69d3 100644 --- a/presentation/mainmatter/introduction.tex +++ b/presentation/mainmatter/introduction.tex @@ -48,6 +48,76 @@ \end{columns} \end{frame} +% Slide funding % Section introduction +\begin{frame}[c,plain] + \frametitle{My funding} + % \framesubtitle{HIDA, HDSLEE, AIDAS, DAEMON} + \vspace*{0em} + \begin{columns}[c] + \begin{column}{0.3\linewidth} + \textbf{\color{fzjblue}{This research visit}} + + {\small HIDA Trainee Network} + + \vspace*{1em} + + \begin{center} + \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hida/HiDA_Logo_RGB_kompakt-cropped.png}\vspace*{1em} + % \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Solo_RGB_cropped.pdf}\vspace*{1em} + % \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Text_RGB_cropped.pdf} + \end{center} + + \vspace*{1em}\hrule{}\vspace*{2em} + + \textbf{\color{fzjblue}{My PhD}} + + {\small HIDA Grad School HDSLEE \&} + + {\small EU Joint Virtual Lab} + + \vspace*{1em} + + \includegraphics[width=0.8\textwidth]{../resources/fig/logos/aidas/AIDAS-72dpi-no-bg.png}% + % {\color{fzjblue}{on Artificial Intelligence, Data Analytics and Scalable Simulation}} + + \end{column} + \vrule{}\hspace*{2em} + \begin{column}{0.6\linewidth} + % left side. DAEMON Network + \begin{columns}[c] + \begin{column}{0.35\linewidth} + \vspace*{3em} + \begin{center} + % \includegraphics[width=0.7\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2023-09-05.png}% + \includegraphics[width=1.0\textwidth]{../resources/fig/cost-daemon/daemon-working-groups-circle.png}% + \vspace*{1em} + Join via \\\large{\href{https://cost-daemon.eu/}{cost-daemon.eu}} + \end{center} + \end{column} + + \begin{column}{0.6\linewidth} + \begin{center} + \includegraphics[width=0.45\textwidth]{../resources/fig/logos/cost-daemon/cost-daemon-logo-2025.png}% + \hspace*{1em} + \includegraphics[width=0.3\textwidth]{../resources/fig/logos/cost-eu/cost-eu-logo-no-bg.png}% + \end{center} + \emph{European network for data-driven materials science}\vspace*{1em} + {\footnotesize + \begin{itemize} + % \setlength\itemsep{1em} + \item[\textbf{\faPlay{} WG1:}] Community standards: data, workflows and codes for materials design. + \item[\textbf{\faPlay{} WG2:}] Representations and algorithms for materials design for “single-modality†use. + \item[\textbf{WG3:}] Multi-modal machine learning methods for advanced materials design. + \item[\textbf{WG4:}] Process-structure-property relationships in materials. Novel insights and applications. + \item[\textbf{WG5:}] Training, Dissemination, Exploitation, Outreach + \end{itemize} + } + \end{column} + \end{columns} + \end{column} + \end{columns} +\end{frame} + % Slide my research group % Section introduction @@ -155,83 +225,25 @@ \end{columns} \vspace*{0em} - {\large \faGithub{} \href{https://github.com/JuDFTteam}{JuDFTteam}} + {\large \href{http://judft.de}{judft.de} \quad \textbf{//} \quad \faGithub{} \href{https://github.com/JuDFTteam}{JuDFTteam}} + % {\large \faGithub{} \href{https://github.com/JuDFTteam}{JuDFTteam}} \end{center} \end{frame} - -% Slide funding % Section introduction +% Slide all-electron DFT % Section phd-project \begin{frame}[c,plain] - \frametitle{My funding} - % \framesubtitle{HIDA, HDSLEE, AIDAS, DAEMON} - \vspace*{0em} - \begin{columns}[c] - \begin{column}{0.3\linewidth} - \textbf{\color{fzjblue}{This research visit}} - - {\small HIDA Trainee Network} - - \vspace*{1em} - - \begin{center} - \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hida/HiDA_Logo_RGB_kompakt-cropped.png}\vspace*{1em} - % \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Solo_RGB_cropped.pdf}\vspace*{1em} - % \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Text_RGB_cropped.pdf} - \end{center} - - \vspace*{1em}\hrule{}\vspace*{2em} - - \textbf{\color{fzjblue}{My PhD}} - - {\small HIDA Grad School HDSLEE \&} - - {\small EU Joint Virtual Lab} - - \vspace*{1em} + \frametitle{JuDFT codes accuracy} + % frametitle notes: PhD project flowchart - \includegraphics[width=0.8\textwidth]{../resources/fig/logos/aidas/AIDAS-72dpi-no-bg.png}% - % {\color{fzjblue}{on Artificial Intelligence, Data Analytics and Scalable Simulation}} + FLEUR and JuKKR are all-electron, full-potential open-source codes. + \vspace*{0em} - \end{column} - \vrule{}\hspace*{2em} - \begin{column}{0.6\linewidth} - % left side. DAEMON Network - \begin{columns}[c] - \begin{column}{0.35\linewidth} - \vspace*{3em} - \begin{center} - % \includegraphics[width=0.7\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2023-09-05.png}% - \includegraphics[width=1.0\textwidth]{../resources/fig/cost-daemon/daemon-working-groups-circle.png}% - \vspace*{1em} - Join via \\\large{\href{https://cost-daemon.eu/}{cost-daemon.eu}} - \end{center} - \end{column} + \includegraphics[width=0.8\textwidth]{../resources/fig/external/papers/bosoniHowVerifyPrecision2024/fig4-clip1.pdf}\footcite{bosoniHowVerifyPrecision2024} - \begin{column}{0.6\linewidth} - \begin{center} - \includegraphics[width=0.45\textwidth]{../resources/fig/logos/cost-daemon/cost-daemon-logo-2025.png}% - \hspace*{1em} - \includegraphics[width=0.3\textwidth]{../resources/fig/logos/cost-eu/cost-eu-logo-no-bg.png}% - \end{center} - \emph{European network for data-driven materials science}\vspace*{1em} - {\footnotesize - \begin{itemize} - % \setlength\itemsep{1em} - \item[\textbf{\faPlay{} WG1:}] Community standards: data, workflows and codes for materials design. - \item[\textbf{\faPlay{} WG2:}] Representations and algorithms for materials design for “single-modality†use. - \item[\textbf{WG3:}] Multi-modal machine learning methods for advanced materials design. - \item[\textbf{WG4:}] Process-structure-property relationships in materials. Novel insights and applications. - \item[\textbf{WG5:}] Training, Dissemination, Exploitation, Outreach - \end{itemize} - } - \end{column} - \end{columns} - \end{column} - \end{columns} + \vspace*{0em} \end{frame} - % Slide AiiDA engine % Section introduction \begin{frame}[plain,c] % \frametitle{{\small AiiDA}} @@ -281,45 +293,6 @@ \end{frame} - -% Slide PhD project flowchart % Section phd-project -\begin{frame} - \frametitle{My PhD project} - % frametitle notes: PhD project flowchart - \framesubtitle{\href{https://go.fzj.de/wasmer}{go.fzj.de/wasmer}} - \vspace*{0em} - - \includegraphics[width=1.0\textwidth]{../resources/fig/presentation-2023-02/atomistic-ml/classification-of-atomistic-ml_presentation-2023-02_02-emph-both_ktikz.pdf} - - \vspace*{2em} - \begin{columns}[t] - \hspace{1em} - \begin{column}{0.6\linewidth} - \begin{center} - Electronic structure emulator - - for fast SCF convergence - \end{center} - \end{column} - \vrule{} - \hspace{1em} - \begin{column}{0.39\linewidth} - \begin{center} - Magnetic property prediction - - for spin dynamics simulation - \end{center} - \end{column} - \end{columns} -\end{frame} - -% Slide MTIs (magnetic topological insulators) % Section co-doping -{ - \setbeamercolor{background canvas}{bg=} - \includepdf[pages=1]{../resources/fig/presentation-2023-03/ruess/ruess-TIs.pdf} -} - - %%% Local Variables: %%% mode: latex %%% TeX-master: "../presentation" diff --git a/presentation/mainmatter/jij-prediction.tex b/presentation/mainmatter/jij-prediction.tex new file mode 100644 index 0000000000000000000000000000000000000000..8c1dbb4f0aaebadcdf4fb5baedae2641e687a0d6 --- /dev/null +++ b/presentation/mainmatter/jij-prediction.tex @@ -0,0 +1,263 @@ +\section{Machine learning exchange interactions} +\label{sec:ml-exc-inter} + +% Slide PhD project flowchart % Section phd-project +\begin{frame} + \frametitle{Vision: Electronic structure learning} + % frametitle notes: PhD project flowchart + \framesubtitle{as integrated, high-level multiscale workflows} + \vspace*{0em} + + \includegraphics[width=1.0\textwidth]{../resources/fig/presentation-2023-02/atomistic-ml/classification-of-atomistic-ml_presentation-2023-02_02-emph-both_ktikz.pdf} + + \vspace*{2em} + \begin{columns}[t] + \hspace{1em} + \begin{column}{0.6\linewidth} + \begin{center} + Better \enquote{initial guess} + + for fast SCF convergence + \end{center} + \end{column} + \vrule{} + \hspace{1em} + \begin{column}{0.39\linewidth} + \begin{center} + Magnetic property prediction + + (ML-Exc) for spin dynamics + \end{center} + \end{column} + \end{columns} +\end{frame} + + +% Slide MTIs (magnetic topological insulators) % Section co-doping +{ + \setbeamercolor{background canvas}{bg=} + \includepdf[pages=1]{../resources/fig/presentation-2023-03/ruess/ruess-TIs.pdf} +} + +% Slide study design % Section co-doping +\begin{frame}[plain,c] + \frametitle{Project \enquote{ML-Exc}} + \framesubtitle{Magnetic co-doping of topological insulators} + + \hspace*{1em} \ce{Bi2Te3} \hspace*{3em} Dimer clusters of \(3d\), \(4d\) transition + metal defects\vspace*{-1em} + + \begin{columns}[c] + \hspace*{1em} + \begin{column}{0.6\textwidth} + \begin{center} + \includegraphics[width=0.35\textheight]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/Fig1-a.pdf}% + \hspace*{-0.5em} + \includegraphics[width=0.80\textwidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA3-extract-6.pdf}% + \end{center} + \end{column} + \hspace*{3em} + \begin{column}{0.4\textwidth} + {\small + Single-impurity dabase, N=2'000. + \href{https://go.fzj.de/judit}{go.fzj.de/judit}\vspace*{1em} + + Dimer database, N=2'000\footcite{mozumderHighthroughputMagneticCodoping2024}.\vspace*{3em} + + Co-doping can help to control + + \begin{itemize} + \item critical \(T_c\) of QAHE + \item exchange splitting \(\Delta_{xc}\) + \item long-range magnetic ordering + \end{itemize}\vspace*{1em} + + for applications in spintronics and + + fault-tolerant quantum computing. + } + \end{column} + \end{columns} +\end{frame} + +% Slide AiiDA-KKR workflows % Section co-doping +\begin{frame}[plain,c] + \frametitle{Project \enquote{ML-Exc}} + \framesubtitle{\logoAiida{}-KKR workflows\footcite{russmannAiiDAKKRPluginIts2021}} + \vspace*{-1em} + \begin{columns}[t] + \hspace*{-2em} + \begin{column}{0.3\linewidth} + % {\footnotesize Single impurity} + \begin{center} + \includegraphics[width=0.8\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf} + \end{center} + \end{column} + \begin{column}{0.5\linewidth} + \hspace*{-3em} + \begin{center} + % {\footnotesize \(N+1\) impurities} + \includegraphics[width=0.8\linewidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA2-no-subfigure-labels.pdf}% + \end{center} + \end{column} + \end{columns} + \vspace*{-0em} + \begin{flushright} + Extended Heisenberg Hamiltonian. + \(H = -\frac{1}{2}\sum_{i,j}J_{ij} \, \vec{S}_i \cdot \vec{S}_j + -\frac{1}{2}\sum_{i,j}\vec{D}_{ij} \cdot \left( \vec{S}_i \times \vec{S}_j \right) + \) + + Exchange constants from method of infinitesimal rotations\footcite{liechtensteinLocalSpinDensity1987}. + \( % Liechtenstein infinitesimal roation Jij from KKR-GF + \mathcal{J}_{ij} = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E_F} + \mathrm{d} E \operatorname{Tr}[\delta t_i G_{ij} \delta t_j G_{ji}] + \) + \end{flushright} +\end{frame} + +% Slide results Jijs 1 % Section co-doping +{ + \setbeamercolor{background canvas}{bg=} + \includepdf[pages=1]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/originals/Fig4.pdf} +} + +% Slide AiiDA-Spirit workflows % Section jij-prediction +\begin{frame}[plain,c] + \frametitle{Spin dynamics with \logoAiida{}-\raisebox{-0.4em}{\logoSpiritWithText{}}\footcite{russmannAiiDASpiritPluginAutomated2022}} + \vspace*{-2em} + \begin{columns}[t] + \begin{column}{0.4\linewidth} + \begin{center} + \includegraphics[width=1.0\linewidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA2-no-subfigure-labels.pdf}% + % \includegraphics[width=1.0\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}\footcite{russmannAiiDAKKRPluginIts2021} + + \vspace*{1em} + Liechtenstein formula + \[ + \mathcal{J}_{ij} = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E_F} + \mathrm{d} E \operatorname{Tr}[\delta t_i G_{ij} \delta t_j G_{ji}] + \] + + ML-IAP approach. \(E_k = \sum_k E_k \longrightarrow J_{ij} = + \sum_k \left( J_{ij} \right)_k\) + + + \end{center} + \end{column} + \begin{column}{0.55\linewidth} + \begin{center} + \includegraphics[width=1.0\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-spirit-paper-workflow.pdf}% + + Landau-Lifshitz-Gilbert equation + \[ + \frac{\partial \vec{S}_i}{\partial t}=-\gamma^{\prime} \vec{S}_i \times \vec{B}_i^{\text {eff }}-\lambda \vec{S}_i \times\left(\vec{S}_i \times \vec{B}_i^{\text {eff }}\right) + \] + + % \vspace*{2em} + \normalsize{\href{https://juspin.de}{juspin.de}} + \end{center} + \end{column} + \end{columns} +\end{frame} + + + + + + +% Slide project design % Section jij-prediction +\begin{frame}[plain,c] + \frametitle{Project \enquote{ML-Exc}} + \framesubtitle{Model selection} + + \begin{table}[H] + \resizebox{\columnwidth}{!}{% + \centering + \input{../resources/table/jij-prediction-model-selection}% + % \caption[short caption]{Long caption.} + % \label{tab:model-selection} + } + \end{table} +\end{frame} + + +% Slide exc-int tensor prediction % Section jij-prediction +\begin{frame} + \frametitle{Project \enquote{ML-Exc}} + \framesubtitle{Tensorial interaction} + Heisenberg Hamiltonian in tensor form. + + \[\mathcal{H}_H=-\sum_{j>i} \vec{m}_i \cdot \mathcal{J}_{i j} \vec{m}_j\] + + Tensor components: isotropic, anti-symmetric (DMI) and anisotropic or + traceless symmetric part (neglected so far). + + \[\mathcal{J}_{i j}=J_{i j} \mathbb{1} + \mathcal{J}_{i j}^A+\mathcal{J}_{i + j}^S\] + + with \(J_{i j}^{x x}=J_{i j}^{y y}=J_{i j}^{z z}=\frac{1}{3} J_{i j}\) and + + \[\mathcal{J}_{i j}^A=\left[\begin{array}{ccc} + 0 & J_{i j}^{x y} & J_{i j}^{x z} \\ + J_{i j}^{y x} & 0 & J_{i j}^{y z} \\ + J_{i j}^{z x} & J_{i j}^{z y} & 0 + \end{array}\right]=\left[\begin{array}{ccc} + 0 & J_{i j}^{x y} & -J_{i j}^{z x} \\ + -J_{i j}^{x y} & 0 & J_{i j}^{y z} \\ + J_{i j}^{z x} & -J_{i j}^{y z} & 0 + \end{array}\right]=\left[\begin{array}{ccc} + 0 & -D_{i j}^z & D_{i j}^y \\ + D_{i j}^z & 0 & -D_{i j}^x \\ + -D_{i j}^y & D_{i j}^x & 0 + \end{array}\right]\] + +\end{frame} + +% Slide higher-order exchange interactions +{ + \setbeamercolor{background canvas}{bg=} + \includepdf[pages=1]{../resources/fig/external/presentations/spinqx23/hkatsumoto/spinqx23-hkatsumoto-page24.pdf} +} + +% Slide relativistic exchange interactions +{ + \setbeamercolor{background canvas}{bg=} + \includepdf[pages=1]{../resources/fig/external/presentations/spinqx23/hkatsumoto/spinqx23-hkatsumoto-page25.pdf} +} + + +% Slide best-of-aml % Section odds-and-ends +\begin{frame}[plain,c] + \frametitle{Community resources} + \framesubtitle{Best of atomistic machine learning} + \vspace*{-4em} + \begin{columns}[c] + \begin{column}{0.5\linewidth} + \vspace*{3em} + \begin{center} + % \includegraphics[width=0.7\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2023-09-05.png}% + \includegraphics[width=0.9\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2024-07-08.png}% + + Largest list of atomistic ML tools on the web (400+), auto-ranked, + regular updates\footcite{wasmerBestAtomisticMachine2023} + + \vspace*{2em} + \Large{\href{https://go.fzj.de/best-of-aml}{go.fzj.de/baml}} + \end{center} + + \end{column} + + \begin{column}{0.4\linewidth} + \includegraphics[width=0.85\textwidth]{../resources/fig/github/best-of-aml-contents-2024-07-08.png}% + \end{column} + \end{columns} +\end{frame} + + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "../presentation" +%%% mode: flyspell +%%% ispell-local-dictionary: "english" +%%% End: diff --git a/presentation/mainmatter/kkr-jlcdm.tex b/presentation/mainmatter/kkr-jlcdm.tex index 5aea89a9f3b025be30a3627e442ab390e378aa61..378446a47b912ff0e80e9e07829de2a72132cd2d 100644 --- a/presentation/mainmatter/kkr-jlcdm.tex +++ b/presentation/mainmatter/kkr-jlcdm.tex @@ -1,35 +1,88 @@ -\section{KKR-JLCDM} +\section{Better initial guess} \label{sec:kkr-jlcdm} -% Slide outlook vimp-prediction % Section odds-and-ends +% Slide PhD project flowchart % Section phd-project +\begin{frame} + \frametitle{Vision: Electronic structure learning} + % frametitle notes: PhD project flowchart + \framesubtitle{as integrated, high-level multiscale workflows} + \vspace*{0em} + + \includegraphics[width=1.0\textwidth]{../resources/fig/presentation-2023-02/atomistic-ml/classification-of-atomistic-ml_presentation-2023-02_02-emph-both_ktikz.pdf} + + \vspace*{2em} + \begin{columns}[t] + \hspace{1em} + \begin{column}{0.6\linewidth} + \begin{center} + Better \enquote{initial guess} + + for fast SCF convergence + \end{center} + \end{column} + \vrule{} + \hspace{1em} + \begin{column}{0.39\linewidth} + \begin{center} + Magnetic property prediction + + (ML-Exc) for spin dynamics + \end{center} + \end{column} + \end{columns} +\end{frame} + +% Slide AiiDA-KKR workflows % kkr-theory +\begin{frame}[plain,c] + \frametitle{Project \enquote{Better initial guess}} + \framesubtitle{\logoAiida{}-KKR workflows} + \vspace*{0em} + \begin{columns}[t] + \vspace*{-1em} + \begin{column}{0.3\linewidth} + % {\footnotesize Single impurity} + \begin{center} + \includegraphics[width=0.95\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}\footcite{russmannAiiDAKKRPluginIts2021} + \end{center} + \end{column} + \begin{column}{0.5\linewidth} + \vspace*{-2em} + \begin{center} + \includegraphics[width=0.75\textheight]{../resources/fig/aiida-kkr/graph//kkr_imp_wc.pdf}% + \end{center} + % \framezoom<1><2>(3.5cm,0.5cm)(4.5cm,3.25cm) % upper part, kkr_scf workflow + % \framezoom<1><3>(4.5cm,3.5cm)(4.5cm,5.25cm) % lower part, kkr_imp workflow + \end{column} +\end{columns} +\vspace*{-0em} +\end{frame} + + +% Slide dataset generation (single-impurity-database) \begin{frame}[plain] - \frametitle{Electronic structure emulator} + \frametitle{Project \enquote{Better initial guess}} + \framesubtitle{Data generation} % frametitle notes: Vimp-prediction qnd \begin{columns}[c] \begin{column}{0.45\linewidth} {\small - \textbf{Task} Predict electron potential difference \(\Delta - V_{imp}(\vec{r})\) \& use as initial guess for \logoAiida -KKR\logoKKRimpCircled{}\vspace{0.5em} - - \textbf{Data} 10'000 single impurity in elemental crystal combinations - (\(60 \times 40\) elements) from DFT\vspace{0.5em} - - \textbf{Challenges} - \begin{itemize} - \item[\textcolor{fzjblue}{\faFlag}] \textbf{Collaboration} Adapt the linear Jacobi-Legendre Charge Density - Model (JLCDM)\footcite{focassioLinearJacobiLegendreExpansion2023a} to - all-electron DFT - \item Large chemical feature space - \item From radial to full equivariant potential - \item Intermediate SCF results - \item Should be code-agnostic - \item From collinear to noco magnetism - \end{itemize}\vspace{0.5em} + \textbf{Data} 10'000 impurity embeddings into elemental crystals\vspace{0.5em} + \textbf{Target} Electron potential difference \(\Delta + V_{imp}(\vec{r})\) \vspace{0.5em} } + + \includegraphics[width=1.0\linewidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_scale-factor_count_linscale_annot.pdf}% + + \begin{center} + {\footnotesize \textcolor{fzjgray50}{Dataset map. Rows: Element of host crystal, + columns: impurity atom, color: num. calculations.}} + \end{center} \end{column} + \begin{column}{0.55\linewidth} + \vspace*{-2em} \begin{columns} \begin{column}{0.25\linewidth} \hspace*{2.0em} @@ -57,22 +110,47 @@ {\footnotesize \textcolor{fzjgray50}{Spherical impurity potentials in first Voronoi cell of \ce{Hg}:\ce{X} embeddings,\\left upper to bottom right: \(V\), \(V\!-\!V^0\), \(|V|\), \(|V\!-\!V^0|\).}} \end{center} - - % \includegraphics[width=0.8\linewidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_scale-factor_count_linscale.pdf}% \end{column} \end{columns} \end{frame} -\begin{frame}[plain] - % \frametitle{Dataset analysis} - % \framesubtitle{} - \emph{Single-impurity database} \(\boldsymbol{\vert}\) Charge doping - \vspace{-1em} - \begin{center} - \includegraphics[width=0.88\textwidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_charge-neutrality-imp_linscale.pdf}% - \end{center} +% Slide Jacobi-Legendre framework +\begin{frame}[plain,c] + \frametitle{The Jacobi-Legendre framework\footcite{dominaJacobiLegendreFrameworkMachine2024}} + \framesubtitle{for electronic structure representation} + \vspace*{0em} + \begin{columns}[c] + \begin{column}{0.68\linewidth} + \begin{center} + % \includegraphics[width=1.0\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig5.1-with-polynomials.png}% + + \includegraphics[width=0.9\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/originals/fig4.1.pdf}% + \vspace*{0.0em} + \includegraphics[width=0.9\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig-5.1-first-row-only.png}% + \end{center} + \end{column} + \vrule{} % vertical separator line + \hspace*{1em} + \begin{column}{0.32\linewidth} + \vspace*{0em} + + \includegraphics[width=0.75\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig6.2-300dpi-narrower-1.png}% + \end{column} + \end{columns} + \vspace*{0em} \end{frame} + +% \begin{frame}[plain] +% % \frametitle{Dataset analysis} +% % \framesubtitle{} +% \emph{Single-impurity database} \(\boldsymbol{\vert}\) Charge doping +% \vspace{-1em} +% \begin{center} +% \includegraphics[width=0.88\textwidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_charge-neutrality-imp_linscale.pdf}% +% \end{center} +% \end{frame} + \begin{frame}[plain] \frametitle{Atom-based JLCDM} diff --git a/presentation/mainmatter/kkr-theory.tex b/presentation/mainmatter/kkr-theory.tex index ecbb168e84db7ff4f4ce58a76b312750af98a00a..cc9b5547aae466903a41934dbdbcbea9dab5aed2 100644 --- a/presentation/mainmatter/kkr-theory.tex +++ b/presentation/mainmatter/kkr-theory.tex @@ -16,33 +16,9 @@ % KKR theory slide from mavropoulous dft20 kkr lecture { \setbeamercolor{background canvas}{bg=} - \includepdf[pages={5-8,10-14,18,21-22}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf} + \includepdf[pages={5-8,10-14,18,21-22,24,30}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf} } -% Slide AiiDA-KKR workflows % kkr-theory -\begin{frame}[plain,c] - % \frametitle{\logoAiida{}-KKR workflows\footcite{russmannAiiDAKKRPluginIts2021}} - \frametitle{\logoAiida{}-KKR workflows} - \vspace*{0em} - \begin{columns}[t] - \vspace*{-1em} - \begin{column}{0.3\linewidth} - % {\footnotesize Single impurity} - \begin{center} - \includegraphics[width=0.95\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}\footcite{russmannAiiDAKKRPluginIts2021} - \end{center} - \end{column} - \begin{column}{0.5\linewidth} - \vspace*{-2em} - \begin{center} - \includegraphics[width=0.8\textheight]{../resources/fig/aiida-kkr/graph//kkr_imp_wc.pdf}% - \end{center} - % \framezoom<1><2>(3.5cm,0.5cm)(4.5cm,3.25cm) % upper part, kkr_scf workflow - % \framezoom<1><3>(4.5cm,3.5cm)(4.5cm,5.25cm) % lower part, kkr_imp workflow - \end{column} -\end{columns} -\vspace*{-0em} -\end{frame} %%% Local Variables: diff --git a/presentation/presentation.tex b/presentation/presentation.tex index 21b2805a557e26c7bbd17ec5a802857aa5791a63..249bca6d1f7588b2b764d3fd5d123461a6e34881 100644 --- a/presentation/presentation.tex +++ b/presentation/presentation.tex @@ -180,6 +180,7 @@ \input{mainmatter/introduction} \input{mainmatter/kkr-theory} \input{mainmatter/kkr-jlcdm} +\input{mainmatter/jij-prediction} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % BACKMATTER