\section{Machine learning exchange interactions} \label{sec:ml-exc-inter} % Slide PhD project flowchart % Section phd-project \begin{frame} \frametitle{Vision: Electronic structure learning} % frametitle notes: PhD project flowchart \framesubtitle{as integrated, high-level multiscale workflows} \vspace*{0em} \includegraphics[width=1.0\textwidth]{../resources/fig/presentation-2023-02/atomistic-ml/classification-of-atomistic-ml_presentation-2023-02_02-emph-both_ktikz.pdf} \vspace*{2em} \begin{columns}[t] \hspace{1em} \begin{column}{0.6\linewidth} \begin{center} Better \enquote{initial guess} for fast SCF convergence \end{center} \end{column} \vrule{} \hspace{1em} \begin{column}{0.39\linewidth} \begin{center} Magnetic property prediction (ML-Exc) for spin dynamics \end{center} \end{column} \end{columns} \end{frame} % Slide MTIs (magnetic topological insulators) % Section co-doping { \setbeamercolor{background canvas}{bg=} \includepdf[pages=1]{../resources/fig/presentation-2023-03/ruess/ruess-TIs.pdf} } % Slide study design % Section co-doping \begin{frame}[plain,c] \frametitle{Project \enquote{ML-Exc}} \framesubtitle{Magnetic co-doping of topological insulators} \hspace*{1em} \ce{Bi2Te3} \hspace*{3em} Dimer clusters of \(3d\), \(4d\) transition metal defects\vspace*{-1em} \begin{columns}[c] \hspace*{1em} \begin{column}{0.6\textwidth} \begin{center} \includegraphics[width=0.35\textheight]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/Fig1-a.pdf}% \hspace*{-0.5em} \includegraphics[width=0.80\textwidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA3-extract-6.pdf}% \end{center} \end{column} \hspace*{3em} \begin{column}{0.4\textwidth} {\small Single-impurity dabase, N=2'000. \href{https://go.fzj.de/judit}{go.fzj.de/judit}\vspace*{1em} Dimer database, N=2'000\footcite{mozumderHighthroughputMagneticCodoping2024}.\vspace*{3em} Co-doping can help to control \begin{itemize} \item critical \(T_c\) of QAHE \item exchange splitting \(\Delta_{xc}\) \item long-range magnetic ordering \end{itemize}\vspace*{1em} for applications in spintronics and fault-tolerant quantum computing. } \end{column} \end{columns} \end{frame} % Slide AiiDA-KKR workflows % Section co-doping \begin{frame}[plain,c] \frametitle{Project \enquote{ML-Exc}} \framesubtitle{\logoAiida{}-KKR workflows\footcite{russmannAiiDAKKRPluginIts2021}} \vspace*{-1em} \begin{columns}[t] \hspace*{-2em} \begin{column}{0.3\linewidth} % {\footnotesize Single impurity} \begin{center} \includegraphics[width=0.8\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf} \end{center} \end{column} \begin{column}{0.5\linewidth} \hspace*{-3em} \begin{center} % {\footnotesize \(N+1\) impurities} \includegraphics[width=0.8\linewidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA2-no-subfigure-labels.pdf}% \end{center} \end{column} \end{columns} \vspace*{-0em} \begin{flushright} Extended Heisenberg Hamiltonian. \(H = -\frac{1}{2}\sum_{i,j}J_{ij} \, \vec{S}_i \cdot \vec{S}_j -\frac{1}{2}\sum_{i,j}\vec{D}_{ij} \cdot \left( \vec{S}_i \times \vec{S}_j \right) \) Exchange constants from method of infinitesimal rotations\footcite{liechtensteinLocalSpinDensity1987}. \( % Liechtenstein infinitesimal roation Jij from KKR-GF \mathcal{J}_{ij} = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E_F} \mathrm{d} E \operatorname{Tr}[\delta t_i G_{ij} \delta t_j G_{ji}] \) \end{flushright} \end{frame} % Slide results Jijs 1 % Section co-doping { \setbeamercolor{background canvas}{bg=} \includepdf[pages=1]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/originals/Fig4.pdf} } % Slide AiiDA-Spirit workflows % Section jij-prediction \begin{frame}[plain,c] \frametitle{Spin dynamics with \logoAiida{}-\raisebox{-0.4em}{\logoSpiritWithText{}}\footcite{russmannAiiDASpiritPluginAutomated2022}} \vspace*{-2em} \begin{columns}[t] \begin{column}{0.4\linewidth} \begin{center} \includegraphics[width=1.0\linewidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA2-no-subfigure-labels.pdf}% % \includegraphics[width=1.0\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}\footcite{russmannAiiDAKKRPluginIts2021} \vspace*{1em} Liechtenstein formula \[ \mathcal{J}_{ij} = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E_F} \mathrm{d} E \operatorname{Tr}[\delta t_i G_{ij} \delta t_j G_{ji}] \] ML-IAP approach. \(E_k = \sum_k E_k \longrightarrow J_{ij} = \sum_k \left( J_{ij} \right)_k\) \end{center} \end{column} \begin{column}{0.55\linewidth} \begin{center} \includegraphics[width=1.0\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-spirit-paper-workflow.pdf}% Landau-Lifshitz-Gilbert equation \[ \frac{\partial \vec{S}_i}{\partial t}=-\gamma^{\prime} \vec{S}_i \times \vec{B}_i^{\text {eff }}-\lambda \vec{S}_i \times\left(\vec{S}_i \times \vec{B}_i^{\text {eff }}\right) \] % \vspace*{2em} \normalsize{\href{https://juspin.de}{juspin.de}} \end{center} \end{column} \end{columns} \end{frame} % Slide project design % Section jij-prediction \begin{frame}[plain,c] \frametitle{Project \enquote{ML-Exc}} \framesubtitle{Model selection} \begin{table}[H] \resizebox{\columnwidth}{!}{% \centering \input{../resources/table/jij-prediction-model-selection}% % \caption[short caption]{Long caption.} % \label{tab:model-selection} } \end{table} \end{frame} % Slide exc-int tensor prediction % Section jij-prediction \begin{frame} \frametitle{Project \enquote{ML-Exc}} \framesubtitle{Tensorial interaction} Heisenberg Hamiltonian in tensor form. \[\mathcal{H}_H=-\sum_{j>i} \vec{m}_i \cdot \mathcal{J}_{i j} \vec{m}_j\] Tensor components: isotropic, anti-symmetric (DMI) and anisotropic or traceless symmetric part (neglected so far). \[\mathcal{J}_{i j}=J_{i j} \mathbb{1} + \mathcal{J}_{i j}^A+\mathcal{J}_{i j}^S\] with \(J_{i j}^{x x}=J_{i j}^{y y}=J_{i j}^{z z}=\frac{1}{3} J_{i j}\) and \[\mathcal{J}_{i j}^A=\left[\begin{array}{ccc} 0 & J_{i j}^{x y} & J_{i j}^{x z} \\ J_{i j}^{y x} & 0 & J_{i j}^{y z} \\ J_{i j}^{z x} & J_{i j}^{z y} & 0 \end{array}\right]=\left[\begin{array}{ccc} 0 & J_{i j}^{x y} & -J_{i j}^{z x} \\ -J_{i j}^{x y} & 0 & J_{i j}^{y z} \\ J_{i j}^{z x} & -J_{i j}^{y z} & 0 \end{array}\right]=\left[\begin{array}{ccc} 0 & -D_{i j}^z & D_{i j}^y \\ D_{i j}^z & 0 & -D_{i j}^x \\ -D_{i j}^y & D_{i j}^x & 0 \end{array}\right]\] \end{frame} % Slide higher-order exchange interactions { \setbeamercolor{background canvas}{bg=} \includepdf[pages=1]{../resources/fig/external/presentations/spinqx23/hkatsumoto/spinqx23-hkatsumoto-page24.pdf} } % Slide relativistic exchange interactions { \setbeamercolor{background canvas}{bg=} \includepdf[pages=1]{../resources/fig/external/presentations/spinqx23/hkatsumoto/spinqx23-hkatsumoto-page25.pdf} } % Slide best-of-aml % Section odds-and-ends \begin{frame}[plain,c] \frametitle{Community resources} \framesubtitle{Best of atomistic machine learning} \vspace*{-4em} \begin{columns}[c] \begin{column}{0.5\linewidth} \vspace*{3em} \begin{center} % \includegraphics[width=0.7\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2023-09-05.png}% \includegraphics[width=0.9\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2024-07-08.png}% Largest list of atomistic ML tools on the web (400+), auto-ranked, regular updates\footcite{wasmerBestAtomisticMachine2023} \vspace*{2em} \Large{\href{https://go.fzj.de/best-of-aml}{go.fzj.de/baml}} \end{center} \end{column} \begin{column}{0.4\linewidth} \includegraphics[width=0.85\textwidth]{../resources/fig/github/best-of-aml-contents-2024-07-08.png}% \end{column} \end{columns} \end{frame} %%% Local Variables: %%% mode: latex %%% TeX-master: "../presentation" %%% mode: flyspell %%% ispell-local-dictionary: "english" %%% End: