From 056b131f400e8d1ab76d91566f861747aa58b979 Mon Sep 17 00:00:00 2001 From: Jan Caron <j.caron@fz-juelich.de> Date: Fri, 31 Oct 2014 12:13:53 +0100 Subject: [PATCH] Minor formatting --- pyramid/reconstruction.py | 17 +++++++++-------- scripts/collaborations/example_joern.py | 11 +++++++---- 2 files changed, 16 insertions(+), 12 deletions(-) diff --git a/pyramid/reconstruction.py b/pyramid/reconstruction.py index b4134e0..3d3031f 100644 --- a/pyramid/reconstruction.py +++ b/pyramid/reconstruction.py @@ -117,7 +117,7 @@ def optimize_linear(data, regularisator=None, maxiter=1000, verbosity=0): # Set up necessary objects: cost = Costfunction(data, regularisator) print cost(np.zeros(cost.n)) - x_opt = jutil.cg.conj_grad_minimize(cost, max_iter=20) + x_opt = cg.conj_grad_minimize(cost, max_iter=20) print cost(x_opt) # Create and return fitting MagData object: mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) @@ -164,18 +164,19 @@ def optimize_nonlin(data, first_guess=None, regularisator=None): # print jac1, jac2.T, abs(jac1-jac2.T).sum() # print jac1.shape, jac2.shape - - # jac1 = np.array([fwd_model.jac_dot(x_0, np.eye(fwd_model.m)[:, i]) for i in range(fwd_model.m)]) - # jac2 = np.array([fwd_model.jac_T_dot(x_0, np.eye(fwd_model.n)[:, i]) for i in range(fwd_model.n)]) - # print proj_jac1.dot(pm_jac1) - # print (pm_jac2.dot(proj_jac2)).T - # print jac1 +# jac1 = np.array([fwd_model.jac_dot(x_0, np.eye(fwd_model.m)[:, i]) +# for i in range(fwd_model.m)]) +# jac2 = np.array([fwd_model.jac_T_dot(x_0, np.eye(fwd_model.n)[:, i]) +# for i in range(fwd_model.n)]) +# print proj_jac1.dot(pm_jac1) +# print (pm_jac2.dot(proj_jac2)).T +# print jac1 # print jac2.T # print abs(jac1-jac2.T).sum() # print jac1.shape, jac2.shape assert len(x_0) == cost.n, (len(x_0), cost.m, cost.n) - result = jutil.minimizer.minimize(cost, x_0, options={"conv_rel":1e-2}, tol={"max_iteration":4}) + result = minimizer.minimize(cost, x_0, options={"conv_rel": 1e-2}, tol={"max_iteration": 4}) x_opt = result.x print cost(x_opt) mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) diff --git a/scripts/collaborations/example_joern.py b/scripts/collaborations/example_joern.py index c96ebfa..c725f28 100644 --- a/scripts/collaborations/example_joern.py +++ b/scripts/collaborations/example_joern.py @@ -38,7 +38,7 @@ inter = 'none' dim = (1,) + (64, 64) dim_small = (64, 64) smoothed_pictures = True -lam = 1E-4 +lam = 1E-6 order = 1 log = True PATH = '../../output/joern/' @@ -65,7 +65,8 @@ mag_data_rec = rc.optimize_linear(data_set, regularisator=regularisator) print 'reconstruction time:', clock() - tic # Display the reconstructed phase map and holography image: phase_map_rec = pm(mag_data_rec) -phase_map_rec.display_combined('Reconstr. Distribution', gain=gain, interpolation=inter, show=False) +phase_map_rec.display_combined('Reconstr. Distribution', gain=gain, + interpolation=inter, show=False) plt.savefig(dirname + "/reconstr.png") # Plot the magnetization: @@ -82,14 +83,16 @@ plt.savefig(dirname + "/difference.png") # Get the average difference from the experimental results: print 'Average difference:', np.average(phase_diff.phase) # Plot holographic contour maps with overlayed magnetic distributions: -axis = phase_map_rec.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter, show=False) +axis = phase_map_rec.display_holo('Magnetization Overlay', gain=0.1, + interpolation=inter, show=False) mag_data_rec.quiver_plot(axis=axis, show=False) axis = plt.gca() axis.set_xlim(20, 45) axis.set_ylim(20, 45) plt.savefig(dirname + "/overlay_normal.png") -axis = phase_map_rec.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter, show=False) +axis = phase_map_rec.display_holo('Magnetization Overlay', gain=0.1, + interpolation=inter, show=False) mag_data_rec.quiver_plot(axis=axis, log=log, show=False) axis = plt.gca() axis.set_xlim(20, 45) -- GitLab