From 43dc54e7122c0b8641171a29df7947d054c1d2a1 Mon Sep 17 00:00:00 2001 From: Jan Caron <j.caron@fz-juelich.de> Date: Tue, 4 Nov 2014 14:00:34 +0100 Subject: [PATCH] Implementation of jac_T_dot with jutil.fft_adj! --- pyramid/kernel.py | 38 +------ pyramid/logging.ini | 2 +- pyramid/phasemapper.py | 61 ++++++++++-- pyramid/reconstruction.py | 2 +- scripts/collaborations/example_joern.py | 22 ++-- scripts/collaborations/zi_an.py | 127 +++++++++++++----------- 6 files changed, 137 insertions(+), 115 deletions(-) diff --git a/pyramid/kernel.py b/pyramid/kernel.py index 0c48d21..63f1127 100644 --- a/pyramid/kernel.py +++ b/pyramid/kernel.py @@ -92,8 +92,11 @@ class Kernel(object): dim_combined = 3*np.array(dim_uv) - 2 # (dim_uv-1) + dim_uv + (dim_uv-1) mag + kernel self.dim_fft = 2 ** np.ceil(np.log2(dim_combined)).astype(int) # next multiple of 2 self.slice_fft = (slice(dim_uv[0]-1, 2*dim_uv[0]-1), slice(dim_uv[1]-1, 2*dim_uv[1]-1)) + self.slice_fft_compl = (slice(2*dim_uv[0]-1, 2*dim_uv[0]-1), slice(2*dim_uv[1]-1, 2*dim_uv[1]-1)) self.u_fft = np.fft.rfftn(self.u, self.dim_fft) self.v_fft = np.fft.rfftn(self.v, self.dim_fft) + self.u_fft_compl = np.fft.fftn(self.u, self.dim_fft) + self.v_fft_compl = np.fft.fftn(self.v, self.dim_fft) self.LOG.debug('Created '+str(self)) def __repr__(self): @@ -105,38 +108,3 @@ class Kernel(object): self.LOG.debug('Calling __str__') return 'Kernel(a=%s, dim_uv=%s, numcore=%s, geometry=%s)' % \ (self.a, self.dim_uv, self.numcore, self.geometry) - - def _multiply_jacobi(self, vector): - self.LOG.debug('Calling _multiply_jacobi') - v_dim, u_dim = self.dim_uv - assert len(vector) == 2 * self.size, \ - 'vector size not compatible! vector: {}, size: {}'.format(len(vector), self.size) - result = np.zeros(self.size) - # Iterate over all contributing pixels (numbered consecutively) - for s in range(self.size): # column-wise (two columns at a time, u- and v-component) - i = s % u_dim # u-coordinate of current contributing pixel - j = int(s/u_dim) # v-coordinate of current ccontributing pixel - u_min = (u_dim-1) - i # u_dim-1: center of the kernel - u_max = (2*u_dim-1) - i # = u_min + u_dim - v_min = (v_dim-1) - j # v_dim-1: center of the kernel - v_max = (2*v_dim-1) - j # = v_min + v_dim - result += vector[s] * self.u[v_min:v_max, u_min:u_max].reshape(-1) # u - result -= vector[s+self.size] * self.v[v_min:v_max, u_min:u_max].reshape(-1) # v - return result - - def _multiply_jacobi_T(self, vector): - self.LOG.debug('Calling _multiply_jacobi_T') - v_dim, u_dim = self.dim_uv - result = np.zeros(2*self.size) - # Iterate over all contributing pixels (numbered consecutively): - for s in range(self.size): # row-wise (two rows at a time, u- and v-component) - i = s % u_dim # u-coordinate of current contributing pixel - j = int(s/u_dim) # v-coordinate of current contributing pixel - u_min = (u_dim-1) - i # u_dim-1: center of the kernel - u_max = (2*u_dim-1) - i # = u_min + u_dim - v_min = (v_dim-1) - j # v_dim-1: center of the kernel - v_max = (2*v_dim-1) - j # = v_min + v_dim - result[s] = np.sum(vector*self.u[v_min:v_max, u_min:u_max].reshape(-1)) # u - result[s+self.size] = np.sum(vector*-self.v[v_min:v_max, u_min:u_max].reshape(-1)) # v - return result -# diff --git a/pyramid/logging.ini b/pyramid/logging.ini index d206f57..3a6529f 100644 --- a/pyramid/logging.ini +++ b/pyramid/logging.ini @@ -17,7 +17,7 @@ keys=console,file [handler_console] class=logging.StreamHandler -level=WARNING +level=INFO formatter=console args=tuple() diff --git a/pyramid/phasemapper.py b/pyramid/phasemapper.py index 991891e..34d5b28 100644 --- a/pyramid/phasemapper.py +++ b/pyramid/phasemapper.py @@ -82,7 +82,7 @@ class PhaseMapperRDFC(PhaseMapper): ''' - LOG = logging.getLogger(__name__+'.PMConvolve') + LOG = logging.getLogger(__name__+'.PhaseMapperRDFC') def __init__(self, kernel): self.LOG.debug('Calling __init__') @@ -161,10 +161,57 @@ class PhaseMapperRDFC(PhaseMapper): self.LOG.debug('Calling jac_T_dot') assert len(vector) == self.m, \ 'vector size not compatible! vector: {}, size: {}'.format(len(vector), self.m) - # TODO: directly? ask Jörn again! result = np.zeros(self.n) - nc.jac_T_dot_real_convolve(self.kernel.dim_uv[0], self.kernel.dim_uv[1], - self.kernel.u, self.kernel.v, vector, result) + + import jutil.fft as jfft + from jutil.taketime import TakeTime + + with TakeTime('fft_adjoint'): + + phase = vector.reshape(self.kernel.dim_uv) + p0 = self.kernel.dim_fft[0]-self.kernel.dim_uv[0] + p1 = self.kernel.dim_fft[1]-self.kernel.dim_uv[1] + phase = np.pad(phase, ((0, p0), (0, p1)), 'constant') + + phase_fft = jfft.irfft2_adj(phase) + u_mag_fft = phase_fft * self.kernel.u_fft + v_mag_fft = phase_fft * -self.kernel.v_fft + u_mag = jfft.rfft2_adj(u_mag_fft, self.kernel.dim_fft[1])[self.kernel.slice_fft] + v_mag = jfft.rfft2_adj(v_mag_fft, self.kernel.dim_fft[1])[self.kernel.slice_fft] + result = -np.concatenate((u_mag.flatten(), v_mag.flatten())) + +# # TODO: directly? ask Jörn again! +# phase = vector.reshape(self.kernel.dim_uv) +# phase_fft = np.fft.fft(phase, self.kernel.dim_fft) +# u_mag_fft = phase_fft * self.kernel.u_fft_compl +# v_mag_fft = phase_fft * -self.kernel.v_fft_compl +# u_mag = np.fft.ifft(u_mag_fft, self.kernel.dim_fft)[self.kernel.slice_fft] +# v_mag = np.fft.ifft(u_mag_fft, self.kernel.dim_fft)[self.kernel.slice_fft] +# result = np.concatenate((u_mag.flatten(), v_mag.flatten())) +# return result + + #TODO: np.split() + #TODO: TakeTime() + #TODO: 'constant' in np.pad() + +# result[s] = np.sum(vector*self.u[v_min:v_max, u_min:u_max].reshape(-1)) +# result[s+self.m] = np.sum(vector*-self.v[v_min:v_max, u_min:u_max].reshape(-1)) +# +# # Fourier transform the projected magnetisation: +# u_mag_fft = np.fft.rfftn(u_mag, self.kernel.dim_fft) +# v_mag_fft = np.fft.rfftn(v_mag, self.kernel.dim_fft) +# # Convolve the magnetization with the kernel in Fourier space: +# phase_fft = u_mag_fft*self.kernel.u_fft - v_mag_fft*self.kernel.v_fft +# # Return the result: +# return np.fft.irfftn(phase_fft, self.kernel.dim_fft)[self.kernel.slice_fft] + +# with TakeTime('oldschool'): +# compare = np.zeros(self.n) +# nc.jac_T_dot_real_convolve(self.kernel.dim_uv[0], self.kernel.dim_uv[1], +# self.kernel.u, self.kernel.v, vector, compare) + +# import pdb; pdb.set_trace() +# assert np.testing.assert_almost_equal(result, compare) return result @@ -199,7 +246,7 @@ class PhaseMapperRDRC(PhaseMapper): ''' - LOG = logging.getLogger(__name__+'.PMReal') + LOG = logging.getLogger(__name__+'.PhaseMapperRDRC') def __init__(self, kernel, threshold=0, numcore=True): self.LOG.debug('Calling __init__') @@ -349,7 +396,7 @@ class PhaseMapperFDFC(PhaseMapper): ''' - LOG = logging.getLogger(__name__+'.PMFourier') + LOG = logging.getLogger(__name__+'.PhaseMapperFDFC') PHI_0 = -2067.83 # magnetic flux in T*nm² def __init__(self, a, dim_uv, b_0=1, padding=0): @@ -458,7 +505,7 @@ class PhaseMapperElectric(PhaseMapper): ''' - LOG = logging.getLogger(__name__+'.PMElectric') + LOG = logging.getLogger(__name__+'.PhaseMapperElectric') H_BAR = 6.626E-34 # Planck constant in J*s M_E = 9.109E-31 # electron mass in kg Q_E = 1.602E-19 # electron charge in C diff --git a/pyramid/reconstruction.py b/pyramid/reconstruction.py index 39948e2..bdbb818 100644 --- a/pyramid/reconstruction.py +++ b/pyramid/reconstruction.py @@ -109,7 +109,7 @@ def optimize_linear(data, regularisator=None, max_iter=None): # Set up necessary objects: cost = Costfunction(data, regularisator) LOG.info('Cost before optimization: {}'.format(cost(np.zeros(cost.n)))) - x_opt = jcg.conj_grad_minimize(cost, max_iter=max_iter) + x_opt = jcg.conj_grad_minimize(cost, max_iter=max_iter).x LOG.info('Cost after optimization: {}'.format(cost(x_opt))) # Create and return fitting MagData object: mag_opt = MagData(data.a, np.zeros((3,) + data.dim)) diff --git a/scripts/collaborations/example_joern.py b/scripts/collaborations/example_joern.py index 4306d10..a80e2a7 100644 --- a/scripts/collaborations/example_joern.py +++ b/scripts/collaborations/example_joern.py @@ -54,7 +54,7 @@ else: LOGGING_CONF = os.path.join(os.path.dirname(os.path.realpath(pyramid.__file__)), 'logging.ini') logging.config.fileConfig(LOGGING_CONF, disable_existing_loggers=False) -logging.basicConfig(level=logging.INFO) +#logging.basicConfig(level=logging.INFO) ################################################################################################### threshold = 1 @@ -62,18 +62,16 @@ a = 1.0 # in nm gain = 5 b_0 = 1 inter = 'none' -dim = (1,) + (64, 64) -dim_small = (64, 64) smoothed_pictures = True lam = 1E-6 log = True PATH = '../../output/joern/' ################################################################################################### # Read in files: -phase_map = PhaseMap.load_from_netcdf4(PATH+'phase_map.nc') -#mask = np.genfromtxt('mask.txt', dtype=bool) -with open(PATH + 'mask.pickle') as pf: +phase_map = PhaseMap.load_from_netcdf4(PATH+'phase_map_2.nc') +with open(PATH + 'mask_2.pickle') as pf: mask = pickle.load(pf) +dim = mask.shape # Setup: if not use_mask: mask = np.ones_like(mask, dtype=bool) @@ -109,8 +107,8 @@ plt.savefig(dirname + "/reconstr.png") # Plot the magnetization: axis = (mag_data_rec*(1/mag_data_rec.magnitude.max())).quiver_plot(show=False) -axis.set_xlim(20, 45) -axis.set_ylim(20, 45) +axis.set_xlim(int(20/64*dim[1], 45/64*dim[2]) +axis.set_ylim(int(20/64*dim[1], 45/64*dim[2]) plt.savefig(dirname + "/quiver.png") # Display the Phase: @@ -125,14 +123,14 @@ axis = phase_map_rec.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter, show=False) mag_data_rec.quiver_plot(axis=axis, show=False) axis = plt.gca() -axis.set_xlim(20, 45) -axis.set_ylim(20, 45) +axis.set_xlim(int(20/64*dim[1], 45/64*dim[2]) +axis.set_ylim(int(20/64*dim[1], 45/64*dim[2]) plt.savefig(dirname + "/overlay_normal.png") axis = phase_map_rec.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter, show=False) mag_data_rec.quiver_plot(axis=axis, log=log, show=False) axis = plt.gca() -axis.set_xlim(20, 45) -axis.set_ylim(20, 45) +axis.set_xlim(int(20/64*dim[1], 45/64*dim[2]) +axis.set_ylim(int(20/64*dim[1], 45/64*dim[2]) plt.savefig(dirname + "/overlay_log.png") diff --git a/scripts/collaborations/zi_an.py b/scripts/collaborations/zi_an.py index 24cb95e..c27b041 100644 --- a/scripts/collaborations/zi_an.py +++ b/scripts/collaborations/zi_an.py @@ -9,6 +9,8 @@ import os import numpy as np +import pickle + from pyDM3reader import DM3lib as dm3 import matplotlib.pyplot as plt @@ -34,7 +36,7 @@ a = 1.0 # in nm gain = 5 b_0 = 1 inter = 'none' -dim_small = (64, 64) +dim_small = (512, 512) smoothed_pictures = True lam = 1E-4 order = 1 @@ -65,61 +67,68 @@ phase_map_4.display_combined(gain=gain, interpolation=inter) plt.savefig(PATH+'%.0e/phase_map_4part.png'%lam) mask_4 = np.expand_dims(np.where(np.array(dm3_4_ele.resize(dim_small)) >= threshold, True, False), axis=0) -# Reconstruct the magnetic distribution: -tic = clock() -mag_data_rec_2 = rc.optimize_simple_leastsq(phase_map_2, mask_2, b_0, lam=lam, order=order) -print '2 particle reconstruction time:', clock() - tic -tic = clock() -mag_data_rec_4 = rc.optimize_simple_leastsq(phase_map_4, mask_4, b_0, lam=lam, order=order) -print '4 particle reconstruction time:', clock() - tic -# Display the reconstructed phase map and holography image: -phase_map_rec_2 = pm(mag_data_rec_2) -phase_map_rec_2.display_combined('Reconstr. Distribution', gain=gain, interpolation=inter) -plt.savefig(PATH+'%.0e/phase_map_2part_rec.png'%lam) -phase_map_rec_4 = pm(mag_data_rec_4) -phase_map_rec_4.display_combined('Reconstr. Distribution', gain=gain, interpolation=inter) -plt.savefig(PATH+'%.0e/phase_map_4part_rec.png'%lam) -# Plot the magnetization: -axis = (mag_data_rec_2*(1/mag_data_rec_2.magnitude.max())).quiver_plot() -axis.set_xlim(20, 45) -axis.set_ylim(20, 45) -plt.savefig(PATH+'%.0e/mag_data_2part.png'%lam) -axis = (mag_data_rec_4*(1/mag_data_rec_4.magnitude.max())).quiver_plot() -axis.set_xlim(20, 45) -axis.set_ylim(20, 45) -plt.savefig(PATH+'%.0e/mag_data_4part.png'%lam) -# Display the Phase: -phase_diff_2 = phase_map_rec_2-phase_map_2 -phase_diff_2.display_phase('Difference') -plt.savefig(PATH+'%.0e/phase_map_2part_diff.png'%lam) -phase_diff_4 = phase_map_rec_4-phase_map_4 -phase_diff_4.display_phase('Difference') -plt.savefig(PATH+'%.0e/phase_map_4part_diff.png'%lam) -# Get the average difference from the experimental results: -print 'Average difference (2 cubes):', np.average(phase_diff_2.phase) -print 'Average difference (4 cubes):', np.average(phase_diff_4.phase) -# Plot holographic contour maps with overlayed magnetic distributions: -axis = phase_map_rec_2.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter) -mag_data_rec_2.quiver_plot(axis=axis) -axis = plt.gca() -axis.set_xlim(20, 45) -axis.set_ylim(20, 45) -plt.savefig(PATH+'%.0e/phase_map_2part_holo.png'%lam) -axis = phase_map_rec_4.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter) -mag_data_rec_4.quiver_plot(axis=axis) -axis = plt.gca() -axis.set_xlim(20, 45) -axis.set_ylim(20, 45) -plt.savefig(PATH+'%.0e/phase_map_4part_holo.png'%lam) -axis = phase_map_rec_2.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter) -mag_data_rec_2.quiver_plot(axis=axis, log=log) -axis = plt.gca() -axis.set_xlim(20, 45) -axis.set_ylim(20, 45) -plt.savefig(PATH+'%.0e/phase_map_2part_holo_log.png'%lam) -axis = phase_map_rec_4.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter) -mag_data_rec_4.quiver_plot(axis=axis, log=log) -axis = plt.gca() -axis.set_xlim(20, 45) -axis.set_ylim(20, 45) -plt.savefig(PATH+'%.0e/phase_map_4part_holo_log.png'%lam) +phase_map_2.save_to_netcdf4('../../output/joern/phase_map_2.nc') +phase_map_4.save_to_netcdf4('../../output/joern/phase_map_4.nc') +with open('../../output/joern/mask_2.pickle', 'wb') as pf: + pickle.dump(mask_2, pf) +with open('../../output/joern/mask_4.pickle', 'wb') as pf: + pickle.dump(mask_4, pf) + +## Reconstruct the magnetic distribution: +#tic = clock() +#mag_data_rec_2 = rc.optimize_simple_leastsq(phase_map_2, mask_2, b_0, lam=lam, order=order) +#print '2 particle reconstruction time:', clock() - tic +#tic = clock() +#mag_data_rec_4 = rc.optimize_simple_leastsq(phase_map_4, mask_4, b_0, lam=lam, order=order) +#print '4 particle reconstruction time:', clock() - tic +## Display the reconstructed phase map and holography image: +#phase_map_rec_2 = pm(mag_data_rec_2) +#phase_map_rec_2.display_combined('Reconstr. Distribution', gain=gain, interpolation=inter) +#plt.savefig(PATH+'%.0e/phase_map_2part_rec.png'%lam) +#phase_map_rec_4 = pm(mag_data_rec_4) +#phase_map_rec_4.display_combined('Reconstr. Distribution', gain=gain, interpolation=inter) +#plt.savefig(PATH+'%.0e/phase_map_4part_rec.png'%lam) +## Plot the magnetization: +#axis = (mag_data_rec_2*(1/mag_data_rec_2.magnitude.max())).quiver_plot() +#axis.set_xlim(20, 45) +#axis.set_ylim(20, 45) +#plt.savefig(PATH+'%.0e/mag_data_2part.png'%lam) +#axis = (mag_data_rec_4*(1/mag_data_rec_4.magnitude.max())).quiver_plot() +#axis.set_xlim(20, 45) +#axis.set_ylim(20, 45) +#plt.savefig(PATH+'%.0e/mag_data_4part.png'%lam) +## Display the Phase: +#phase_diff_2 = phase_map_rec_2-phase_map_2 +#phase_diff_2.display_phase('Difference') +#plt.savefig(PATH+'%.0e/phase_map_2part_diff.png'%lam) +#phase_diff_4 = phase_map_rec_4-phase_map_4 +#phase_diff_4.display_phase('Difference') +#plt.savefig(PATH+'%.0e/phase_map_4part_diff.png'%lam) +## Get the average difference from the experimental results: +#print 'Average difference (2 cubes):', np.average(phase_diff_2.phase) +#print 'Average difference (4 cubes):', np.average(phase_diff_4.phase) +## Plot holographic contour maps with overlayed magnetic distributions: +#axis = phase_map_rec_2.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter) +#mag_data_rec_2.quiver_plot(axis=axis) +#axis = plt.gca() +#axis.set_xlim(20, 45) +#axis.set_ylim(20, 45) +#plt.savefig(PATH+'%.0e/phase_map_2part_holo.png'%lam) +#axis = phase_map_rec_4.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter) +#mag_data_rec_4.quiver_plot(axis=axis) +#axis = plt.gca() +#axis.set_xlim(20, 45) +#axis.set_ylim(20, 45) +#plt.savefig(PATH+'%.0e/phase_map_4part_holo.png'%lam) +#axis = phase_map_rec_2.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter) +#mag_data_rec_2.quiver_plot(axis=axis, log=log) +#axis = plt.gca() +#axis.set_xlim(20, 45) +#axis.set_ylim(20, 45) +#plt.savefig(PATH+'%.0e/phase_map_2part_holo_log.png'%lam) +#axis = phase_map_rec_4.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter) +#mag_data_rec_4.quiver_plot(axis=axis, log=log) +#axis = plt.gca() +#axis.set_xlim(20, 45) +#axis.set_ylim(20, 45) +#plt.savefig(PATH+'%.0e/phase_map_4part_holo_log.png'%lam) -- GitLab