diff --git a/docs/pyramid.rst b/docs/pyramid.rst index b4ade82b76e0c3727715973488714e50c216339e..3491e66ec3ab49baf2a06d77b1b654c0f9670ee2 100644 --- a/docs/pyramid.rst +++ b/docs/pyramid.rst @@ -19,6 +19,15 @@ pyramid Package :show-inheritance: :special-members: +:mod:`kernel` Module +----------------------- + +.. automodule:: pyramid.kernel + :members: + :undoc-members: + :show-inheritance: + :special-members: + :mod:`magcreator` Module ------------------------ diff --git a/pyramid/__init__.py b/pyramid/__init__.py index 63782bf9bfa87bde56ac6e8719755cb19563eb06..d33e5c92653888980594ae4fa3f488e6269d3082 100644 --- a/pyramid/__init__.py +++ b/pyramid/__init__.py @@ -9,6 +9,8 @@ magdata Class for the storage of magnetizatin data. projector Create projections of a given magnetization distribution. +kernel + Class for the kernel matrix representing one magnetized pixel. phasemapper Create magnetic and electric phase maps from magnetization data. phasemap diff --git a/pyramid/analytic.py b/pyramid/analytic.py index 6035de75c17f040bb87f45e8a252e0a8b91e239a..5445990a923ede7dccd77d4d1232bd90aeff8c27 100644 --- a/pyramid/analytic.py +++ b/pyramid/analytic.py @@ -15,15 +15,15 @@ from numpy import pi PHI_0 = -2067.83 # magnetic flux in T*nm² -def phase_mag_slab(dim, res, phi, center, width, b_0=1): +def phase_mag_slab(dim, a, phi, center, width, b_0=1): '''Calculate the analytic magnetic phase for a homogeneously magnetized slab. Parameters ---------- dim : tuple (N=3) The dimensions of the grid `(z, y, x)`. - res : float - The resolution of the grid (grid spacing) in nm. + a : float + The grid spacing in nm. phi : float The azimuthal angle, describing the direction of the magnetization. center : tuple (N=3) @@ -57,27 +57,27 @@ def phase_mag_slab(dim, res, phi, center, width, b_0=1): + F_0(y-y0+Ly/2, x-x0+Lx/2))) # Process input parameters: z_dim, y_dim, x_dim = dim - y0 = res * (center[1] + 0.5) # y0, x0 define the center of a pixel, - x0 = res * (center[2] + 0.5) # hence: (cellindex + 0.5) * resolution - Lz, Ly, Lx = res * width[0], res * width[1], res * width[2] + y0 = a * (center[1] + 0.5) # y0, x0 define the center of a pixel, + x0 = a * (center[2] + 0.5) # hence: (cellindex + 0.5) * grid spacing + Lz, Ly, Lx = a * width[0], a * width[1], a * width[2] coeff = b_0 / (4*PHI_0) # Create grid: - x = np.linspace(res/2, x_dim*res-res/2, num=x_dim) - y = np.linspace(res/2, y_dim*res-res/2, num=y_dim) + x = np.linspace(a/2, x_dim*a-a/2, num=x_dim) + y = np.linspace(a/2, y_dim*a-a/2, num=y_dim) xx, yy = np.meshgrid(x, y) # Return phase: return phi_mag(xx, yy) -def phase_mag_disc(dim, res, phi, center, radius, height, b_0=1): +def phase_mag_disc(dim, a, phi, center, radius, height, b_0=1): '''Calculate the analytic magnetic phase for a homogeneously magnetized disc. Parameters ---------- dim : tuple (N=3) The dimensions of the grid `(z, y, x)`. - res : float - The resolution of the grid (grid spacing) in nm. + a : float + The grid spacing in nm. phi : float The azimuthal angle, describing the direction of the magnetization. center : tuple (N=3) @@ -105,28 +105,28 @@ def phase_mag_disc(dim, res, phi, center, radius, height, b_0=1): return result # Process input parameters: z_dim, y_dim, x_dim = dim - y0 = res * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel, - x0 = res * (center[2] + 0.5) # hence: cellindex + 0.5 - Lz = res * height - R = res * radius + y0 = a * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel, + x0 = a * (center[2] + 0.5) # hence: cellindex + 0.5 + Lz = a * height + R = a * radius coeff = - pi * b_0 / (2*PHI_0) # Create grid: - x = np.linspace(res/2, x_dim*res-res/2, num=x_dim) - y = np.linspace(res/2, y_dim*res-res/2, num=y_dim) + x = np.linspace(a/2, x_dim*a-a/2, num=x_dim) + y = np.linspace(a/2, y_dim*a-a/2, num=y_dim) xx, yy = np.meshgrid(x, y) # Return phase: return phi_mag(xx, yy) -def phase_mag_sphere(dim, res, phi, center, radius, b_0=1): +def phase_mag_sphere(dim, a, phi, center, radius, b_0=1): '''Calculate the analytic magnetic phase for a homogeneously magnetized sphere. Parameters ---------- dim : tuple (N=3) The dimensions of the grid `(z, y, x)`. - res : float - The resolution of the grid (grid spacing) in nm. + a : float + The grid spacing in nm. phi : float The azimuthal angle, describing the direction of the magnetization. center : tuple (N=3) @@ -152,27 +152,27 @@ def phase_mag_sphere(dim, res, phi, center, radius, b_0=1): return result # Process input parameters: z_dim, y_dim, x_dim = dim - y0 = res * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel, - x0 = res * (center[2] + 0.5) # hence: cellindex + 0.5 - R = res * radius + y0 = a * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel, + x0 = a * (center[2] + 0.5) # hence: cellindex + 0.5 + R = a * radius coeff = - 2./3. * pi * b_0 / PHI_0 # Create grid: - x = np.linspace(res / 2, x_dim * res - res / 2, num=x_dim) - y = np.linspace(res / 2, y_dim * res - res / 2, num=y_dim) + x = np.linspace(a / 2, x_dim * a - a / 2, num=x_dim) + y = np.linspace(a / 2, y_dim * a - a / 2, num=y_dim) xx, yy = np.meshgrid(x, y) # Return phase: return phi_mag(xx, yy) -def phase_mag_vortex(dim, res, center, radius, height, b_0=1): +def phase_mag_vortex(dim, a, center, radius, height, b_0=1): '''Calculate the analytic magnetic phase for a vortex state disc. Parameters ---------- dim : tuple (N=3) The dimensions of the grid `(z, y, x)`. - res : float - The resolution of the grid (grid spacing) in nm. + a : float + The grid spacing in nm. center : tuple (N=3) The center of the disc in pixel coordinates `(z, y, x)`, which is also the vortex center. radius : float @@ -196,14 +196,14 @@ def phase_mag_vortex(dim, res, center, radius, height, b_0=1): return result # Process input parameters: z_dim, y_dim, x_dim = dim - y0 = res * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel, - x0 = res * (center[2] + 0.5) # hence: cellindex + 0.5 - Lz = res * height - R = res * radius + y0 = a * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel, + x0 = a * (center[2] + 0.5) # hence: cellindex + 0.5 + Lz = a * height + R = a * radius coeff = pi * b_0 * Lz / PHI_0 # Create grid: - x = np.linspace(res/2, x_dim*res-res/2, num=x_dim) - y = np.linspace(res/2, y_dim*res-res/2, num=y_dim) + x = np.linspace(a/2, x_dim*a-a/2, num=x_dim) + y = np.linspace(a/2, y_dim*a-a/2, num=y_dim) xx, yy = np.meshgrid(x, y) # Return phase: return phi_mag(xx, yy) diff --git a/pyramid/holoimage.py b/pyramid/holoimage.py index 639c90d2b8608399cbb4cc038c29b3ee2108a827..f48aa61327458ddbc47a9d57b75dc4d637dd9f2f 100644 --- a/pyramid/holoimage.py +++ b/pyramid/holoimage.py @@ -64,7 +64,7 @@ def holo_image(phase_map, density=1): # Calculate the holography image intensity: img_holo = (1 + np.cos(density * phase_map.phase)) / 2 # Calculate the phase gradients, expressed by magnitude and angle: - phase_grad_y, phase_grad_x = np.gradient(phase_map.phase, phase_map.res, phase_map.res) + phase_grad_y, phase_grad_x = np.gradient(phase_map.phase, phase_map.a, phase_map.a) phase_angle = (1 - np.arctan2(phase_grad_y, phase_grad_x)/pi) / 2 phase_magnitude = np.hypot(phase_grad_x, phase_grad_y) if phase_magnitude.max() != 0: diff --git a/pyramid/kernel.py b/pyramid/kernel.py new file mode 100644 index 0000000000000000000000000000000000000000..51bf156067655ca2d4ccef6badb7d550167b1a62 --- /dev/null +++ b/pyramid/kernel.py @@ -0,0 +1,206 @@ +# -*- coding: utf-8 -*- +"""Class for the calculation and storage of kernel. + +This module provides the :class:`~.Kernel` class whose instances can be used to calculate and +store the kernel matrix representing the phase of a single pixel for the convolution used in the +phase calculation. The phasemap of a single pixel for two orthogonal directions (`u` and `v`) are +stored seperately as 2-dimensional matrices. The Jacobi matrix of the phasemapping just depends +on the kernel and can be calculated via the :func:`~.get_jacobi` function. Storing the Jacobi +matrix uses much memory, thus it is also possible to directly get the multiplication of a given +vector with the (transposed) Jacobi matrix without explicit calculation of the latter. +It is possible to load data from and save them to NetCDF4 files. See :class:`~.Kernel` for further +information. + +""" + + +import numpy as np + + +PHI_0 = -2067.83 # magnetic flux in T*nm² + + +class Kernel: + '''Class for calculating kernel matrices for the phase calculation. + + Represents the phase of a single magnetized pixel for two orthogonal directions (`u` and `v`), + which can be accessed via the corresponding attributes. The default elementary geometry is + `disc`, but can also be specified as the phase of a `slab` representation of a single + magnetized pixel. During the construction, a few attributes are calculated that are used in + the convolution during phase calculation. + + Attributes + ---------- + dim : tuple (N=2) + Dimensions of the projected magnetization grid. + a : float + The grid spacing in nm. + geometry : {'disc', 'slab'}, optional + The elementary geometry of the single magnetized pixel. + b_0 : float, optional + The saturation magnetic induction. Default is 1. + u : :class:`~numpy.ndarray` (N=3) + The phase contribution of one pixel magnetized in u-direction. + v : :class:`~numpy.ndarray` (N=3) + The phase contribution of one pixel magnetized in v-direction. + u_fft : :class:`~numpy.ndarray` (N=3) + The real FFT of the phase contribution of one pixel magnetized in u-direction. + v_fft : :class:`~numpy.ndarray` (N=3) + The real FFT of the phase contribution of one pixel magnetized in v-direction. + dim_fft : tuple (N=2) + Dimensions of the grid, which is used for the FFT. Calculated by adding the dimensions + `dim` of the magnetization grid and the dimensions of the kernel (given by ``2*dim-1``) + and increasing to the next multiple of 2 (for faster FFT). + slice_fft : tuple (N=2) of :class:`slice` + A tuple of :class:`slice` objects to extract the original field of view from the increased + size (size_fft) of the grid for the FFT-convolution. + + ''' + + def __init__(self, dim, a, b_0=1, geometry='disc'): + '''Constructor for a :class:`~.Kernel` object for representing a kernel matrix. + + Parameters + ---------- + dim : tuple (N=2) + Dimensions of the projected magnetization grid. + a : float + The grid spacing in nm. + b_0 : float, optional + The saturation magnetic induction. Default is 1. + geometry : {'disc', 'slab'}, optional + The elementary geometry of the single magnetized pixel. + + ''' + # Function for the phase of an elementary geometry: + def get_elementary_phase(geometry, n, m, res): + if geometry == 'disc': + in_or_out = np.logical_not(np.logical_and(n == 0, m == 0)) + return m / (n**2 + m**2 + 1E-30) * in_or_out + elif geometry == 'slab': + def F_h(n, m): + a = np.log(res**2 * (n**2 + m**2)) + b = np.arctan(n / m) + return n*a - 2*n + 2*m*b + return 0.5 * (F_h(n-0.5, m-0.5) - F_h(n+0.5, m-0.5) + - F_h(n-0.5, m+0.5) + F_h(n+0.5, m+0.5)) + # Set basic properties: + self.dim = dim # !!! size of the FOV, not the kernel (kernel is bigger)! + self.a = a + self.geometry = geometry + self.b_0 = b_0 + # Calculate kernel (single pixel phase): + coeff = -a**2 / (2*PHI_0) + v_dim, u_dim = dim + u = np.linspace(-(u_dim-1), u_dim-1, num=2*u_dim-1) + v = np.linspace(-(v_dim-1), v_dim-1, num=2*v_dim-1) + uu, vv = np.meshgrid(u, v) + self.u = coeff * get_elementary_phase(geometry, uu, vv, a) + self.v = coeff * get_elementary_phase(geometry, vv, uu, a) + # Calculate Fourier trafo of kernel components: + dim_combined = 3*np.array(dim) - 1 # dim + (2*dim - 1) magnetisation + kernel + self.dim_fft = 2 ** np.ceil(np.log2(dim_combined)).astype(int) # next multiple of 2 + self.slice_fft = (slice(dim[0]-1, 2*dim[0]-1), slice(dim[1]-1, 2*dim[1]-1)) + self.u_fft = np.fft.rfftn(self.u, self.dim_fft) + self.v_fft = np.fft.rfftn(self.v, self.dim_fft) + + def get_jacobi(self): + '''Calculate the Jacobi matrix for the phase calculation from a projected magnetization. + + Parameters + ---------- + None + + Returns + ------- + jacobi : :class:`~numpy.ndarray` (N=2) + Jacobi matrix containing the derivatives of the phase at every pixel with respect to + the projected magetization. Has `N` columns for the `u`-component of the magnetization + and `N` columns for the `v`-component (from left to right) and ``N**2`` rows for the + phase at every pixel. + + Notes + ----- + Just use for small dimensions, Jacobi Matrix scales with order of ``N**4``. + + ''' + v_dim, u_dim = self.dim + jacobi = np.zeros((v_dim*u_dim, 2*v_dim*u_dim)) +# nc.get_jacobi_core(dim[0], dim[1], v_phi, u_phi, jacobi) +# return jacobi + for j in range(v_dim): + for i in range(u_dim): + u_column = i + u_dim*j + v_column = i + u_dim*j + u_dim*v_dim + u_min = (u_dim-1) - i + u_max = (2*u_dim-1) - i + v_min = (v_dim-1) - j + v_max = (2*v_dim-1) - j + # u_dim*v_dim columns for the u-component: + jacobi[:, u_column] = self.u[v_min:v_max, u_min:u_max].reshape(-1) + # u_dim*v_dim columns for the v-component (note the minus!): + jacobi[:, v_column] = -self.v[v_min:v_max, u_min:u_max].reshape(-1) + return jacobi + + def multiply_jacobi(self, vector): + '''Calculate the product of the Jacobi matrix with a given `vector`. + + Parameters + ---------- + vector : :class:`~numpy.ndarray` (N=1) + Vectorized form of the magnetization in `u`- and `v`-direction of every pixel + (row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next + ``N**2`` elements to the `v`-component of the magnetization. + + Returns + ------- + result : :class:`~numpy.ndarray` (N=1) + Product of the Jacobi matrix (which is not explicitely calculated) with the vector. + + ''' + v_dim, u_dim = self.dim + size = v_dim * u_dim + assert len(vector) == 2*size, 'vector size not compatible!' + result = np.zeros(size) + for s in range(size): # column-wise (two columns at a time, u- and v-component) + i = s % u_dim + j = int(s/u_dim) + u_min = (u_dim-1) - i + u_max = (2*u_dim-1) - i + v_min = (v_dim-1) - j + v_max = (2*v_dim-1) - j + result += vector[s]*self.u[v_min:v_max, u_min:u_max].reshape(-1) # u + result += vector[s+size]*-self.v[v_min:v_max, u_min:u_max].reshape(-1) # v + return result + + def multiply_jacobi_T(self, vector): + '''Calculate the product of the transposed Jacobi matrix with a given `vector`. + + Parameters + ---------- + vector : :class:`~numpy.ndarray` (N=1) + Vectorized form of the magnetization in `u`- and `v`-direction of every pixel + (row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next + ``N**2`` elements to the `v`-component of the magnetization. + + Returns + ------- + result : :class:`~numpy.ndarray` (N=1) + Product of the transposed Jacobi matrix (which is not explicitely calculated) with + the vector. + + ''' + v_dim, u_dim = self.dim + size = v_dim * u_dim + assert len(vector) == size, 'vector size not compatible!' + result = np.zeros(2*size) + for s in range(size): # row-wise (two rows at a time, u- and v-component) + i = s % u_dim + j = int(s/u_dim) + u_min = (u_dim-1) - i + u_max = (2*u_dim-1) - i + v_min = (v_dim-1) - j + v_max = (2*v_dim-1) - j + result[s] = np.sum(vector*self.u[v_min:v_max, u_min:u_max].reshape(-1)) # u + result[s+size] = np.sum(vector*-self.v[v_min:v_max, u_min:u_max].reshape(-1)) # v + return result diff --git a/pyramid/magcreator.py b/pyramid/magcreator.py index 11eea245d188c37f7cb195dc55deb2353aa42c2d..4d8f6b4340a1c61e90ccb9abf1c51f0dc74bf354 100644 --- a/pyramid/magcreator.py +++ b/pyramid/magcreator.py @@ -22,7 +22,7 @@ class Shapes: '''Class containing functions for generating magnetic shapes. - The :class:`~.Shapes` class is a collection of some mehtods that return a 3-dimensional + The :class:`~.Shapes` class is a collection of some methods that return a 3-dimensional matrix that represents the magnetized volume and consists of values between 0 and 1. This matrix is used in the functions of the :mod:`~.magcreator` module to create :class:`~pyramid.magdata.MagData` objects which store the magnetic informations. @@ -61,7 +61,7 @@ class Shapes: @classmethod def disc(cls, dim, center, radius, height, axis='z'): - '''Create the shape of a zylindrical disc in x-, y-, or z-direction. + '''Create the shape of a cylindrical disc in x-, y-, or z-direction. Parameters ---------- @@ -139,7 +139,7 @@ class Shapes: @classmethod def ellipsoid(cls, dim, center, width): - '''Create the shape of a sphere. + '''Create the shape of an ellipsoid. Parameters ---------- @@ -147,8 +147,8 @@ class Shapes: The dimensions of the grid `(z, y, x)`. center : tuple (N=3) The center of the sphere in pixel coordinates `(z, y, x)`. - radius : float - The radius of the sphere in pixel coordinates. + width : tuple (N=3) + The width of the ellipsoid `(z, y, x)`. Returns ------- @@ -158,7 +158,7 @@ class Shapes: ''' assert np.shape(dim) == (3,), 'Parameter dim has to be a a tuple of length 3!' assert np.shape(center) == (3,), 'Parameter center has to be a a tuple of length 3!' -# assert radius > 0 and np.shape(radius) == (), 'Radius has to be a positive scalar value!' # TODO: change + assert np.shape(width) == (3,), 'Parameter width has to be a a tuple of length 3!' mag_shape = np.array([[[np.sqrt((x-center[2])**2/(width[2]/2)**2 + (y-center[1])**2/(width[1]/2)**2 + (z-center[0])**2/(width[0]/2)**2) <= 1 diff --git a/pyramid/magdata.py b/pyramid/magdata.py index 792ca026a4b1d12a43bd97dd3634763733da1b84..6ac5834f774c99c573da69c2e8c3dffdbc92a28a 100644 --- a/pyramid/magdata.py +++ b/pyramid/magdata.py @@ -2,9 +2,9 @@ """Class for the storage of magnetizatin data. This module provides the :class:`~.MagData` class whose instances can be used to store -magnetization data for 3 components for a 3-dimensional grid. It is possible to load data from -NetCDF4 or LLG (.txt) files or to save the data in these formats. Also plotting methods are -provided. See :class:`~.MagData` for further information. +magnetization distributions with 3 components for a 3-dimensional grid. It is possible to load +data from NetCDF4 or LLG (.txt) files or to save the data in these formats. Plotting methods +are also provided. See :class:`~.MagData` for further information. """ @@ -29,12 +29,13 @@ class MagData: This is useful, if the `magnitude` is more complex and more than one magnetized object should be represented by the :class:`~.MagData` object, which can be added one after another by the :func:`~.add_magnitude` function. The dimensions `dim` of the grid will be set as soon as the - magnitude is specified. However, `res` has to be always specified at construction time. + magnitude is specified. However, the grid spacding `a` has to be always specified at + construction time. Attributes ---------- - res : float - The resolution of the grid (grid spacing in nm) + a : float + The grid spacing in nm. dim : tuple (N=3) Dimensions of the grid. magnitude : tuple (N=3) of :class:`~numpy.ndarray` (N=3) @@ -43,22 +44,17 @@ class MagData: ''' - def __init__(self, res, magnitude=None): + def __init__(self, a, magnitude=None): '''Constructor for a :class:`~.MagData` object for storing magnetization data. Parameters ---------- - res : float - The resolution of the grid (grid spacing) in nm. + a : float + The grid spacing in nm. magnitude : tuple (N=3) of :class:`~numpy.ndarray` (N=3), optional The `z`-, `y`- and `x`-component of the magnetization vector for every 3D-gridpoint as a tuple. Is zero everywhere if not specified. - Returns - ------- - mag_data : :class:`~.MagData` - The 3D magnetic distribution as a :class:`~.MagData` object. - ''' if magnitude is not None: dim = np.shape(magnitude[0]) @@ -70,7 +66,7 @@ class MagData: else: self.magnitude = None self.dim = None - self.res = res + self.a = a def add_magnitude(self, magnitude): '''Add a given magnitude to the magnitude of the :class:`~.MagData`. @@ -175,7 +171,7 @@ class MagData: Notes ----- - Acts in place and changes dimensions and resolution accordingly. + Acts in place and changes dimensions and grid spacing accordingly. Only possible, if each axis length is a power of 2! ''' @@ -188,43 +184,20 @@ class MagData: y_mag = self.magnitude[1].reshape(self.dim[0]/2, 2, self.dim[1]/2, 2, self.dim[2]/2, 2) x_mag = self.magnitude[2].reshape(self.dim[0]/2, 2, self.dim[1]/2, 2, self.dim[2]/2, 2) self.dim = (self.dim[0]/2, self.dim[1]/2, self.dim[2]/2) - self.res = self.res * 2 + self.a = self.a * 2 self.magnitude = (z_mag.mean(axis=5).mean(axis=3).mean(axis=1), y_mag.mean(axis=5).mean(axis=3).mean(axis=1), x_mag.mean(axis=5).mean(axis=3).mean(axis=1)) - @classmethod - def load_from_llg(cls, filename): - '''Construct :class:`~.MagData` object from LLG-file. - - Parameters - ---------- - filename : string - The name of the LLG-file from which to load the data. - - Returns - ------- - mag_data: :class:`~.MagData` - A :class:`~.MagData` object containing the loaded data. - ''' - SCALE = 1.0E-9 / 1.0E-2 # From cm to nm - data = np.genfromtxt(filename, skip_header=2) - x_dim, y_dim, z_dim = np.genfromtxt(filename, dtype=int, skip_header=1, - skip_footer=len(data[:, 0])) - res = (data[1, 0] - data[0, 0]) / SCALE - # Reshape in Python and Igor is different, Python fills rows first, Igor columns: - x_mag, y_mag, z_mag = [data[:, i].reshape(z_dim, y_dim, x_dim) for i in range(3, 6)] - return MagData(res, (z_mag, y_mag, x_mag)) - - def save_to_llg(self, filename='magdata_output.txt'): + def save_to_llg(self, filename='..\output\magdata_output.txt'): '''Save magnetization data in a file with LLG-format. Parameters ---------- filename : string, optional The name of the LLG-file in which to store the magnetization data. - The default is 'magdata_output.txt'. + The default is '..\output\magdata_output.txt'. Returns ------- @@ -232,11 +205,11 @@ class MagData: ''' dim = self.dim - res = self.res * 1.0E-9 / 1.0E-2 # from nm to cm + a = self.a * 1.0E-9 / 1.0E-2 # from nm to cm # Create 3D meshgrid and reshape it and the magnetization into a list where x varies first: - zz, yy, xx = np.mgrid[res/2:(dim[0]*res-res/2):dim[0]*1j, - res/2:(dim[1]*res-res/2):dim[1]*1j, - res/2:(dim[2]*res-res/2):dim[2]*1j] + zz, yy, xx = np.mgrid[a/2:(dim[0]*a-a/2):dim[0]*1j, + a/2:(dim[1]*a-a/2):dim[1]*1j, + a/2:(dim[2]*a-a/2):dim[2]*1j] xx = xx.reshape(-1) yy = yy.reshape(-1) zz = zz.reshape(-1) @@ -252,13 +225,13 @@ class MagData: for cell in row) for row in data)) @classmethod - def load_from_netcdf4(cls, filename): - '''Construct :class:`~.DataMag` object from NetCDF4-file. + def load_from_llg(cls, filename): + '''Construct :class:`~.MagData` object from LLG-file. Parameters ---------- filename : string - The name of the NetCDF4-file from which to load the data. Standard format is '\*.nc'. + The name of the LLG-file from which to load the data. Returns ------- @@ -266,13 +239,14 @@ class MagData: A :class:`~.MagData` object containing the loaded data. ''' - mag_file = netCDF4.Dataset(filename, 'r', format='NETCDF4') - res = mag_file.res - z_mag = mag_file.variables['z_mag'][:] - y_mag = mag_file.variables['y_mag'][:] - x_mag = mag_file.variables['x_mag'][:] - mag_file.close() - return MagData(res, (z_mag, y_mag, x_mag)) + SCALE = 1.0E-9 / 1.0E-2 # From cm to nm + data = np.genfromtxt(filename, skip_header=2) + x_dim, y_dim, z_dim = np.genfromtxt(filename, dtype=int, skip_header=1, + skip_footer=len(data[:, 0])) + a = (data[1, 0] - data[0, 0]) / SCALE + # Reshape in Python and Igor is different, Python fills rows first, Igor columns: + x_mag, y_mag, z_mag = [data[:, i].reshape(z_dim, y_dim, x_dim) for i in range(3, 6)] + return MagData(a, (z_mag, y_mag, x_mag)) def save_to_netcdf4(self, filename='..\output\magdata_output.nc'): '''Save magnetization data in a file with NetCDF4-format. @@ -281,7 +255,7 @@ class MagData: ---------- filename : string, optional The name of the NetCDF4-file in which to store the magnetization data. - The default is 'magdata_output.nc'. + The default is '..\output\magdata_output.nc'. Returns ------- @@ -289,7 +263,7 @@ class MagData: ''' mag_file = netCDF4.Dataset(filename, 'w', format='NETCDF4') - mag_file.res = self.res + mag_file.a = self.a mag_file.createDimension('z_dim', self.dim[0]) mag_file.createDimension('y_dim', self.dim[1]) mag_file.createDimension('x_dim', self.dim[2]) @@ -299,9 +273,31 @@ class MagData: z_mag[:] = self.magnitude[0] y_mag[:] = self.magnitude[1] x_mag[:] = self.magnitude[2] - print mag_file mag_file.close() + @classmethod + def load_from_netcdf4(cls, filename): + '''Construct :class:`~.DataMag` object from NetCDF4-file. + + Parameters + ---------- + filename : string + The name of the NetCDF4-file from which to load the data. Standard format is '\*.nc'. + + Returns + ------- + mag_data: :class:`~.MagData` + A :class:`~.MagData` object containing the loaded data. + + ''' + mag_file = netCDF4.Dataset(filename, 'r', format='NETCDF4') + a = mag_file.a + z_mag = mag_file.variables['z_mag'][:] + y_mag = mag_file.variables['y_mag'][:] + x_mag = mag_file.variables['x_mag'][:] + mag_file.close() + return MagData(a, (z_mag, y_mag, x_mag)) + def quiver_plot(self, title='Magnetic Distribution', filename=None, axis=None, proj_axis='z', ax_slice=None): '''Plot a slice of the magnetization as a quiver plot. @@ -365,6 +361,7 @@ class MagData: axis.xaxis.set_major_locator(MaxNLocator(nbins=9, integer=True)) axis.yaxis.set_major_locator(MaxNLocator(nbins=9, integer=True)) plt.show() + return axis def quiver_plot3d(self): '''Plot the magnetization as 3D-vectors in a quiverplot. @@ -378,12 +375,12 @@ class MagData: None ''' - res = self.res + a = self.a dim = self.dim # Create points and vector components as lists: - zz, yy, xx = np.mgrid[res/2:(dim[0]*res-res/2):dim[0]*1j, - res/2:(dim[1]*res-res/2):dim[1]*1j, - res/2:(dim[2]*res-res/2):dim[2]*1j] + zz, yy, xx = np.mgrid[a/2:(dim[0]*a-a/2):dim[0]*1j, + a/2:(dim[1]*a-a/2):dim[1]*1j, + a/2:(dim[2]*a-a/2):dim[2]*1j] xx = xx.reshape(-1) yy = yy.reshape(-1) zz = zz.reshape(-1) diff --git a/pyramid/numcore/phase_mag_real.pyx b/pyramid/numcore/phase_mag_real.pyx index d67993367b216a854df217f5d9fa186f391979c1..d3a23568466b482c51e04087ef92196bd865a93a 100644 --- a/pyramid/numcore/phase_mag_real.pyx +++ b/pyramid/numcore/phase_mag_real.pyx @@ -66,8 +66,22 @@ def get_jacobi_core( unsigned int v_dim, unsigned int u_dim, double[:, :] v_phi, double[:, :] u_phi, double[:, :] jacobi): - '''DOCSTRING!''' - # TODO: Docstring!!! + '''Numerical core routine for the jacobi matrix calculation. + + Parameters + ---------- + v_dim, u_dim : int + Dimensions of the projection along the two major axes. + v_phi, u_phi : :class:`~numpy.ndarray` (N=2) + Lookup tables for the pixel fields oriented in `u`- and `v`-direction. + jacobi : :class:`~numpy.ndarray` (N=2) + Jacobi matrix which is filled by this routine. + + Returns + ------- + None + + ''' cdef unsigned int i, j, p, q, p_min, p_max, q_min, q_max, u_column, v_column, row for j in range(v_dim): for i in range(u_dim): @@ -86,22 +100,3 @@ def get_jacobi_core( jacobi[row, u_column] = u_phi[q, p] # v-component (note the minus!): jacobi[row, v_column] = -v_phi[q, p] - - -@cython.boundscheck(False) -@cython.wraparound(False) -def get_jacobi_core( - unsigned int v_dim, unsigned int u_dim, - np.ndarray v_phi, np.ndarray u_phi, - np.ndarray jacobi): - '''DOCSTRING!''' - # TODO: Docstring!!! - cdef unsigned int i, j, p, q, p_min, p_max, q_min, q_max, u_column, v_column, row - for j in range(v_dim): - for i in range(u_dim): - # v_dim*u_dim columns for the u-component: - jacobi[:, i+u_dim*j] = \ - np.reshape(u_phi[v_dim-1-j:(2*v_dim-1)-j, u_dim-1-i:(2*u_dim-1)-i], -1) - # v_dim*u_dim columns for the v-component (note the minus!): - jacobi[:, u_dim*v_dim+i+u_dim*j] = \ - -np.reshape(v_phi[v_dim-1-j:(2*v_dim-1)-j, u_dim-1-i:(2*u_dim-1)-i], -1) diff --git a/pyramid/phasemap.py b/pyramid/phasemap.py index 90623640ff7c23e5824d111b289a5a98f3b6b493..2fd0e669d39eb3af758878deb04609769932d800 100644 --- a/pyramid/phasemap.py +++ b/pyramid/phasemap.py @@ -2,8 +2,8 @@ """Class for the storage of phase data. This module provides the :class:`~.PhaseMap` class whose instances can be used to store -phase data for a 2-dimensional grid. It is possible to load data from NetCDF4 or LLG (.txt) files -or to save the data in these formats. Also plotting methods are provided. See :class:`~.PhaseMap` +phase data for a 2-dimensional grid. It is possible to load data from NetCDF4 or textfiles or to +save the data in these formats. Also plotting methods are provided. See :class:`~.PhaseMap` for further information. """ @@ -23,13 +23,13 @@ class PhaseMap: '''Class for storing phase map data. Represents 2-dimensional phase maps. the phase information itself is stored in `phase`. - The dimensions `dim` of the grid with resolution `res` will be calculated at construction - time, but `res` has to be specified. + The dimensions `dim` of the grid with grid spacing `a` will be calculated at construction + time, but `a` has to be specified. Attributes ---------- - res : float - The resolution of the grid (grid spacing in nm) + a : float + The grid spacing in nm. dim : tuple (N=2) Dimensions of the grid. phase : :class:`~numpy.ndarray` (N=2) @@ -45,13 +45,13 @@ class PhaseMap: 'mrad': 1E3, 'µrad': 1E6} - def __init__(self, res, phase, unit='rad'): + def __init__(self, a, phase, unit='rad'): '''Constructor for a :class:`~.PhaseMap` object for storing phase data. Parameters ---------- - res : float - The resolution of the grid (grid spacing) in nm. + a : float + The grid spacing in nm. phase : :class:`~numpy.ndarray` (N=2) Matrix containing the phase shift. unit : {'rad', 'mrad', 'µrad'}, optional @@ -59,15 +59,10 @@ class PhaseMap: because the phase is scaled accordingly. Does not change the phase itself, which is always in `rad`. - Returns - ------- - phase_map : :class:`~.PhaseMap` - The 2D phase shift as a :class:`~.PhaseMap` object. - ''' dim = np.shape(phase) assert len(dim) == 2, 'Phasemap has to be 2-dimensional!' - self.res = res + self.a = a self.dim = dim self.unit = unit self.phase = phase @@ -90,27 +85,6 @@ class PhaseMap: assert unit in ['rad', 'mrad'] self.unit = unit - @classmethod - def load_from_txt(cls, filename): - '''Construct :class:`~.PhaseMap` object from a human readable txt-file. - - Parameters - ---------- - filename : string - The name of the file from which to load the data. - - Returns - ------- - phase_map : :class:`~.PhaseMap` - A :class:`~.PhaseMap` object containing the loaded data. - - ''' - with open(filename, 'r') as phase_file: - phase_file.readline() # Headerline is not used - res = float(phase_file.readline()[13:-4]) - phase = np.loadtxt(filename, delimiter='\t', skiprows=2) - return PhaseMap(res, phase) - def save_to_txt(self, filename='..\output\phasemap_output.txt'): '''Save :class:`~.PhaseMap` data in a file with txt-format. @@ -118,7 +92,7 @@ class PhaseMap: ---------- filename : string The name of the file in which to store the phase map data. - The default is 'phasemap_output.txt'. + The default is '..\output\phasemap_output.txt'. Returns ------- @@ -127,29 +101,29 @@ class PhaseMap: ''' with open(filename, 'w') as phase_file: phase_file.write('{}\n'.format(filename.replace('.txt', ''))) - phase_file.write('resolution = {} nm\n'.format(self.res)) + phase_file.write('grid spacing = {} nm\n'.format(self.a)) np.savetxt(phase_file, self.phase, fmt='%7.6e', delimiter='\t') @classmethod - def load_from_netcdf4(cls, filename): - '''Construct :class:`~.PhaseMap` object from NetCDF4-file. + def load_from_txt(cls, filename): + '''Construct :class:`~.PhaseMap` object from a human readable txt-file. Parameters ---------- filename : string - The name of the NetCDF4-file from which to load the data. Standard format is '\*.nc'. + The name of the file from which to load the data. Returns ------- - phase_map: :class:`~.PhaseMap` + phase_map : :class:`~.PhaseMap` A :class:`~.PhaseMap` object containing the loaded data. ''' - phase_file = netCDF4.Dataset(filename, 'r', format='NETCDF4') - res = phase_file.res - phase = phase_file.variables['phase'][:] - phase_file.close() - return PhaseMap(res, phase) + with open(filename, 'r') as phase_file: + phase_file.readline() # Headerline is not used + a = float(phase_file.readline()[15:-4]) + phase = np.loadtxt(filename, delimiter='\t', skiprows=2) + return PhaseMap(a, phase) def save_to_netcdf4(self, filename='..\output\phasemap_output.nc'): '''Save :class:`~.PhaseMap` data in a file with NetCDF4-format. @@ -158,7 +132,7 @@ class PhaseMap: ---------- filename : string, optional The name of the NetCDF4-file in which to store the phase data. - The default is 'phasemap_output.nc'. + The default is '..\output\phasemap_output.nc'. Returns ------- @@ -166,14 +140,34 @@ class PhaseMap: ''' phase_file = netCDF4.Dataset(filename, 'w', format='NETCDF4') - phase_file.res = self.res + phase_file.a = self.a phase_file.createDimension('v_dim', self.dim[0]) phase_file.createDimension('u_dim', self.dim[1]) phase = phase_file.createVariable('phase', 'f', ('v_dim', 'u_dim')) phase[:] = self.phase - print phase_file phase_file.close() + @classmethod + def load_from_netcdf4(cls, filename): + '''Construct :class:`~.PhaseMap` object from NetCDF4-file. + + Parameters + ---------- + filename : string + The name of the NetCDF4-file from which to load the data. Standard format is '\*.nc'. + + Returns + ------- + phase_map: :class:`~.PhaseMap` + A :class:`~.PhaseMap` object containing the loaded data. + + ''' + phase_file = netCDF4.Dataset(filename, 'r', format='NETCDF4') + a = phase_file.a + phase = phase_file.variables['phase'][:] + phase_file.close() + return PhaseMap(a, phase) + def display(self, title='Phase Map', cmap='RdBu', limit=None, norm=None, axis=None): '''Display the phasemap as a colormesh. @@ -214,8 +208,8 @@ class PhaseMap: axis.set_ylim(0, np.shape(phase)[0]) axis.xaxis.set_major_locator(MaxNLocator(nbins=9, integer=True)) axis.yaxis.set_major_locator(MaxNLocator(nbins=9, integer=True)) - axis.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*self.res))) - axis.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*self.res))) + axis.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*self.a))) + axis.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*self.a))) axis.tick_params(axis='both', which='major', labelsize=14) axis.set_title(title, fontsize=18) axis.set_xlabel('x [nm]', fontsize=15) diff --git a/pyramid/phasemapper.py b/pyramid/phasemapper.py index 8ddf90be580397e29c19657c99326174ec0abb7b..d69f262a2deaf273e855435044153fcc5e6833d9 100644 --- a/pyramid/phasemapper.py +++ b/pyramid/phasemapper.py @@ -4,9 +4,7 @@ This module executes several forward models to calculate the magnetic or electric phase map from a given projection of a 3-dimensional magnetic distribution (see :mod:`~pyramid.projector`). For the magnetic phase map, an approach using real space and one using Fourier space is provided. -The real space approach also calculates the Jacobi matrix, which is used for the reconstruction in -the :mod:`~pyramid.reconstructor` module. The electrostatic contribution is calculated by using -the assumption of a mean inner potentail (MIP). +The electrostatic contribution is calculated by using the assumption of a mean inner potential. """ @@ -15,8 +13,7 @@ import numpy as np from numpy import pi import pyramid.numcore as nc - -from scipy.signal import fftconvolve +from pyramid.kernel import Kernel PHI_0 = -2067.83 # magnetic flux in T*nm² @@ -26,117 +23,22 @@ Q_E = 1.602E-19 # electron charge in C C = 2.998E8 # speed of light in m/s -# TODO: Kernel class? Creator, transform to fourier, get_jacobi? - -class Kernel: - # TODO: Docstrings!!! - - def __init__(self, dim, res, geometry='disc', b_0=1): - # TODO: Docstring!!! - def get_elementary_phase(geometry, n, m, res): - if geometry == 'slab': - def F_h(n, m): - a = np.log(res**2 * (n**2 + m**2)) - b = np.arctan(n / m) - return n*a - 2*n + 2*m*b - return 0.5 * (F_h(n-0.5, m-0.5) - F_h(n+0.5, m-0.5) - - F_h(n-0.5, m+0.5) + F_h(n+0.5, m+0.5)) - elif geometry == 'disc': - in_or_out = np.logical_not(np.logical_and(n == 0, m == 0)) - return m / (n**2 + m**2 + 1E-30) * in_or_out - self.dim = dim # !!! size of the FOV, kernel is bigger! - self.res = res - self.geometry = geometry - self.b_0 = b_0 - coeff = -res**2 / (2*PHI_0) - v_dim, u_dim = dim - u = np.linspace(-(u_dim-1), u_dim-1, num=2*u_dim-1) - v = np.linspace(-(v_dim-1), v_dim-1, num=2*v_dim-1) - uu, vv = np.meshgrid(u, v) - self.u = coeff * get_elementary_phase(geometry, uu, vv, res) - self.v = coeff * get_elementary_phase(geometry, vv, uu, res) - size = 3*np.array(dim) - 1 # dim + (2*dim - 1) magnetisation + kernel - fsize = 2 ** np.ceil(np.log2(size)).astype(int) # next multiple of 2 - self.u_fft = np.fft.rfftn(self.u, fsize) - self.v_fft = np.fft.rfftn(self.v, fsize) - - def get_jacobi(self): - # TODO: Docstring!!! - '''CAUTIOUS! Just use for small dimensions or computer will explode violently!''' - v_dim, u_dim = self.dim - jacobi = np.zeros((v_dim*u_dim, 2*v_dim*u_dim)) - # nc.get_jacobi_core(dim[0], dim[1], v_phi, u_phi, jacobi) - # return jacobi - for j in range(v_dim): - for i in range(u_dim): - u_column = i + u_dim*j - v_column = i + u_dim*j + u_dim*v_dim - u_min = (u_dim-1) - i - u_max = (2*u_dim-1) - i - v_min = (v_dim-1) - j - v_max = (2*v_dim-1) - j - # u_dim*v_dim columns for the u-component: - jacobi[:, u_column] = self.u[v_min:v_max, u_min:u_max].reshape(-1) - # u_dim*v_dim columns for the v-component (note the minus!): - jacobi[:, v_column] = -self.v[v_min:v_max, u_min:u_max].reshape(-1) - return jacobi - - def multiply_jacobi(self, vector): - # TODO: Docstring!!! - # vector: v_dim*u_dim elements for u_mag and v_dim*u_dim elements for v_mag - v_dim, u_dim = self.dim - size = v_dim * u_dim - assert len(vector) == 2*size, 'vector size not compatible!' - result = np.zeros(size) - for s in range(size): # column-wise (two columns at a time, u- and v-component) - i = s % u_dim - j = int(s/u_dim) - u_min = (u_dim-1) - i - u_max = (2*u_dim-1) - i - v_min = (v_dim-1) - j - v_max = (2*v_dim-1) - j - result += vector[s]*self.u[v_min:v_max, u_min:u_max].reshape(-1) # u - result += vector[s+size]*-self.v[v_min:v_max, u_min:u_max].reshape(-1) # v - return result - - def multiply_jacobi_T(self, vector): - # TODO: Docstring!!! - # vector: v_dim*u_dim elements for u_mag and v_dim*u_dim elements for v_mag - v_dim, u_dim = self.dim - size = v_dim * u_dim - assert len(vector) == size, 'vector size not compatible!' - result = np.zeros(2*size) - for s in range(size): # row-wise (two rows at a time, u- and v-component) - i = s % u_dim - j = int(s/u_dim) - u_min = (u_dim-1) - i - u_max = (2*u_dim-1) - i - v_min = (v_dim-1) - j - v_max = (2*v_dim-1) - j - result[s] = np.sum(vector*self.u[v_min:v_max, u_min:u_max].reshape(-1)) # u - result[s+size] = np.sum(vector*-self.v[v_min:v_max, u_min:u_max].reshape(-1)) # v - return result - - -def phase_mag_real(res, projection, geometry='disc', b_0=1, jacobi=None): - '''Calculate the magnetic phase from magnetization data (real space approach). +def phase_mag(a, projection, b_0=1, kernel=None): + '''Calculate the magnetic phase from magnetization data. Parameters ---------- - res : float - The resolution of the grid (grid spacing) in nm. + a : float + The grid spacing in nm. projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component of the magnetization and the thickness projection for the resulting 2D-grid. - geometry : {'disc', 'slab'}, optional - Specifies the elemental geometry to use for the pixel field. - The default is 'disc', because of the smaller computational overhead. b_0 : float, optional The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T. The default is 1. - jacobi : :class:`~numpy.ndarray` (N=2), optional - Specifies the matrix in which to save the jacobi matrix. The jacobi matrix will not be - calculated, if no matrix is specified (default), resulting in a faster computation. + kernel : :class:`~pyramid.kernel.Kernel`, optional + Specifies the kernel for the convolution with the magnetization data. If none is specified, + one will be created with `disc` as the default geometry. Returns ------- @@ -144,86 +46,65 @@ def phase_mag_real(res, projection, geometry='disc', b_0=1, jacobi=None): The phase as a 2-dimensional array. ''' - # Process input parameters: - dim = np.shape(projection[0]) + # Process input parameters: v_mag, u_mag = projection[:-1] + dim = np.shape(u_mag) - # Create kernel (lookup-tables for the phase of one pixel): - kernel = Kernel(dim, res, geometry, b_0) - u_phi = kernel.u - v_phi = kernel.v + # Create kernel (lookup-tables for the phase of one pixel) if none is given: + if kernel is None: + kernel = Kernel(dim, a, b_0) - # Calculation of the phase: - phase = np.zeros(dim) - threshold = 0 - if jacobi is not None: # With Jacobian matrix (slower) - jacobi[:] = 0 # Jacobi matrix --> zeros - for j in range(dim[0]): - for i in range(dim[1]): - u_phase = u_phi[dim[0]-1-j:(2*dim[0]-1)-j, dim[1]-1-i:(2*dim[1]-1)-i] - jacobi[:, i+dim[1]*j] = u_phase.reshape(-1) - if abs(u_mag[j, i]) > threshold: - phase += u_mag[j, i] * u_phase - v_phase = v_phi[dim[0]-1-j:(2*dim[0]-1)-j, dim[1]-1-i:(2*dim[1]-1)-i] - jacobi[:, dim[1]*dim[0]+i+dim[1]*j] = -v_phase.reshape(-1) - if abs(v_mag[j, i]) > threshold: - phase -= v_mag[j, i] * v_phase - else: # Without Jacobi matrix (faster) - nc.phase_mag_real_core(dim[0], dim[1], v_phi, u_phi, v_mag, u_mag, phase, threshold) - # Return the phase: - return phase + # Fourier transform the projected magnetisation: + u_mag_fft = np.fft.rfftn(u_mag, kernel.dim_fft) + v_mag_fft = np.fft.rfftn(v_mag, kernel.dim_fft) + # Convolve the magnetization with the kernel in Fourier space: + u_phase = np.fft.irfftn(u_mag_fft * kernel.u_fft, kernel.dim_fft)[kernel.slice_fft].copy() + v_phase = np.fft.irfftn(v_mag_fft * kernel.v_fft, kernel.dim_fft)[kernel.slice_fft].copy() -def phase_mag_real_conv(res, projection, method='disc', b_0=1): - '''Calculate the magnetic phase from magnetization data (real space approach). + # Return the result: + return u_phase - v_phase + + +def phase_elec(a, projection, v_0=1, v_acc=30000): + '''Calculate the electric phase from magnetization distributions. Parameters ---------- - res : float - The resolution of the grid (grid spacing) in nm. + a : float + The grid spacing in nm. projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) - The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component + The in-plane projection of the magnetization as a tuple, storing the u- and v-component of the magnetization and the thickness projection for the resulting 2D-grid. - method : {'disc', 'slab'}, optional - Specifies the elemental geometry to use for the pixel field. - The default is 'disc', because of the smaller computational overhead. - b_0 : float, optional - The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T. - The default is 1. - jacobi : :class:`~numpy.ndarray` (N=2), optional - Specifies the matrix in which to save the jacobi matrix. The jacobi matrix will not be - calculated, if no matrix is specified (default), resulting in a faster computation. + v_0 : float, optional + The mean inner potential of the specimen in V. The default is 1. + v_acc : float, optional + The acceleration voltage of the electron microscope in V. The default is 30000. Returns ------- phase : :class:`~numpy.ndarray` (N=2) The phase as a 2-dimensional array. - ''' # TODO: Docstring!!! + ''' # Process input parameters: - dim = np.shape(projection[0]) - v_mag, u_mag = projection[:-1] - - # Get lookup-tables for the phase of one pixel: - u_phi = get_kernel(method, 'u', dim, res, b_0) - v_phi = get_kernel(method, 'v', dim, res, b_0) - - # Return the phase: - result = fftconvolve(u_mag, u_phi, 'same') - fftconvolve(v_mag, v_phi, 'same') - return result + lam = H_BAR / np.sqrt(2 * M_E * Q_E * v_acc * (1 + Q_E*v_acc / (2*M_E*C**2))) + Ce = 2*pi*Q_E/lam * (Q_E*v_acc + M_E*C**2) / (Q_E*v_acc * (Q_E*v_acc + 2*M_E*C**2)) + # return phase: + return v_0 * Ce * projection[-1] * a*1E-9 -def phase_mag_real_fast(res, projection, kernels_fourier, b_0=1): - '''Calculate the magnetic phase from magnetization data (real space approach). +def phase_mag_real(a, projection, b_0=1, geometry='disc', jacobi=None): + '''Calculate the magnetic phase from magnetization data (pure real space, no FFT-convolution). Parameters ---------- - res : float - The resolution of the grid (grid spacing) in nm. + a : float + The grid spacing in nm. projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component of the magnetization and the thickness projection for the resulting 2D-grid. - method : {'disc', 'slab'}, optional + geometry : {'disc', 'slab'}, optional Specifies the elemental geometry to use for the pixel field. The default is 'disc', because of the smaller computational overhead. b_0 : float, optional @@ -238,33 +119,44 @@ def phase_mag_real_fast(res, projection, kernels_fourier, b_0=1): phase : :class:`~numpy.ndarray` (N=2) The phase as a 2-dimensional array. - ''' # TODO: Docstring!!! - # Process input parameters: + ''' + # Process input parameters: + dim = np.shape(projection[0]) v_mag, u_mag = projection[:-1] - dim = np.shape(u_mag) - - size = 3*np.array(dim) - 1 # dim + (2*dim - 1) magnetisation + kernel - fsize = 2 ** np.ceil(np.log2(size)).astype(int) - fslice = tuple([slice(0, int(sz)) for sz in size]) - u_mag_f = np.fft.rfftn(u_mag, fsize) - v_mag_f = np.fft.rfftn(v_mag, fsize) - - v_kern_f, u_kern_f = kernels_fourier + # Create kernel (lookup-tables for the phase of one pixel): + kernel = Kernel(dim, a, b_0, geometry) + u_phi = kernel.u + v_phi = kernel.v - fslice = (slice(dim[0]-1, 2*dim[0]-1), slice(dim[1]-1, 2*dim[1]-1)) - u_phase = np.fft.irfftn(u_mag_f * u_kern_f, fsize)[fslice].copy() - v_phase = np.fft.irfftn(v_mag_f * v_kern_f, fsize)[fslice].copy() - return u_phase - v_phase + # Calculation of the phase: + phase = np.zeros(dim) + threshold = 0 + if jacobi is not None: # With Jacobian matrix (slower) + jacobi[:] = 0 # Jacobi matrix --> zeros + for j in range(dim[0]): + for i in range(dim[1]): + u_phase = u_phi[dim[0]-1-j:(2*dim[0]-1)-j, dim[1]-1-i:(2*dim[1]-1)-i] + jacobi[:, i+dim[1]*j] = u_phase.reshape(-1) + if abs(u_mag[j, i]) > threshold: + phase += u_mag[j, i] * u_phase + v_phase = v_phi[dim[0]-1-j:(2*dim[0]-1)-j, dim[1]-1-i:(2*dim[1]-1)-i] + jacobi[:, dim[1]*dim[0]+i+dim[1]*j] = -v_phase.reshape(-1) + if abs(v_mag[j, i]) > threshold: + phase -= v_mag[j, i] * v_phase + else: # Without Jacobi matrix (faster) + nc.phase_mag_real_core(dim[0], dim[1], v_phi, u_phi, v_mag, u_mag, phase, threshold) + # Return the phase: + return phase -def phase_mag_fourier(res, projection, padding=0, b_0=1): +def phase_mag_fourier(a, projection, padding=0, b_0=1): '''Calculate the magnetic phase from magnetization data (Fourier space approach). Parameters ---------- - res : float - The resolution of the grid (grid spacing) in nm. + a : float + The grid spacing in nm. projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component of the magnetization and the thickness projection for the resulting 2D-grid. @@ -294,86 +186,13 @@ def phase_mag_fourier(res, projection, padding=0, b_0=1): u_mag_fft = np.fft.fftshift(np.fft.rfft2(u_mag_big), axes=0) v_mag_fft = np.fft.fftshift(np.fft.rfft2(v_mag_big), axes=0) # Calculate the Fourier transform of the phase: - nyq = 0.5 / res # nyquist frequency - f_u = np.linspace(0, nyq, u_mag_fft.shape[1]) - f_v = np.linspace(-nyq, nyq, u_mag_fft.shape[0], endpoint=False) + f_nyq = 0.5 / a # nyquist frequency + f_u = np.linspace(0, f_nyq, u_mag_fft.shape[1]) + f_v = np.linspace(-f_nyq, f_nyq, u_mag_fft.shape[0], endpoint=False) f_uu, f_vv = np.meshgrid(f_u, f_v) coeff = (1j*b_0) / (2*PHI_0) - phase_fft = coeff * res * (u_mag_fft*f_vv - v_mag_fft*f_uu) / (f_uu**2 + f_vv**2 + 1e-30) #* (8*(res/2)**3)*np.sinc(res/2*f_uu)*np.sinc(res/2*f_vv) * np.exp(2*pi*1j*()) + phase_fft = coeff * a * (u_mag_fft*f_vv - v_mag_fft*f_uu) / (f_uu**2 + f_vv**2 + 1e-30) # Transform to real space and revert padding: phase_big = np.fft.irfft2(np.fft.ifftshift(phase_fft, axes=0)) phase = phase_big[v_pad:v_pad+v_dim, u_pad:u_pad+u_dim] return phase - - -def phase_mag(res, projection, kernel, b_0=1): - '''Calculate the magnetic phase from magnetization data (real space approach). - - Parameters - ---------- - res : float - The resolution of the grid (grid spacing) in nm. - projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) - The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component - of the magnetization and the thickness projection for the resulting 2D-grid. - method : {'disc', 'slab'}, optional - Specifies the elemental geometry to use for the pixel field. - The default is 'disc', because of the smaller computational overhead. - b_0 : float, optional - The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T. - The default is 1. - jacobi : :class:`~numpy.ndarray` (N=2), optional - Specifies the matrix in which to save the jacobi matrix. The jacobi matrix will not be - calculated, if no matrix is specified (default), resulting in a faster computation. - - Returns - ------- - phase : :class:`~numpy.ndarray` (N=2) - The phase as a 2-dimensional array. - - ''' # TODO: Docstring!!! - # Process input parameters: - v_mag, u_mag = projection[:-1] - dim = np.shape(u_mag) - - size = 3*np.array(dim) - 1 # dim + (2*dim - 1) magnetisation + kernel - fsize = 2 ** np.ceil(np.log2(size)).astype(int) - fslice = tuple([slice(0, int(sz)) for sz in size]) - - u_mag_f = np.fft.rfftn(u_mag, fsize) - v_mag_f = np.fft.rfftn(v_mag, fsize) - - v_kern_f, u_kern_f = kernels_fourier - - fslice = (slice(dim[0]-1, 2*dim[0]-1), slice(dim[1]-1, 2*dim[1]-1)) - u_phase = np.fft.irfftn(u_mag_f * u_kern_f, fsize)[fslice].copy() - v_phase = np.fft.irfftn(v_mag_f * v_kern_f, fsize)[fslice].copy() - return u_phase - v_phase - - -def phase_elec(res, projection, v_0=1, v_acc=30000): - '''Calculate the electric phase from magnetization distributions. - - Parameters - ---------- - res : float - The resolution of the grid (grid spacing) in nm. - projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) - The in-plane projection of the magnetization as a tuple, storing the u- and v-component - of the magnetization and the thickness projection for the resulting 2D-grid. - v_0 : float, optional - The mean inner potential of the specimen in V. The default is 1. - v_acc : float, optional - The acceleration voltage of the electron microscope in V. The default is 30000. - - Returns - ------- - phase : :class:`~numpy.ndarray` (N=2) - The phase as a 2-dimensional array. - - ''' - # Process input parameters: - lam = H_BAR / np.sqrt(2 * M_E * Q_E * v_acc * (1 + Q_E*v_acc / (2*M_E*C**2))) - Ce = 2*pi*Q_E/lam * (Q_E*v_acc + M_E*C**2) / (Q_E*v_acc * (Q_E*v_acc + 2*M_E*C**2)) - # return phase: - return v_0 * Ce * projection[-1] * res*1E-9 diff --git a/pyramid/projection.py b/pyramid/projection.py new file mode 100644 index 0000000000000000000000000000000000000000..01aa038965abdd8d36ab8ac2f25e8f686bb581ae --- /dev/null +++ b/pyramid/projection.py @@ -0,0 +1,7 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Nov 29 12:07:44 2013 + +@author: Jan +""" + diff --git a/pyramid/projector.py b/pyramid/projector.py index 00d56c82b364d6b93e65d4485ebab99f08820de5..9fa94d265d7414b04044f63dbc3098597da6a9c2 100644 --- a/pyramid/projector.py +++ b/pyramid/projector.py @@ -3,8 +3,8 @@ This module creates 2-dimensional projections from 3-dimensional magnetic distributions, which are stored in :class:`~pyramid.magdata.MagData` objects. Either simple projections along the -major axes are possible (:func:`~.simple_axis_projection`), or projections along arbitrary -directions with the use of transfer functions (work in progress). +major axes are possible (:func:`~.simple_axis_projection`), or projections with a tilt around +the y-axis. The thickness profile is also calculated and can be used for electric phase maps. """ @@ -12,8 +12,6 @@ directions with the use of transfer functions (work in progress). import numpy as np from numpy import pi -import matplotlib.pyplot as plt -from matplotlib.ticker import MaxNLocator import itertools from pyramid.magdata import MagData @@ -38,7 +36,7 @@ def simple_axis_projection(mag_data, axis='z', threshold=0): projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component of the magnetization and the thickness projection for the resulting 2D-grid. The latter - has to be multiplied with the resolution for a value in nm. + has to be multiplied with the grid spacing for a value in nm. ''' assert isinstance(mag_data, MagData), 'Parameter mag_data has to be a MagData object!' @@ -58,16 +56,30 @@ def simple_axis_projection(mag_data, axis='z', threshold=0): return projection -def single_tilt_projection(mag_data, tilt=0, threshold=0): - # TODO: Docstring!!! - '''Projection with tilt around the (centered!) y-axis''' +def single_tilt_projection(mag_data, tilt=0): + ''' + Project a magnetization distribution which is tilted around the centered y-axis. + + Parameters + ---------- + mag_data : :class:`~pyramid.magdata.MagData` + A :class:`~pyramid.magdata.MagData` object storing the magnetization distribution, + which should be projected. + tilt : float, optional + The counter-clockwise tilt angle around the y-axis. Default is 1. + + Returns + ------- + projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) + The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component + of the magnetization and the thickness projection for the resulting 2D-grid. The latter + has to be multiplied with the grid spacing for a value in nm. + + ''' assert isinstance(mag_data, MagData), 'Parameter mag_data has to be a MagData object!' -# assert axis == 'z' or axis == 'y' or axis == 'x', 'Axis has to be x, y or z (as string)!' def get_position(p, m, b, size): y, x = np.array(p)[:, 0]+0.5, np.array(p)[:, 1]+0.5 -# print 'p:', p -# print 'position:', (y-m*x-b)/np.sqrt(m**2+1)# + size/2. return (y-m*x-b)/np.sqrt(m**2+1) + size/2. def get_impact(pos, r, size): @@ -75,21 +87,18 @@ def single_tilt_projection(mag_data, tilt=0, threshold=0): if 0 <= x < size] def get_weight(delta, rho): # use circles to represent the voxels - a, b = delta-rho, delta+rho - if a >= 1 or b <= -1: # TODO: Should not be necessary! - print 'Outside of bounds:', delta - return 0 + lo, up = delta-rho, delta+rho # Upper boundary: - if b >= 1: - w_b = 0.5 + if up >= 1: + w_up = 0.5 else: - w_b = (b*np.sqrt(1-b**2) + np.arctan(b/np.sqrt(1-b**2))) / pi + w_up = (up*np.sqrt(1-up**2) + np.arctan(up/np.sqrt(1-up**2))) / pi # Lower boundary: - if a <= -1: - w_a = -0.5 + if lo <= -1: + w_lo = -0.5 else: - w_a = (a*np.sqrt(1-a**2) + np.arctan(a/np.sqrt(1-a**2))) / pi - return w_b - w_a + w_lo = (lo*np.sqrt(1-lo**2) + np.arctan(lo/np.sqrt(1-lo**2))) / pi + return w_up - w_lo # Set starting variables: # length along projection (proj, z), rotation (rot, y) and perpendicular (perp, x) axis: @@ -101,22 +110,17 @@ def single_tilt_projection(mag_data, tilt=0, threshold=0): np.zeros((dim_rot, dim_perp))) # Creating coordinate list of all voxels: voxels = list(itertools.product(range(dim_proj), range(dim_perp))) -# print 'voxels:', voxels # Calculate positions along the projected pixel coordinate system: center = (dim_proj/2., dim_perp/2.) -# direction = (-np.cos(tilt), np.sin(tilt)) - m = np.where(tilt<=pi, -1/np.tan(tilt+1E-30), 1/np.tan(tilt+1E-30))#direction[0]/(direction[1]+1E-30) -# print 'm:', m + m = np.where(tilt<=pi, -1/np.tan(tilt+1E-30), 1/np.tan(tilt+1E-30)) b = center[0] - m * center[1] -# print 'b:', b positions = get_position(voxels, m, b, dim_perp) -# print positions # Calculate weights: r = 1/np.sqrt(np.pi) # radius of the voxel circle - rho = 0.5 / r # TODO: ratio of radii - weights = [] + rho = 0.5 / r + weights = {} for i, voxel in enumerate(voxels): voxel_weights = [] impacts = get_impact(positions[i], r, dim_perp) @@ -124,12 +128,11 @@ def single_tilt_projection(mag_data, tilt=0, threshold=0): distance = np.abs(impact+0.5 - positions[i]) delta = distance / r voxel_weights.append((impact, get_weight(delta, rho))) - weights.append((voxel, voxel_weights)) - -# print weights + weights[voxel] = voxel_weights # Calculate projection with the calculated weights for the voxels (rotation around y-axis): - for i, (voxel, voxel_weights) in enumerate(weights): + for i, voxel in enumerate(weights): + voxel_weights = weights[voxel] for pixel, weight in voxel_weights: # Component parallel to tilt axis (':' goes over all slices): projection[0][:, pixel] += weight * y_mag[voxel[0], :, voxel[1]] @@ -140,3 +143,199 @@ def single_tilt_projection(mag_data, tilt=0, threshold=0): projection[2][:, pixel] += weight * mask[voxel[0], :, voxel[1]] return projection + +class Projection: + + '''Class for calculating kernel matrices for the phase calculation. + + Represents the phase of a single magnetized pixel for two orthogonal directions (`u` and `v`), + which can be accessed via the corresponding attributes. The default elementary geometry is + `disc`, but can also be specified as the phase of a `slab` representation of a single + magnetized pixel. During the construction, a few attributes are calculated that are used in + the convolution during phase calculation. + + Attributes + ---------- + dim : tuple (N=2) + Dimensions of the projected magnetization grid. + a : float + The grid spacing in nm. + geometry : {'disc', 'slab'}, optional + The elementary geometry of the single magnetized pixel. + b_0 : float, optional + The saturation magnetic induction. Default is 1. + u : :class:`~numpy.ndarray` (N=3) + The phase contribution of one pixel magnetized in u-direction. + v : :class:`~numpy.ndarray` (N=3) + The phase contribution of one pixel magnetized in v-direction. + u_fft : :class:`~numpy.ndarray` (N=3) + The real FFT of the phase contribution of one pixel magnetized in u-direction. + v_fft : :class:`~numpy.ndarray` (N=3) + The real FFT of the phase contribution of one pixel magnetized in v-direction. + dim_fft : tuple (N=2) + Dimensions of the grid, which is used for the FFT. Calculated by adding the dimensions + `dim` of the magnetization grid and the dimensions of the kernel (given by ``2*dim-1``) + and increasing to the next multiple of 2 (for faster FFT). + slice_fft : tuple (N=2) of :class:`slice` + A tuple of :class:`slice` objects to extract the original field of view from the increased + size (size_fft) of the grid for the FFT-convolution. + + ''' # TODO: Docstring! + + def __init__(self, u_mag, v_mag, thickness, weights): + '''Constructor for a :class:`~.Kernel` object for representing a kernel matrix. + + Parameters + ---------- + dim : tuple (N=2) + Dimensions of the projected magnetization grid. + a : float + The grid spacing in nm. + b_0 : float, optional + The saturation magnetic induction. Default is 1. + geometry : {'disc', 'slab'}, optional + The elementary geometry of the single magnetized pixel. + + ''' # TODO: Docstring! + self.dim = np.shape(u_mag) +# self.a = a +# self.b_0 = b_0 + self.u = u_mag + self.v = v_mag + self.weights = weights + + def get_jacobi(self): + '''Calculate the Jacobi matrix for the phase calculation from a projected magnetization. + + Parameters + ---------- + None + + Returns + ------- + jacobi : :class:`~numpy.ndarray` (N=2) + Jacobi matrix containing the derivatives of the phase at every pixel with respect to + the projected magetization. Has `N` columns for the `u`-component of the magnetization + and `N` columns for the `v`-component (from left to right) and ``N**2`` rows for the + phase at every pixel. + + Notes + ----- + Just use for small dimensions, Jacobi Matrix scales with order of ``N**4``. + + ''' # TODO: Docstring! + v_dim, u_dim = self.dim + size = v_dim * u_dim + jacobi = np.zeros((v_dim*u_dim, 2*v_dim*u_dim)) + weight_matrix = np.zeros(dim) # Check if correct (probably not, x and z instead of x and y) + voxels = list(itertools.product(range(dim_proj), range(dim_perp))) + for i, voxel in enumerate(self.weights): + voxel_weights = self.weights[voxel] + for pixel, weight in voxel_weights: + # Component parallel to tilt axis (':' goes over all slices): + projection[0][:, pixel] += weight * y_mag[voxel[0], :, voxel[1]] + # Component perpendicular to tilt axis: + projection[1][:, pixel] += weight * (x_mag[voxel[0], :, voxel[1]]*np.cos(tilt) + + z_mag[voxel[0], :, voxel[1]]*np.sin(tilt)) + # Thickness profile: + projection[2][:, pixel] += weight * mask[voxel[0], :, voxel[1]] + + for i, vx in enumerate(self.weights): + vx_pos = vx[1]*3 + vx[0] + for px, weight in self.weights[voxel]: + px_pos = (px[2]*3 + px[1])*3 + px[0] + weight_matrix[vx_pos, px_pos] = weight + + + + + + + + + + + + + + + v_dim, u_dim = self.dim + jacobi = np.zeros((v_dim*u_dim, 2*v_dim*u_dim)) +# nc.get_jacobi_core(dim[0], dim[1], v_phi, u_phi, jacobi) +# return jacobi + for j in range(v_dim): + for i in range(u_dim): + u_column = i + u_dim*j + v_column = i + u_dim*j + u_dim*v_dim + u_min = (u_dim-1) - i + u_max = (2*u_dim-1) - i + v_min = (v_dim-1) - j + v_max = (2*v_dim-1) - j + # u_dim*v_dim columns for the u-component: + jacobi[:, u_column] = self.u[v_min:v_max, u_min:u_max].reshape(-1) + # u_dim*v_dim columns for the v-component (note the minus!): + jacobi[:, v_column] = -self.v[v_min:v_max, u_min:u_max].reshape(-1) + return jacobi + + def multiply_jacobi(self, vector): + '''Calculate the product of the Jacobi matrix with a given `vector`. + + Parameters + ---------- + vector : :class:`~numpy.ndarray` (N=1) + Vectorized form of the magnetization in `u`- and `v`-direction of every pixel + (row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next + ``N**2`` elements to the `v`-component of the magnetization. + + Returns + ------- + result : :class:`~numpy.ndarray` (N=1) + Product of the Jacobi matrix (which is not explicitely calculated) with the vector. + + ''' # TODO: Docstring! + v_dim, u_dim = self.dim + size = v_dim * u_dim + assert len(vector) == 2*size, 'vector size not compatible!' + result = np.zeros(size) + for s in range(size): # column-wise (two columns at a time, u- and v-component) + i = s % u_dim + j = int(s/u_dim) + u_min = (u_dim-1) - i + u_max = (2*u_dim-1) - i + v_min = (v_dim-1) - j + v_max = (2*v_dim-1) - j + result += vector[s]*self.u[v_min:v_max, u_min:u_max].reshape(-1) # u + result += vector[s+size]*-self.v[v_min:v_max, u_min:u_max].reshape(-1) # v + return result + + def multiply_jacobi_T(self, vector): + '''Calculate the product of the transposed Jacobi matrix with a given `vector`. + + Parameters + ---------- + vector : :class:`~numpy.ndarray` (N=1) + Vectorized form of the magnetization in `u`- and `v`-direction of every pixel + (row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next + ``N**2`` elements to the `v`-component of the magnetization. + + Returns + ------- + result : :class:`~numpy.ndarray` (N=1) + Product of the transposed Jacobi matrix (which is not explicitely calculated) with + the vector. + + ''' # TODO: Docstring! + v_dim, u_dim = self.dim + size = v_dim * u_dim + assert len(vector) == size, 'vector size not compatible!' + result = np.zeros(2*size) + for s in range(size): # row-wise (two rows at a time, u- and v-component) + i = s % u_dim + j = int(s/u_dim) + u_min = (u_dim-1) - i + u_max = (2*u_dim-1) - i + v_min = (v_dim-1) - j + v_max = (2*v_dim-1) - j + result[s] = np.sum(vector*self.u[v_min:v_max, u_min:u_max].reshape(-1)) # u + result[s+size] = np.sum(vector*-self.v[v_min:v_max, u_min:u_max].reshape(-1)) # v + return result diff --git a/pyramid/reconstructor.py b/pyramid/reconstructor.py index b31d3e5f2312ccd86fb53cdba909c74d212f362b..7c995dc7d1eb54bc4d5e1ea3755cfa6c4b8fd7cb 100644 --- a/pyramid/reconstructor.py +++ b/pyramid/reconstructor.py @@ -49,17 +49,17 @@ def reconstruct_simple_leastsq(phase_map, mask, b_0=1): ''' # Read in parameters: y_m = phase_map.phase.reshape(-1) # Measured phase map as a vector - res = phase_map.res # Resolution + a = phase_map.a # Grid spacing dim = mask.shape # Dimensions of the mag. distr. count = mask.sum() # Number of pixels with magnetization lam = 1e-6 # Regularisation parameter # Create empty MagData object for the reconstruction: - mag_data_rec = MagData(res, (np.zeros(dim), np.zeros(dim), np.zeros(dim))) + mag_data_rec = MagData(a, (np.zeros(dim), np.zeros(dim), np.zeros(dim))) # Function that returns the phase map for a magnetic configuration x: def F(x): mag_data_rec.set_vector(mask, x) - phase = pm.phase_mag_real(res, pj.simple_axis_projection(mag_data_rec), 'slab', b_0) + phase = pm.phase_mag_real(a, pj.simple_axis_projection(mag_data_rec), b_0) return phase.reshape(-1) # Cost function which should be minimized: diff --git a/scripts/compare methods/compare_methods.py b/scripts/compare methods/compare_methods.py index dd32b50dcfe677f84845008b385478cb1fd2dbb4..c949a8ae9ab21e95c452955341baa483cf547887 100644 --- a/scripts/compare methods/compare_methods.py +++ b/scripts/compare methods/compare_methods.py @@ -17,6 +17,7 @@ import pyramid.phasemapper as pm import pyramid.holoimage as hi import pyramid.analytic as an from pyramid.magdata import MagData +from pyramid.kernel import Kernel from pyramid.phasemap import PhaseMap @@ -30,7 +31,7 @@ def compare_methods(): ''' # Input parameters: b_0 = 1.0 # in T - res = 1.0 # in nm + a = 1.0 # in nm phi = pi/4 padding = 3 density = 10 @@ -41,56 +42,52 @@ def compare_methods(): center = (dim[0]/2.-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z,y,x) index starts at 0! width = (dim[0]/2, dim[1]/2, dim[2]/2) # in px (z, y, x) mag_shape = mc.Shapes.slab(dim, center, width) - phase_ana = an.phase_mag_slab(dim, res, phi, center, width, b_0) + phase_ana = an.phase_mag_slab(dim, a, phi, center, width, b_0) elif geometry == 'disc': center = (dim[0]/2.-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z,y,x) index starts at 0! radius = dim[1]/4 # in px height = dim[0]/2 # in px mag_shape = mc.Shapes.disc(dim, center, radius, height) - phase_ana = an.phase_mag_disc(dim, res, phi, center, radius, height, b_0) + phase_ana = an.phase_mag_disc(dim, a, phi, center, radius, height, b_0) elif geometry == 'sphere': center = (dim[0]/2.-0.5, dim[1]/2.-0.5, dim[2]/2.-0.50) # in px (z, y, x) index starts with 0! radius = dim[1]/4 # in px mag_shape = mc.Shapes.sphere(dim, center, radius) - phase_ana = an.phase_mag_sphere(dim, res, phi, center, radius, b_0) + phase_ana = an.phase_mag_sphere(dim, a, phi, center, radius, b_0) # Project the magnetization data: - mag_data = MagData(res, mc.create_mag_dist_homog(mag_shape, phi)) + mag_data = MagData(a, mc.create_mag_dist_homog(mag_shape, phi)) mag_data.quiver_plot(ax_slice=int(center[0])) projection = pj.simple_axis_projection(mag_data) - pj.quiver_plot(projection) # Construct phase maps: - phase_map_ana = PhaseMap(res, phase_ana) + phase_map_ana = PhaseMap(a, phase_ana) start_time = time.time() - phase_map_fft = PhaseMap(res, pm.phase_mag_fourier(res, projection, padding, b_0)) - print 'Time for Fourier space approach: ', time.time() - start_time + phase_map_fft = PhaseMap(a, pm.phase_mag_fourier(a, projection, padding, b_0)) + print 'Time for Fourier space approach: ', time.time() - start_time start_time = time.time() - phase_map_slab = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab', b_0)) - print 'Time for real space approach (Slab): ', time.time() - start_time + phase_map_slab = PhaseMap(a, pm.phase_mag_real(a, projection, b_0, 'slab')) + print 'Time for real space approach (Slab): ', time.time() - start_time start_time = time.time() - phase_map_disc = PhaseMap(res, pm.phase_mag_real(res, projection, 'disc', b_0)) - print 'Time for real space approach (Disc): ', time.time() - start_time + phase_map_disc = PhaseMap(a, pm.phase_mag_real(a, projection, b_0, 'disc')) + print 'Time for real space approach (Disc): ', time.time() - start_time start_time = time.time() - phase_map_slab_conv = PhaseMap(res, pm.phase_mag_real_conv(res, projection, 'slab', b_0)) - print 'Time for real space approach (Slab Conv):', time.time() - start_time + kernel = Kernel(np.shape(projection[0]), a, b_0, 'slab') + phase_map_slab_conv = PhaseMap(a, pm.phase_mag(a, projection, b_0, kernel)) + print 'Time for real space approach (Slab Conv): ', time.time() - start_time start_time = time.time() - phase_map_disc_conv = PhaseMap(res, pm.phase_mag_real_conv(res, projection,'disc', b_0)) - print 'Time for real space approach (Disc Conv):', time.time() - start_time -# start_time = time.time() - u_kern_f = pm.get_kernel_fourier('slab', 'u', np.shape(projection[0]), res, b_0) - v_kern_f = pm.get_kernel_fourier('slab', 'v', np.shape(projection[0]), res, b_0) -# print 'Time for kernel (Slab):', time.time() - start_time + phase_map_disc_conv = PhaseMap(a, pm.phase_mag(a, projection, b_0)) + print 'Time for real space approach (Disc Conv): ', time.time() - start_time start_time = time.time() - phase = pm.phase_mag_real_fast(res, projection, (v_kern_f, u_kern_f), b_0) - phase_map_slab_fast = PhaseMap(res, phase) - print 'Time for real space approach (Slab Fast):', time.time() - start_time -# start_time = time.time() - u_kern_f = pm.get_kernel_fourier('disc', 'u', np.shape(projection[0]), res, b_0) - v_kern_f = pm.get_kernel_fourier('disc', 'v', np.shape(projection[0]), res, b_0) -# print 'Time for kernel (Disc):', time.time() - start_time + kernel = Kernel(np.shape(projection[0]), a, b_0, 'slab') + print 'Time for kernel (Slab): ', time.time() - start_time start_time = time.time() - phase = pm.phase_mag_real_fast(res, projection, (v_kern_f, u_kern_f), b_0) - phase_map_disc_fast = PhaseMap(res, phase) - print 'Time for real space approach (Disc Fast):', time.time() - start_time + phase_map_slab_fast = PhaseMap(a, pm.phase_mag(a, projection, b_0, kernel)) + print 'Time for real space approach (Slab, no kernel):', time.time() - start_time + start_time = time.time() + kernel = Kernel(np.shape(projection[0]), a, b_0) + print 'Time for kernel (Disc): ', time.time() - start_time + start_time = time.time() + phase_map_disc_fast = PhaseMap(a, pm.phase_mag(a, projection, b_0, kernel)) + print 'Time for real space approach (Disc, no kernel):', time.time() - start_time # Display the combinated plots with phasemap and holography image: hi.display_combined(phase_map_ana, density, 'Analytic Solution') hi.display_combined(phase_map_fft, density, 'Fourier Space') @@ -101,11 +98,11 @@ def compare_methods(): hi.display_combined(phase_map_slab_fast, density, 'Real Space (Slab Fast)') hi.display_combined(phase_map_disc_fast, density, 'Real Space (Disc Disc)') # Plot differences to the analytic solution: - phase_map_diff_fft = PhaseMap(res, phase_map_ana.phase-phase_map_fft.phase) - phase_map_diff_slab = PhaseMap(res, phase_map_ana.phase-phase_map_slab.phase) - phase_map_diff_disc = PhaseMap(res, phase_map_ana.phase-phase_map_disc.phase) - phase_map_diff_slab_conv = PhaseMap(res, phase_map_ana.phase-phase_map_slab_conv.phase) - phase_map_diff_disc_conv = PhaseMap(res, phase_map_ana.phase-phase_map_disc_conv.phase) + phase_map_diff_fft = PhaseMap(a, phase_map_ana.phase-phase_map_fft.phase) + phase_map_diff_slab = PhaseMap(a, phase_map_ana.phase-phase_map_slab.phase) + phase_map_diff_disc = PhaseMap(a, phase_map_ana.phase-phase_map_disc.phase) + phase_map_diff_slab_conv = PhaseMap(a, phase_map_ana.phase-phase_map_slab_conv.phase) + phase_map_diff_disc_conv = PhaseMap(a, phase_map_ana.phase-phase_map_disc_conv.phase) RMS_fft = np.std(phase_map_diff_fft.phase) RMS_slab = np.std(phase_map_diff_slab.phase) RMS_disc = np.std(phase_map_diff_disc.phase) diff --git a/scripts/compare methods/compare_pixel_fields.py b/scripts/compare methods/compare_pixel_fields.py index a3f680504c0d7765b74d50f4ac3db6298b48dc26..b24e54a2187016ded9fe506059ba93d2fcf19fdf 100644 --- a/scripts/compare methods/compare_pixel_fields.py +++ b/scripts/compare methods/compare_pixel_fields.py @@ -1,6 +1,6 @@ #! python # -*- coding: utf-8 -*- -"""Compare the phase map of one pixel for different real space approaches.""" +"""Compare the phase map of one pixel for different approaches.""" import pdb @@ -31,7 +31,7 @@ def compare_pixel_fields(): if not os.path.exists(directory): os.makedirs(directory) # Input parameters: - res = 1.0 # in nm + a = 1.0 # in nm phi = 0 # in rad dim = (1, 64, 64) pixel = (0, int(dim[1]/2), int(dim[2]/2)) @@ -40,46 +40,46 @@ def compare_pixel_fields(): def get_fourier_kernel(): PHI_0 = 2067.83 # magnetic flux in T*nm² b_0 = 1 - coeff = - 1j * b_0 * res**2 / (2*PHI_0) - nyq = 1 / res # nyquist frequency + coeff = - 1j * b_0 * a**2 / (2*PHI_0) + nyq = 1 / a # nyquist frequency f_u = np.linspace(0, nyq/2, dim[2]/2.+1) f_v = np.linspace(-nyq/2, nyq/2, dim[1], endpoint=False) f_uu, f_vv = np.meshgrid(f_u, f_v) - phase_fft = coeff * f_vv / (f_uu**2 + f_vv**2 + 1e-30) #* (8*(res/2)**3)*np.sinc(res/2*f_uu)*np.sinc(res/2*f_vv) + phase_fft = coeff * f_vv / (f_uu**2 + f_vv**2 + 1e-30) #* (8*(a/2)**3)*np.sinc(a/2*f_uu)*np.sinc(a/2*f_vv) # Transform to real space and revert padding: phase_fft = np.fft.ifftshift(phase_fft, axes=0) phase_fft_kernel = np.fft.fftshift(np.fft.irfft2(phase_fft), axes=(0, 1)) return phase_fft_kernel # Create magnetic data, project it, get the phase map and display the holography image: - mag_data = MagData(res, mc.create_mag_dist_homog(mc.Shapes.pixel(dim, pixel), phi)) + mag_data = MagData(a, mc.create_mag_dist_homog(mc.Shapes.pixel(dim, pixel), phi)) mag_data.save_to_llg(directory + '/mag_dist_single_pixel.txt') projection = pj.simple_axis_projection(mag_data) # Kernel of a disc in real space: - phase_map_disc = PhaseMap(res, pm.phase_mag_real(res, projection, 'disc'), 'mrad') + phase_map_disc = PhaseMap(a, pm.phase_mag_real(a, projection, 'disc'), 'mrad') # phase_map_disc.display('Phase of one Pixel (Disc)', limit=limit) # Kernel of a slab in real space: - phase_map_slab = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab'), 'mrad') + phase_map_slab = PhaseMap(a, pm.phase_mag_real(a, projection, 'slab'), 'mrad') # phase_map_slab.display('Phase of one Pixel (Slab)', limit=limit) # Kernel of the Fourier method: - phase_map_fft = PhaseMap(res, pm.phase_mag_fourier(res, projection, padding=0), 'mrad') + phase_map_fft = PhaseMap(a, pm.phase_mag_fourier(a, projection, padding=0), 'mrad') phase_map_fft.display('Phase of one Pixel (Fourier)', limit=limit) # Kernel of the Fourier method, calculated directly: - phase_map_fft_kernel = PhaseMap(res, get_fourier_kernel(), 'mrad') + phase_map_fft_kernel = PhaseMap(a, get_fourier_kernel(), 'mrad') # phase_map_fft_kernel.display('Phase of one Pixel (Fourier Kernel)', limit=limit) # Kernel differences: print 'Fourier Kernel, direct and indirect method are identical:', \ np.all(phase_map_fft_kernel.phase - phase_map_fft.phase) == 0 - phase_map_diff = PhaseMap(res, phase_map_disc.phase - phase_map_fft.phase, 'mrad') + phase_map_diff = PhaseMap(a, phase_map_disc.phase - phase_map_fft.phase, 'mrad') # phase_map_diff.display('Phase difference of one Pixel (Disc - Fourier)') phase_inv_fft = np.abs(np.fft.ifftshift(np.fft.rfft2(phase_map_fft.phase), axes=0))**2 - phase_map_inv_fft = PhaseMap(res, phase_inv_fft) + phase_map_inv_fft = PhaseMap(a, phase_inv_fft) # phase_map_inv_fft.display('FT of the Phase of one Pixel (Fourier, Power)') phase_inv_disc = np.abs(np.fft.ifftshift(np.fft.rfft2(phase_map_disc.phase), axes=0))**2 - phase_map_inv_disc = PhaseMap(res, phase_inv_disc) + phase_map_inv_disc = PhaseMap(a, phase_inv_disc) # phase_map_inv_disc.display('FT of the Phase of one Pixel (Disc, Power)') import matplotlib.pyplot as plt @@ -87,7 +87,7 @@ def compare_pixel_fields(): fig = plt.figure() axis = fig.add_subplot(1, 1, 1) - x = np.linspace(-dim[1]/res/2, dim[1]/res/2-1, dim[1]) + x = np.linspace(-dim[1]/a/2, dim[1]/a/2-1, dim[1]) y_ft = phase_map_fft.phase[:, dim[1]/2] y_re = phase_map_disc.phase[:, dim[1]/2] axis.axhline(0, color='k') @@ -110,11 +110,11 @@ def compare_pixel_fields(): phase = np.fft.ifftshift(np.fft.rfft2(phase_map_fft.phase), axes=0) - nyq = 0.5 / res + nyq = 0.5 / a f_u = np.linspace(0, nyq, dim[2]/2.+1) f_v = np.linspace(-nyq, nyq, dim[1], endpoint=False) f_uu, f_vv = np.meshgrid(f_u, f_v) - kern = 4*(res/2)**2*np.sinc(f_uu*res/2)*np.sinc(f_vv*res/2) + kern = 4*(a/2)**2*np.sinc(f_uu*a/2)*np.sinc(f_vv*a/2) phase_mod = fftconvolve(phase, kern, 'same') k_ft_mod = np.abs(phase_mod)[:, 0]**2 # sincy = np.sinc((np.asarray(x)-(dim[1]/2-1))*dim[1]) diff --git a/scripts/create distributions/create_alternating_filaments.py b/scripts/create distributions/create_alternating_filaments.py index 3c4073067ae282186293f2adee2837c452a1ccbb..08e77fe9c647dd08ec6320ac98ad09bb2b3a318f 100644 --- a/scripts/create distributions/create_alternating_filaments.py +++ b/scripts/create distributions/create_alternating_filaments.py @@ -28,11 +28,11 @@ def create_alternating_filaments(): # Input parameters: filename = directory + '/mag_dist_alt_filaments.txt' dim = (1, 21, 21) # in px (z, y, x) - res = 10.0 # in nm + a = 10.0 # in nm phi = pi/2 spacing = 5 # Create empty MagData object: - mag_data = MagData(res) + mag_data = MagData(a) count = int((dim[1]-1) / spacing) + 1 for i in range(count): pos = i * spacing diff --git a/scripts/create distributions/create_core_shell_disc.py b/scripts/create distributions/create_core_shell_disc.py index 41d1231ad5378f1b51339c77abb3037e732b574c..a8720895377448ec086316acf70b43cbc93fad5e 100644 --- a/scripts/create distributions/create_core_shell_disc.py +++ b/scripts/create distributions/create_core_shell_disc.py @@ -1,3 +1,4 @@ +#! python # -*- coding: utf-8 -*- """Create a core-shell disc.""" @@ -32,7 +33,7 @@ def create_core_shell_disc(): os.makedirs(directory) # Input parameters: filename = directory + '/mag_dist_core_shell_disc.txt' - res = 1.0 # in nm + a = 1.0 # in nm density = 1 dim = (32, 32, 32) center = (dim[0]/2-0.5, int(dim[1]/2)-0.5, int(dim[2]/2)-0.5) @@ -43,7 +44,7 @@ def create_core_shell_disc(): mag_shape_core = mc.Shapes.disc(dim, center, radius_core, height) mag_shape_outer = mc.Shapes.disc(dim, center, radius_shell, height) mag_shape_shell = np.logical_xor(mag_shape_outer, mag_shape_core) - mag_data = MagData(res, mc.create_mag_dist_vortex(mag_shape_shell, magnitude=0.75)) + mag_data = MagData(a, mc.create_mag_dist_vortex(mag_shape_shell, magnitude=0.75)) mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape_core, phi=0, theta=0)) mag_data.quiver_plot('z-projection', proj_axis='z') mag_data.quiver_plot('x-projection', proj_axis='x') @@ -51,8 +52,8 @@ def create_core_shell_disc(): mag_data.save_to_llg(filename) projection_z = pj.simple_axis_projection(mag_data, axis='z') projection_x = pj.simple_axis_projection(mag_data, axis='x') - phase_map_z = PhaseMap(res, pm.phase_mag_real(res, projection_z, 'slab')) - phase_map_x = PhaseMap(res, pm.phase_mag_real(res, projection_x, 'slab')) + phase_map_z = PhaseMap(a, pm.phase_mag(a, projection_z)) + phase_map_x = PhaseMap(a, pm.phase_mag(a, projection_x)) hi.display_combined(phase_map_z, density, 'Core-Shell structure (z-projection)') phase_axis, holo_axis = hi.display_combined(phase_map_x, density, 'Core-Shell structure (x-projection)') diff --git a/scripts/create distributions/create_core_shell_sphere.py b/scripts/create distributions/create_core_shell_sphere.py index dd6c0aaba8fc8d3f805d846a26ad18bb38db7dd2..e35aef9c6256a45442ae62deb318c19a90ea6a94 100644 --- a/scripts/create distributions/create_core_shell_sphere.py +++ b/scripts/create distributions/create_core_shell_sphere.py @@ -1,3 +1,4 @@ +#! python # -*- coding: utf-8 -*- """Create a core-shell disc.""" @@ -32,7 +33,7 @@ def create_core_shell_sphere(): os.makedirs(directory) # Input parameters: filename = directory + '/mag_dist_core_shell_sphere.txt' - res = 1.0 # in nm + a = 1.0 # in nm density = 1 dim = (32, 32, 32) center = (dim[0]/2-0.5, int(dim[1]/2)-0.5, int(dim[2]/2)-0.5) @@ -43,7 +44,7 @@ def create_core_shell_sphere(): mag_shape_disc = mc.Shapes.disc(dim, center, radius_core, height=dim[0]) mag_shape_core = np.logical_and(mag_shape_sphere, mag_shape_disc) mag_shape_shell = np.logical_and(mag_shape_sphere, np.logical_not(mag_shape_core)) - mag_data = MagData(res, mc.create_mag_dist_vortex(mag_shape_shell, magnitude=0.75)) + mag_data = MagData(a, mc.create_mag_dist_vortex(mag_shape_shell, magnitude=0.75)) mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape_core, phi=0, theta=0)) mag_data.quiver_plot('z-projection', proj_axis='z') mag_data.quiver_plot('x-projection', proj_axis='x') @@ -51,8 +52,8 @@ def create_core_shell_sphere(): mag_data.save_to_llg(filename) projection_z = pj.simple_axis_projection(mag_data, axis='z') projection_x = pj.simple_axis_projection(mag_data, axis='x') - phase_map_z = PhaseMap(res, pm.phase_mag_real(res, projection_z, 'slab')) - phase_map_x = PhaseMap(res, pm.phase_mag_real(res, projection_x, 'slab')) + phase_map_z = PhaseMap(a, pm.phase_mag(a, projection_z)) + phase_map_x = PhaseMap(a, pm.phase_mag(a, projection_x)) hi.display_combined(phase_map_z, density, 'Core-Shell structure (z-projection)') phase_axis, holo_axis = hi.display_combined(phase_map_x, density, 'Core-Shell structure (x-projection)') diff --git a/scripts/create distributions/create_logo.py b/scripts/create distributions/create_logo.py index f800275d4aa7ce88d1f837e51a07a958e53c3270..fe6cde5f940dadc1f24e5ed954c4a6684a23ec64 100644 --- a/scripts/create distributions/create_logo.py +++ b/scripts/create distributions/create_logo.py @@ -27,7 +27,7 @@ def create_logo(): ''' # Input parameters: - res = 10.0 # in nm + a = 10.0 # in nm phi = -pi/2 # in rad density = 10 dim = (1, 128, 128) @@ -41,10 +41,10 @@ def create_logo(): right = np.fliplr(left) mag_shape[0, ...] = np.logical_and(np.logical_and(left, right), bottom) # Create magnetic data, project it, get the phase map and display the holography image: - mag_data = MagData(res, mc.create_mag_dist_homog(mag_shape, phi)) + mag_data = MagData(a, mc.create_mag_dist_homog(mag_shape, phi)) mag_data.quiver_plot() projection = pj.simple_axis_projection(mag_data) - phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab')) + phase_map = PhaseMap(a, pm.phase_mag(a, projection)) hi.display(hi.holo_image(phase_map, density), 'PYRAMID - LOGO', interpolation='bilinear') diff --git a/scripts/create distributions/create_multiple_samples.py b/scripts/create distributions/create_multiple_samples.py index 9590e784a2a1892e9ea9a024b08b146c73cf99a5..1236fb1efc8a9e87b962ae2605b2295bdb8ddd00 100644 --- a/scripts/create distributions/create_multiple_samples.py +++ b/scripts/create distributions/create_multiple_samples.py @@ -1,3 +1,4 @@ +#! python # -*- coding: utf-8 -*- """Create random magnetic distributions.""" @@ -30,7 +31,7 @@ def create_multiple_samples(): os.makedirs(directory) # Input parameters: filename = directory + '/mag_dist_multiple_samples.txt' - res = 10.0 # nm + a = 10.0 # nm dim = (64, 128, 128) # Slab: center = (32, 32, 32) # in px (z, y, x), index starts with 0! @@ -46,7 +47,7 @@ def create_multiple_samples(): radius = 24 # in px mag_shape_sphere = mc.Shapes.sphere(dim, center, radius) # Create empty MagData object and add magnetized objects: - mag_data = MagData(res) + mag_data = MagData(a) mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape_slab, pi/4)) mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape_disc, pi/2)) mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape_sphere, pi)) @@ -54,7 +55,7 @@ def create_multiple_samples(): mag_data.quiver_plot() mag_data.save_to_llg(filename) projection = pj.simple_axis_projection(mag_data) - phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab')) + phase_map = PhaseMap(a, pm.phase_mag(a, projection)) phase_map.display() hi.display(hi.holo_image(phase_map, 0.5)) diff --git a/scripts/create distributions/create_random_pixels.py b/scripts/create distributions/create_random_pixels.py index e6eea7ad67dda36ed75cc9b2b9e8fbe103db9ba5..570c427dd493acd4a2ca4261c94e77ce49b61bdc 100644 --- a/scripts/create distributions/create_random_pixels.py +++ b/scripts/create distributions/create_random_pixels.py @@ -1,3 +1,4 @@ +#! python # -*- coding: utf-8 -*- """Create random magnetic distributions.""" @@ -7,7 +8,6 @@ import traceback import sys import os -import numpy as np from numpy import pi import pyramid.magcreator as mc @@ -34,21 +34,21 @@ def create_random_pixels(): # Input parameters: count = 10 dim = (1, 128, 128) - res = 10 # in nm + a = 10 # in nm rnd.seed(12) # Create empty MagData object and add pixels: - mag_data = MagData(res) + mag_data = MagData(a) for i in range(count): pixel = (rnd.randrange(dim[0]), rnd.randrange(dim[1]), rnd.randrange(dim[2])) mag_shape = mc.Shapes.pixel(dim, pixel) phi = 2 * pi * rnd.random() - magnitude = 1 # TODO: rnd.random() + magnitude = 1 mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape, phi, magnitude=magnitude)) # Plot magnetic distribution, phase map and holographic contour map: mag_data.quiver_plot() mag_data.save_to_llg(filename) projection = pj.simple_axis_projection(mag_data) - phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab')) + phase_map = PhaseMap(a, pm.phase_mag(a, projection)) hi.display(hi.holo_image(phase_map, 10)) diff --git a/scripts/create distributions/create_random_slabs.py b/scripts/create distributions/create_random_slabs.py index c54b27c9635c8de05d00d8f5fe3bf0ba6a0b1520..513fcb97765336d01d67c9c97838e7fa3b87caac 100644 --- a/scripts/create distributions/create_random_slabs.py +++ b/scripts/create distributions/create_random_slabs.py @@ -1,3 +1,4 @@ +#! python # -*- coding: utf-8 -*- """Create random magnetic distributions.""" @@ -7,7 +8,6 @@ import traceback import sys import os -import numpy as np from numpy import pi import pyramid.magcreator as mc @@ -33,11 +33,11 @@ def create_random_slabs(): filename = directory + '/mag_dist_random_pixels.txt' count = 10 dim = (1, 128, 128) - res = 10 # in nm + a = 10 # in nm rnd.seed(42) w_max = 10 # Create empty MagData object and add slabs: - mag_data = MagData(res) + mag_data = MagData(a) for i in range(count): width = (1, rnd.randint(1, w_max), rnd.randint(1, w_max)) center = (rnd.randrange(int(width[0]/2), dim[0]-int(width[0]/2)), @@ -51,7 +51,7 @@ def create_random_slabs(): mag_data.quiver_plot() mag_data.save_to_llg(filename) projection = pj.simple_axis_projection(mag_data) - phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab')) + phase_map = PhaseMap(a, pm.phase_mag(a, projection)) hi.display(hi.holo_image(phase_map, 10)) diff --git a/scripts/create distributions/create_sample.py b/scripts/create distributions/create_sample.py index cfc625a49e2ea419a1a13f1b4d5a222bba81f80f..1478606ee154da4541467c9be332ff80a1e43272 100644 --- a/scripts/create distributions/create_sample.py +++ b/scripts/create distributions/create_sample.py @@ -1,3 +1,4 @@ +#! python # -*- coding: utf-8 -*- """Create magnetic distributions with simple geometries.""" @@ -26,10 +27,10 @@ def create_sample(): if not os.path.exists(directory): os.makedirs(directory) # Input parameters: - key = 'pixel' + key = 'sphere' filename = directory + '/mag_dist_' + key + '.txt' - dim = (1, 1, 5) # in px (z, y, x) - res = 1.0 # in nm + dim = (64, 64, 64) # in px (z, y, x) + a = 1.0 # in nm phi = pi/2 # Geometry parameters: center = (dim[0]/2-0.5, dim[1]/2-0.5, dim[2]/2-0.5) # in px (z, y, x), index starts with 0! @@ -51,7 +52,7 @@ def create_sample(): mag_shape = mc.Shapes.pixel(dim, pixel) # Create magnetic distribution magnitude = mc.create_mag_dist_homog(mag_shape, phi) - mag_data = MagData(res, magnitude) + mag_data = MagData(a, magnitude) mag_data.quiver_plot() mag_data.save_to_llg(filename) diff --git a/scripts/create distributions/create_vortex.py b/scripts/create distributions/create_vortex.py index 794a02b920c612c3f34e8dc7d745883880c752ce..9b6879aadd1f1f208006470d10f31aa65627bcf4 100644 --- a/scripts/create distributions/create_vortex.py +++ b/scripts/create distributions/create_vortex.py @@ -1,3 +1,4 @@ +#! python # -*- coding: utf-8 -*- """Create the Pyramid-Logo.""" @@ -30,7 +31,7 @@ def create_vortex(): os.makedirs(directory) # Input parameters: filename = directory + '/mag_dist_vortex.txt' - res = 10.0 # in nm + a = 10.0 # in nm density = 1 dim = (64, 64, 64) center = (int(dim[0]/2)-0.5, int(dim[1]/2)-0.5, int(dim[2]/2)-0.5) @@ -38,12 +39,11 @@ def create_vortex(): height = dim[0]/4 # Create magnetic shape: mag_shape = mc.Shapes.disc(dim, center, radius, height) - mag_data = MagData(res, mc.create_mag_dist_vortex(mag_shape)) + mag_data = MagData(a, mc.create_mag_dist_vortex(mag_shape)) mag_data.quiver_plot() - mag_data.quiver_plot3d() mag_data.save_to_llg(filename) projection = pj.simple_axis_projection(mag_data) - phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab')) + phase_map = PhaseMap(a, pm.phase_mag(a, projection)) hi.display_combined(phase_map, density, 'Vortex State') phase_slice = phase_map.phase[dim[1]/2, :] fig = plt.figure() diff --git a/scripts/get_jacobi_projection.py b/scripts/get_jacobi_projection.py new file mode 100644 index 0000000000000000000000000000000000000000..079c39ab40854ab769c18e05fda7dcc4ea0259a4 --- /dev/null +++ b/scripts/get_jacobi_projection.py @@ -0,0 +1,20 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Nov 29 16:45:13 2013 + +@author: Jan +""" + +import pyramid.magcreator as mc +from pyramid.magdata import MagData +import pyramid.projector as pj +from pyramid.projector import Projection + + +a = 1.0 +dim = (2, 2, 2) +px = (0, 0, 0) +mag_data = MagData(a, mc.create_mag_dist_homog(mc.Shapes.pixel(dim, px), 0)) + +proj = pj.simple_axis_projection(mag_data) + diff --git a/scripts/gui/gui_create_logo.py b/scripts/gui/gui_create_logo.py index c7b7e52a843d974a4adff3165f93946c3aa236a4..071d866f1f22fae05630fe88847f4dff04a87afc 100644 --- a/scripts/gui/gui_create_logo.py +++ b/scripts/gui/gui_create_logo.py @@ -107,7 +107,7 @@ def create_logo(dim, axis): ''' # Input parameters: - res = 10.0 # in nm + a = 10.0 # in nm phi = -pi/2 # in rad density = 10 # Create magnetic shape: @@ -120,9 +120,9 @@ def create_logo(dim, axis): right = np.fliplr(left) mag_shape[0, ...] = np.logical_and(np.logical_and(left, right), bottom) # Create magnetic data, project it, get the phase map and display the holography image: - mag_data = MagData(res, mc.create_mag_dist_homog(mag_shape, phi)) + mag_data = MagData(a, mc.create_mag_dist_homog(mag_shape, phi)) projection = pj.simple_axis_projection(mag_data) - phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab')) + phase_map = PhaseMap(a, pm.phase_mag_real(a, projection, 'slab')) hi.display(hi.holo_image(phase_map, density), 'PYRAMID - LOGO', axis) diff --git a/scripts/kernel.py b/scripts/kernel.py index 6fc4bd05ed4b3a8246bfb363a88e878778b673e4..4e0291bfa886d364f342df8b4c2f48cb91e5bd12 100644 --- a/scripts/kernel.py +++ b/scripts/kernel.py @@ -5,12 +5,14 @@ Created on Fri Sep 27 14:35:46 2013 @author: Jan """ + import numpy as np from numpy import pi import matplotlib.pyplot as plt from matplotlib.ticker import IndexLocator + N = 16 T = 1 fs = 1. / T @@ -28,7 +30,6 @@ y_ft = np.fft.fftshift(np.fft.irfft(Y)) #np.abs(np.fft.ifftshift(np.fft.rfft2(phase_map_disc.phase), axes=0))[:, 0]**2 - fig = plt.figure() axis = fig.add_subplot(1, 1, 1) axis.axhline(0, color='k') diff --git a/scripts/paper 1/ch5-0-evaluation_and_comparison.py b/scripts/paper 1/ch5-0-evaluation_and_comparison.py index 1f53da28d2bb45814db3c1444469530f93ae05e2..bdae2361b751c18660361391eae14d978f1a4d0d 100644 --- a/scripts/paper 1/ch5-0-evaluation_and_comparison.py +++ b/scripts/paper 1/ch5-0-evaluation_and_comparison.py @@ -21,7 +21,7 @@ from pyramid.magdata import MagData import matplotlib.pyplot as plt -from matplotlib.ticker import FixedFormatter, IndexLocator, LinearLocator +from matplotlib.ticker import FixedFormatter, IndexLocator def run(): @@ -60,7 +60,7 @@ def run(): else: print '--CREATE MAGNETIC DISTRIBUTIONS' # Input parameters: - res = 1.0 # in nm + a = 1.0 # in nm phi = pi/2 dim = (16, 128, 128) # in px (z, y, x) # Create magnetic shape: @@ -69,10 +69,10 @@ def run(): height = dim[0]/2 # in px mag_shape = mc.Shapes.disc(dim, center, radius, height) print '--CREATE MAGN. DISTR. OF HOMOG. MAG. DISC' - mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape, phi)) + mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape, phi)) mag_data_disc.scale_down(2) print '--CREATE MAGN. DISTR. OF VORTEX STATE DISC' - mag_data_vort = MagData(res, mc.create_mag_dist_vortex(mag_shape, center)) + mag_data_vort = MagData(a, mc.create_mag_dist_vortex(mag_shape, center)) mag_data_vort.scale_down(2) # Mayavi-Plots: mag_data_disc.quiver_plot3d() diff --git a/scripts/paper 1/ch5-1-evaluation_real_space.py b/scripts/paper 1/ch5-1-evaluation_real_space.py index 2bf7b23d18e2a3ee5e2f63f6a27d910e62e03795..babbdcbac83173d0d34f09b82c35f37221461444 100644 --- a/scripts/paper 1/ch5-1-evaluation_real_space.py +++ b/scripts/paper 1/ch5-1-evaluation_real_space.py @@ -47,7 +47,7 @@ def run(): print 'CH5-1 ANALYTIC SOLUTIONS' # Input parameters: - res = 0.125 # in nm + a = 0.125 # in nm phi = pi/2 dim = (128, 1024, 1024) # in px (z, y, x) density = 100 @@ -57,10 +57,10 @@ def run(): height = dim[0]/2 # in px print '--CALCULATE ANALYTIC SOLUTIONS' # Get analytic solution: - phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height) - phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height) - phase_map_ana_disc = PhaseMap(res, phase_ana_disc) - phase_map_ana_vort = PhaseMap(res, phase_ana_vort) + phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height) + phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height) + phase_map_ana_disc = PhaseMap(a, phase_ana_disc) + phase_map_ana_vort = PhaseMap(a, phase_ana_vort) print '--PLOT/SAVE ANALYTIC SOLUTIONS' hi.display_combined(phase_map_ana_disc, density, 'Analytic solution: hom. magn. disc', 'bilinear') @@ -85,7 +85,7 @@ def run(): print 'CH5-1 PHASE SLICES REAL SPACE' # Input parameters: - res = 0.25 # in nm + a = 0.25 # in nm phi = pi/2 density = 100 dim = (64, 512, 512) # in px (z, y, x) @@ -108,8 +108,8 @@ def run(): y_d = [] dy_d = [] # Analytic solution: - L = dim[1] * res # in px/nm - Lz = 0.5 * dim[0] * res # in px/nm + L = dim[1] * a # in px/nm + Lz = 0.5 * dim[0] * a # in px/nm R = 0.25 * L # in px/nm x0 = L / 2 # in px/nm @@ -123,16 +123,15 @@ def run(): y_d.append(F_disc(x_d[0])) dy_d.append(np.zeros_like(x_d[0])) # Create MagData (Disc): - mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape, phi)) + mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape, phi)) for i in range(5): mag_data_disc.scale_down() - print '----res =', mag_data_disc.res, 'nm', 'dim =', mag_data_disc.dim + print '----a =', mag_data_disc.a, 'nm', 'dim =', mag_data_disc.dim projection = pj.simple_axis_projection(mag_data_disc) - phase_map = PhaseMap(mag_data_disc.res, - pm.phase_mag_real(mag_data_disc.res, projection, 'slab')) - hi.display_combined(phase_map, density, 'Disc, res = {} nm'.format(mag_data_disc.res)) - x_d.append(np.linspace(mag_data_disc.res * 0.5, - mag_data_disc.res * (mag_data_disc.dim[1]-0.5), + phase_map = PhaseMap(mag_data_disc.a, pm.phase_mag(mag_data_disc.a, projection)) + hi.display_combined(phase_map, density, 'Disc, a = {} nm'.format(mag_data_disc.a)) + x_d.append(np.linspace(mag_data_disc.a * 0.5, + mag_data_disc.a * (mag_data_disc.dim[1]-0.5), mag_data_disc.dim[1])) slice_pos = int(mag_data_disc.dim[1]/2) y_d.append(phase_map.phase[slice_pos, :]*1E3) # *1E3: rad to mrad @@ -143,8 +142,8 @@ def run(): y_v = [] dy_v = [] # Analytic solution: - L = dim[1] * res # in px/nm - Lz = 0.5 * dim[0] * res # in px/nm + L = dim[1] * a # in px/nm + Lz = 0.5 * dim[0] * a # in px/nm R = 0.25 * L # in px/nm x0 = L / 2 # in px/nm @@ -157,16 +156,15 @@ def run(): y_v.append(F_vort(x_v[0])) dy_v.append(np.zeros_like(x_v[0])) # Create MagData (Vortex): - mag_data_vort = MagData(res, mc.create_mag_dist_vortex(mag_shape)) + mag_data_vort = MagData(a, mc.create_mag_dist_vortex(mag_shape)) for i in range(5): mag_data_vort.scale_down() - print '----res =', mag_data_vort.res, 'nm', 'dim =', mag_data_vort.dim + print '----a =', mag_data_vort.a, 'nm', 'dim =', mag_data_vort.dim projection = pj.simple_axis_projection(mag_data_vort) - phase_map = PhaseMap(mag_data_vort.res, - pm.phase_mag_real(mag_data_vort.res, projection, 'slab')) - hi.display_combined(phase_map, density, 'Disc, res = {} nm'.format(mag_data_vort.res)) - x_v.append(np.linspace(mag_data_vort.res * 0.5, - mag_data_vort.res * (mag_data_vort.dim[1]-0.5), + phase_map = PhaseMap(mag_data_vort.a, pm.phase_mag(mag_data_vort.a, projection)) + hi.display_combined(phase_map, density, 'Disc, a = {} nm'.format(mag_data_vort.a)) + x_v.append(np.linspace(mag_data_vort.a * 0.5, + mag_data_vort.a * (mag_data_vort.dim[1]-0.5), mag_data_vort.dim[1])) slice_pos = int(mag_data_vort.dim[1]/2) y_v.append(phase_map.phase[slice_pos, :]*1E3) # *1E3: rad to mrad @@ -296,7 +294,7 @@ def run(): print 'CH5-1 PHASE DIFFERENCES REAL SPACE' # Input parameters: - res = 1.0 # in nm + a = 1.0 # in nm phi = pi/2 dim = (16, 128, 128) # in px (z, y, x) center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z, y, x) index starts with 0! @@ -310,16 +308,16 @@ def run(): else: print '--CREATE MAGNETIC DISTRIBUTIONS' # Create magnetic shape (4 times the size): - res_big = res / 2 + a_big = a / 2 dim_big = (dim[0]*2, dim[1]*2, dim[2]*2) center_big = (dim_big[0]/2-0.5, dim_big[1]/2.-0.5, dim_big[2]/2.-0.5) radius_big = dim_big[1]/4 # in px height_big = dim_big[0]/2 # in px mag_shape = mc.Shapes.disc(dim_big, center_big, radius_big, height_big) # Create MagData (4 times the size): - mag_data_disc = MagData(res_big, mc.create_mag_dist_homog(mag_shape, phi)) - mag_data_vort = MagData(res_big, mc.create_mag_dist_vortex(mag_shape, center_big)) - # Scale mag_data, resolution and dimensions: + mag_data_disc = MagData(a_big, mc.create_mag_dist_homog(mag_shape, phi)) + mag_data_vort = MagData(a_big, mc.create_mag_dist_vortex(mag_shape, center_big)) + # Scale mag_data, grid spacing and dimensions: mag_data_disc.scale_down() mag_data_vort.scale_down() print '--SAVE MAGNETIC DISTRIBUTIONS' @@ -331,18 +329,18 @@ def run(): projection_disc = pj.simple_axis_projection(mag_data_disc) projection_vort = pj.simple_axis_projection(mag_data_vort) # Get analytic solutions: - phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height) - phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height) + phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height) + phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height) # Create norm for the plots: bounds = np.array([-3, -0.5, -0.25, -0.1, 0, 0.1, 0.25, 0.5, 3]) norm = BoundaryNorm(bounds, RdBu.N) # Calculations (Disc): - phase_num_disc = pm.phase_mag_real(res, projection_disc, 'slab') - phase_diff_disc = PhaseMap(res, (phase_num_disc-phase_ana_disc), 'mrad') + phase_num_disc = pm.phase_mag(a, projection_disc) + phase_diff_disc = PhaseMap(a, (phase_num_disc-phase_ana_disc), 'mrad') RMS_disc = np.sqrt(np.mean(phase_diff_disc.phase**2)) # Calculations (Vortex): - phase_num_vort = pm.phase_mag_real(res, projection_vort, 'slab') - phase_diff_vort = PhaseMap(res, (phase_num_vort-phase_ana_vort), 'mrad') + phase_num_vort = pm.phase_mag(a, projection_vort) + phase_diff_vort = PhaseMap(a, (phase_num_vort-phase_ana_vort), 'mrad') RMS_vort = np.sqrt(np.mean(phase_diff_vort.phase**2)) print '--PLOT/SAVE PHASE DIFFERENCES' diff --git a/scripts/paper 1/ch5-2-evaluation_fourier_space.py b/scripts/paper 1/ch5-2-evaluation_fourier_space.py index 13f4e2f03146556e545ec8c0231a18ca83845309..4a1ef4596f874aaf1cb39fb8d9be64a597f09651 100644 --- a/scripts/paper 1/ch5-2-evaluation_fourier_space.py +++ b/scripts/paper 1/ch5-2-evaluation_fourier_space.py @@ -47,7 +47,7 @@ def run(): print 'CH5-1 PHASE SLICES FOURIER SPACE' # Input parameters: - res = 0.25 # in nm + a = 0.25 # in nm phi = pi/2 density = 100 dim = (64, 512, 512) # in px (z, y, x) @@ -72,8 +72,8 @@ def run(): dy_d0 = [] dy_d10 = [] # Analytic solution: - L = dim[1] * res # in px/nm - Lz = 0.5 * dim[0] * res # in px/nm + L = dim[1] * a # in px/nm + Lz = 0.5 * dim[0] * a # in px/nm R = 0.25 * L # in px/nm x0 = L / 2 # in px/nm @@ -89,23 +89,23 @@ def run(): dy_d0.append(np.zeros_like(x_d[0])) dy_d10.append(np.zeros_like(x_d[0])) # Create MagData (Disc): - mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape, phi)) + mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape, phi)) for i in range(5): mag_data_disc.scale_down() - print '----res =', mag_data_disc.res, 'nm', 'dim =', mag_data_disc.dim + print '----a =', mag_data_disc.a, 'nm', 'dim =', mag_data_disc.dim projection = pj.simple_axis_projection(mag_data_disc) - phase_map0 = PhaseMap(mag_data_disc.res, - pm.phase_mag_fourier(mag_data_disc.res, projection, + phase_map0 = PhaseMap(mag_data_disc.a, + pm.phase_mag_fourier(mag_data_disc.a, projection, padding=0), 'mrad') - phase_map10 = PhaseMap(mag_data_disc.res, - pm.phase_mag_fourier(mag_data_disc.res, projection, + phase_map10 = PhaseMap(mag_data_disc.a, + pm.phase_mag_fourier(mag_data_disc.a, projection, padding=10), 'mrad') hi.display_combined(phase_map0, density, - 'Disc, res = {} nm'.format(mag_data_disc.res)) + 'Disc, a = {} nm'.format(mag_data_disc.a)) hi.display_combined(phase_map10, density, - 'Disc, res = {} nm'.format(mag_data_disc.res)) - x_d.append(np.linspace(mag_data_disc.res * 0.5, - mag_data_disc.res * (mag_data_disc.dim[1]-0.5), + 'Disc, a = {} nm'.format(mag_data_disc.a)) + x_d.append(np.linspace(mag_data_disc.a * 0.5, + mag_data_disc.a * (mag_data_disc.dim[1]-0.5), mag_data_disc.dim[1])) slice_pos = int(mag_data_disc.dim[1]/2) y_d0.append(phase_map0.phase[slice_pos, :]*1E3) # *1E3: rad to mrad @@ -120,8 +120,8 @@ def run(): dy_v0 = [] dy_v10 = [] # Analytic solution: - L = dim[1] * res # in px/nm - Lz = 0.5 * dim[0] * res # in px/nm + L = dim[1] * a # in px/nm + Lz = 0.5 * dim[0] * a # in px/nm R = 0.25 * L # in px/nm x0 = L / 2 # in px/nm @@ -136,23 +136,23 @@ def run(): dy_v0.append(np.zeros_like(x_v[0])) dy_v10.append(np.zeros_like(x_v[0])) # Create MagData (Vortex): - mag_data_vort = MagData(res, mc.create_mag_dist_vortex(mag_shape)) + mag_data_vort = MagData(a, mc.create_mag_dist_vortex(mag_shape)) for i in range(5): mag_data_vort.scale_down() - print '----res =', mag_data_vort.res, 'nm', 'dim =', mag_data_vort.dim + print '----a =', mag_data_vort.a, 'nm', 'dim =', mag_data_vort.dim projection = pj.simple_axis_projection(mag_data_vort) - phase_map0 = PhaseMap(mag_data_vort.res, - pm.phase_mag_fourier(mag_data_vort.res, projection, + phase_map0 = PhaseMap(mag_data_vort.a, + pm.phase_mag_fourier(mag_data_vort.a, projection, padding=0), 'mrad') - phase_map10 = PhaseMap(mag_data_vort.res, - pm.phase_mag_fourier(mag_data_vort.res, projection, + phase_map10 = PhaseMap(mag_data_vort.a, + pm.phase_mag_fourier(mag_data_vort.a, projection, padding=10), 'mrad') hi.display_combined(phase_map0, density, - 'Disc, res = {} nm'.format(mag_data_vort.res)) + 'Disc, a = {} nm'.format(mag_data_vort.a)) hi.display_combined(phase_map10, density, - 'Disc, res = {} nm'.format(mag_data_vort.res)) - x_v.append(np.linspace(mag_data_vort.res * 0.5, - mag_data_vort.res * (mag_data_vort.dim[1]-0.5), + 'Disc, a = {} nm'.format(mag_data_vort.a)) + x_v.append(np.linspace(mag_data_vort.a * 0.5, + mag_data_vort.a * (mag_data_vort.dim[1]-0.5), mag_data_vort.dim[1])) slice_pos = int(mag_data_vort.dim[1]/2) y_v0.append(phase_map0.phase[slice_pos, :]*1E3) # *1E3: rad to mrad @@ -400,7 +400,7 @@ def run(): print 'CH5-2 PHASE DIFFERENCES FOURIER SPACE' # Input parameters: - res = 1.0 # in nm + a = 1.0 # in nm phi = pi/2 dim = (16, 128, 128) # in px (z, y, x) center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z, y, x) index starts with 0! @@ -414,16 +414,16 @@ def run(): else: print '--CREATE MAGNETIC DISTRIBUTIONS' # Create magnetic shape (4 times the size): - res_big = res / 2 + a_big = a / 2 dim_big = (dim[0]*2, dim[1]*2, dim[2]*2) center_big = (dim_big[0]/2-0.5, dim_big[1]/2.-0.5, dim_big[2]/2.-0.5) radius_big = dim_big[1]/4 # in px height_big = dim_big[0]/2 # in px mag_shape = mc.Shapes.disc(dim_big, center_big, radius_big, height_big) # Create MagData (4 times the size): - mag_data_disc = MagData(res_big, mc.create_mag_dist_homog(mag_shape, phi)) - mag_data_vort = MagData(res_big, mc.create_mag_dist_vortex(mag_shape, center_big)) - # Scale mag_data, resolution and dimensions: + mag_data_disc = MagData(a_big, mc.create_mag_dist_homog(mag_shape, phi)) + mag_data_vort = MagData(a_big, mc.create_mag_dist_vortex(mag_shape, center_big)) + # Scale mag_data, grid spacing and dimensions: mag_data_disc.scale_down() mag_data_vort.scale_down() print '--SAVE MAGNETIC DISTRIBUTIONS' @@ -435,8 +435,8 @@ def run(): projection_disc = pj.simple_axis_projection(mag_data_disc) projection_vort = pj.simple_axis_projection(mag_data_vort) # Get analytic solutions: - phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height) - phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height) + phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height) + phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height) # Create figure: fig, axes = plt.subplots(1, 2, figsize=(16, 7)) @@ -445,15 +445,15 @@ def run(): bounds = np.array([-100, -50, -25, -5, 0, 5, 25, 50, 100]) norm = BoundaryNorm(bounds, RdBu.N) # Disc: - phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=0) - phase_diff_disc = PhaseMap(res, (phase_num_disc-phase_ana_disc), 'mrad') + phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=0) + phase_diff_disc = PhaseMap(a, (phase_num_disc-phase_ana_disc), 'mrad') RMS_disc = np.sqrt(np.mean(phase_diff_disc.phase**2)) phase_diff_disc.display('Homog. magn. disc, RMS = {:3.2f} mrad'.format(RMS_disc), axis=axes[0], limit=np.max(bounds), norm=norm) axes[0].set_aspect('equal') # Vortex: - phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=0) - phase_diff_vort = PhaseMap(res, (phase_num_vort-phase_ana_vort), 'mrad') + phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=0) + phase_diff_vort = PhaseMap(a, (phase_num_vort-phase_ana_vort), 'mrad') RMS_vort = np.sqrt(np.mean(phase_diff_vort.phase**2)) phase_diff_vort.display('Vortex state disc, RMS = {:3.2f} mrad'.format(RMS_vort), axis=axes[1], limit=np.max(bounds), norm=norm) @@ -471,15 +471,15 @@ def run(): bounds = np.array([-3, -0.5, -0.25, -0.1, 0, 0.1, 0.25, 0.5, 3]) norm = BoundaryNorm(bounds, RdBu.N) # Disc: - phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=10) - phase_diff_disc = PhaseMap(res, (phase_num_disc-phase_ana_disc), 'mrad') + phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=10) + phase_diff_disc = PhaseMap(a, (phase_num_disc-phase_ana_disc), 'mrad') RMS_disc = np.sqrt(np.mean(phase_diff_disc.phase**2)) phase_diff_disc.display('Homog. magn. disc, RMS = {:3.2f} mrad'.format(RMS_disc), axis=axes[0], limit=np.max(bounds), norm=norm) axes[0].set_aspect('equal') # Vortex: - phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=10) - phase_diff_vort = PhaseMap(res, (phase_num_vort-phase_ana_vort), 'mrad') + phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=10) + phase_diff_vort = PhaseMap(a, (phase_num_vort-phase_ana_vort), 'mrad') RMS_vort = np.sqrt(np.mean(phase_diff_vort.phase**2)) phase_diff_vort.display('Vortex state disc, RMS = {:3.2f} mrad'.format(RMS_vort), axis=axes[1], limit=np.max(bounds), norm=norm) @@ -494,7 +494,7 @@ def run(): print 'CH5-2 FOURIER PADDING VARIATION' # Input parameters: - res = 1.0 # in nm + a = 1.0 # in nm phi = pi/2 dim = (16, 128, 128) # in px (z, y, x) center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z, y, x) index starts with 0! @@ -508,16 +508,16 @@ def run(): else: print '--CREATE MAGNETIC DISTRIBUTIONS' # Create magnetic shape (4 times the size): - res_big = res / 2 + a_big = a / 2 dim_big = (dim[0]*2, dim[1]*2, dim[2]*2) center_big = (dim_big[0]/2-0.5, dim_big[1]/2.-0.5, dim_big[2]/2.-0.5) radius_big = dim_big[1]/4 # in px height_big = dim_big[0]/2 # in px mag_shape = mc.Shapes.disc(dim_big, center_big, radius_big, height_big) # Create MagData (4 times the size): - mag_data_disc = MagData(res_big, mc.create_mag_dist_homog(mag_shape, phi)) - mag_data_vort = MagData(res_big, mc.create_mag_dist_vortex(mag_shape, center_big)) - # Scale mag_data, resolution and dimensions: + mag_data_disc = MagData(a_big, mc.create_mag_dist_homog(mag_shape, phi)) + mag_data_vort = MagData(a_big, mc.create_mag_dist_vortex(mag_shape, center_big)) + # Scale mag_data, grid spacing and dimensions: mag_data_disc.scale_down() mag_data_vort.scale_down() print '--SAVE MAGNETIC DISTRIBUTIONS' @@ -528,8 +528,8 @@ def run(): projection_disc = pj.simple_axis_projection(mag_data_disc) projection_vort = pj.simple_axis_projection(mag_data_vort) # Get analytic solutions: - phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height) - phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height) + phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height) + phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height) # List of applied paddings: padding_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] @@ -539,16 +539,16 @@ def run(): data_disc[0, :] = padding_list for (i, padding) in enumerate(padding_list): key = ', '.join(['Padding->RMS|duration', 'Fourier', 'padding={}'.format(padding_list[i]), - 'res={}'.format(res), 'dim={}'.format(dim), 'phi={}'.format(phi), 'disc']) + 'a={}'.format(a), 'dim={}'.format(dim), 'phi={}'.format(phi), 'disc']) if key in data_shelve: data_disc[:, i] = data_shelve[key] else: print '----calculate and save padding =', padding_list[i] start_time = time.time() - phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding_list[i]) + phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding_list[i]) data_disc[2, i] = time.time() - start_time phase_diff = (phase_num_disc-phase_ana_disc) - phase_map_diff = PhaseMap(res, phase_diff, 'mrad') + phase_map_diff = PhaseMap(a, phase_diff, 'mrad') phase_map_diff.display() data_disc[1, i] = np.sqrt(np.mean(phase_map_diff.phase**2))*1E3 # *1E3: rad to mraddd data_shelve[key] = data_disc[:, i] @@ -580,7 +580,7 @@ def run(): axes[1].set_xlabel('padding', fontsize=15) axes[1].set_ylabel('duration [s]', fontsize=15) axes[1].set_xlim(-0.5, 16.5) - axes[1].set_ylim(-0.05, 1.5) + axes[1].set_ylim(-0.05, 3) axes[1].xaxis.set_major_locator(MaxNLocator(nbins=10, integer=True)) axes[1].yaxis.set_major_locator(MaxNLocator(nbins=10)) axes[1].tick_params(axis='both', which='major', labelsize=14) @@ -595,16 +595,16 @@ def run(): data_vort[0, :] = padding_list for (i, padding) in enumerate(padding_list): key = ', '.join(['Padding->RMS|duration', 'Fourier', 'padding={}'.format(padding_list[i]), - 'res={}'.format(res), 'dim={}'.format(dim), 'phi={}'.format(phi), 'vort']) + 'a={}'.format(a), 'dim={}'.format(dim), 'phi={}'.format(phi), 'vort']) if key in data_shelve: data_vort[:, i] = data_shelve[key] else: print '----calculate and save padding =', padding_list[i] start_time = time.time() - phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding_list[i]) + phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding_list[i]) data_vort[2, i] = time.time() - start_time phase_diff = (phase_num_vort-phase_ana_vort) - phase_map_diff = PhaseMap(res, phase_diff, 'mrad') + phase_map_diff = PhaseMap(a, phase_diff, 'mrad') phase_map_diff.display() data_vort[1, i] = np.sqrt(np.mean(phase_map_diff.phase**2))*1E3 # *1E3: rad to mrad data_shelve[key] = data_vort[:, i] @@ -636,7 +636,7 @@ def run(): axes[1].set_xlabel('padding', fontsize=15) axes[1].set_ylabel('duration [s]', fontsize=15) axes[1].set_xlim(-0.5, 16.5) - axes[1].set_ylim(-0.05, 1.5) + axes[1].set_ylim(-0.05, 3) axes[1].xaxis.set_major_locator(MaxNLocator(nbins=10, integer=True)) axes[1].yaxis.set_major_locator(MaxNLocator(nbins=10)) axes[1].tick_params(axis='both', which='major', labelsize=14) diff --git a/scripts/paper 1/ch5-3-comparison_of_methods.py b/scripts/paper 1/ch5-3-comparison_of_methods.py index 7ba66098201465433c58a20d551eee4eda1b2a6c..6d230f049699fe388d30d5c117f6512aa225f03e 100644 --- a/scripts/paper 1/ch5-3-comparison_of_methods.py +++ b/scripts/paper 1/ch5-3-comparison_of_methods.py @@ -50,7 +50,7 @@ def run(): else: # Input parameters: steps = 6 - res = 0.25 # in nm + a = 0.25 # in nm phi = pi/2 dim = (64, 512, 512) # in px (z, y, x) center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z, y, x) index starts at 0! @@ -61,44 +61,44 @@ def run(): mag_shape = mc.Shapes.disc(dim, center, radius, height) # Create MagData (4 times the size): print '--CREATE MAG. DIST. HOMOG. MAGN. DISC' - mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape, phi)) + mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape, phi)) print '--CREATE MAG. DIST. VORTEX STATE DISC' - mag_data_vort = MagData(res, mc.create_mag_dist_vortex(mag_shape, center)) + mag_data_vort = MagData(a, mc.create_mag_dist_vortex(mag_shape, center)) # Create Data Arrays: - res_list = [res*2**i for i in np.linspace(1, steps, steps)] - data_disc_fourier0 = np.vstack((res_list, np.zeros((2, steps)))) - data_vort_fourier0 = np.vstack((res_list, np.zeros((2, steps)))) - data_disc_fourier1 = np.vstack((res_list, np.zeros((2, steps)))) - data_vort_fourier1 = np.vstack((res_list, np.zeros((2, steps)))) - data_disc_fourier10 = np.vstack((res_list, np.zeros((2, steps)))) - data_vort_fourier10 = np.vstack((res_list, np.zeros((2, steps)))) - data_disc_real_s = np.vstack((res_list, np.zeros((2, steps)))) - data_vort_real_s = np.vstack((res_list, np.zeros((2, steps)))) - data_disc_real_d = np.vstack((res_list, np.zeros((2, steps)))) - data_vort_real_d = np.vstack((res_list, np.zeros((2, steps)))) + a_list = [a*2**i for i in np.linspace(1, steps, steps)] + data_disc_fourier0 = np.vstack((a_list, np.zeros((2, steps)))) + data_vort_fourier0 = np.vstack((a_list, np.zeros((2, steps)))) + data_disc_fourier1 = np.vstack((a_list, np.zeros((2, steps)))) + data_vort_fourier1 = np.vstack((a_list, np.zeros((2, steps)))) + data_disc_fourier10 = np.vstack((a_list, np.zeros((2, steps)))) + data_vort_fourier10 = np.vstack((a_list, np.zeros((2, steps)))) + data_disc_real_s = np.vstack((a_list, np.zeros((2, steps)))) + data_vort_real_s = np.vstack((a_list, np.zeros((2, steps)))) + data_disc_real_d = np.vstack((a_list, np.zeros((2, steps)))) + data_vort_real_d = np.vstack((a_list, np.zeros((2, steps)))) for i in range(steps): - # Scale mag_data, resolution and dimensions: + # Scale mag_data, grid spacing and dimensions: mag_data_disc.scale_down() mag_data_vort.scale_down() dim = mag_data_disc.dim - res = mag_data_disc.res + a = mag_data_disc.a center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px, index starts at 0! radius = dim[1]/4 # in px height = dim[0]/2 # in px - print '--res =', res, 'nm', 'dim =', dim + print '--a =', a, 'nm', 'dim =', dim print '----CALCULATE RMS/DURATION HOMOG. MAGN. DISC' # Create projections along z-axis: projection_disc = pj.simple_axis_projection(mag_data_disc) # Analytic solution: - phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height) + phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height) # Fourier unpadded: padding = 0 start_time = time.clock() - phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding) + phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding) data_disc_fourier0[2, i] = time.clock() - start_time print '------time (disc, fourier0) =', data_disc_fourier0[2, i] phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3 # in mrad -> *1000 @@ -106,7 +106,7 @@ def run(): # Fourier padding 1: padding = 1 start_time = time.clock() - phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding) + phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding) data_disc_fourier1[2, i] = time.clock() - start_time print '------time (disc, fourier1) =', data_disc_fourier1[2, i] phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3 # in mrad -> *1000 @@ -114,35 +114,35 @@ def run(): # Fourier padding 10: padding = 10 start_time = time.clock() - phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding) + phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding) data_disc_fourier10[2, i] = time.clock() - start_time print '------time (disc, fourier10) =', data_disc_fourier10[2, i] phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3 # in mrad -> *1000 data_disc_fourier10[1, i] = np.sqrt(np.mean(phase_diff_disc**2)) # Real space slab: start_time = time.clock() - phase_num_disc = pm.phase_mag_real(res, projection_disc, 'slab') + phase_num_disc = pm.phase_mag_real(a, projection_disc, geometry='slab') data_disc_real_s[2, i] = time.clock() - start_time print '------time (disc, real slab) =', data_disc_real_s[2, i] phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3 # in mrad -> *1000 data_disc_real_s[1, i] = np.sqrt(np.mean(phase_diff_disc**2)) # Real space disc: start_time = time.clock() - phase_num_disc = pm.phase_mag_real(res, projection_disc, 'disc') + phase_num_disc = pm.phase_mag_real(a, projection_disc, geometry='disc') data_disc_real_d[2, i] = time.clock() - start_time print '------time (disc, real disc) =', data_disc_real_d[2, i] phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3 # in mrad -> *1000 data_disc_real_d[1, i] = np.sqrt(np.mean(phase_diff_disc**2)) - print '----CALCULATE RMS/DURATION HOMOG. MAGN. DISC' + print '----CALCULATE RMS/DURATION VORTEX STATE DISC' # Create projections along z-axis: projection_vort = pj.simple_axis_projection(mag_data_vort) # Analytic solution: - phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height) + phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height) # Fourier unpadded: padding = 0 start_time = time.clock() - phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding) + phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding) data_vort_fourier0[2, i] = time.clock() - start_time print '------time (vortex, fourier0) =', data_vort_fourier0[2, i] phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3 # in mrad -> *1000 @@ -150,7 +150,7 @@ def run(): # Fourier padding 1: padding = 1 start_time = time.clock() - phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding) + phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding) data_vort_fourier1[2, i] = time.clock() - start_time print '------time (vortex, fourier1) =', data_vort_fourier1[2, i] phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3 # in mrad -> *1000 @@ -158,21 +158,21 @@ def run(): # Fourier padding 10: padding = 10 start_time = time.clock() - phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding) + phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding) data_vort_fourier10[2, i] = time.clock() - start_time print '------time (vortex, fourier10) =', data_vort_fourier10[2, i] phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3 # in mrad -> *1000 data_vort_fourier10[1, i] = np.sqrt(np.mean(phase_diff_vort**2)) # Real space slab: start_time = time.clock() - phase_num_vort = pm.phase_mag_real(res, projection_vort, 'slab') + phase_num_vort = pm.phase_mag_real(a, projection_vort, geometry='slab') data_vort_real_s[2, i] = time.clock() - start_time print '------time (vortex, real slab) =', data_vort_real_s[2, i] phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3 # in mrad -> *1000 data_vort_real_s[1, i] = np.sqrt(np.mean(phase_diff_vort**2)) # Real space disc: start_time = time.clock() - phase_num_vort = pm.phase_mag_real(res, projection_vort, 'disc') + phase_num_vort = pm.phase_mag_real(a, projection_vort, geometry='disc') data_vort_real_d[2, i] = time.clock() - start_time print '------time (vortex, real disc) =', data_vort_real_d[2, i] phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3 # in mrad -> *1000 @@ -192,20 +192,20 @@ def run(): fig.tight_layout(rect=(0.05, 0.05, 0.95, 0.95)) fig.suptitle('Method Comparison', fontsize=20) - # Plot duration against res (disc) [top/left]: + # Plot duration against a (disc) [top/left]: axes[1, 0].set_yscale('log') axes[1, 0].plot(data_disc_fourier0[0], data_disc_fourier0[1], ':bs') axes[1, 0].plot(data_disc_fourier1[0], data_disc_fourier1[1], ':bo') axes[1, 0].plot(data_disc_fourier10[0], data_disc_fourier10[1], ':b^') axes[1, 0].plot(data_disc_real_s[0], data_disc_real_s[1], '--rs') axes[1, 0].plot(data_disc_real_d[0], data_disc_real_d[1], '--ro') - axes[1, 0].set_xlabel('res [nm]', fontsize=15) + axes[1, 0].set_xlabel('a [nm]', fontsize=15) axes[1, 0].set_ylabel('RMS [mrad]', fontsize=15) axes[1, 0].set_xlim(-0.5, 16.5) axes[1, 0].tick_params(axis='both', which='major', labelsize=14) axes[1, 0].xaxis.set_major_locator(IndexLocator(base=4, offset=-0.5)) - # Plot RMS against res (disc) [bottom/left]: + # Plot RMS against a (disc) [bottom/left]: plt.tick_params(axis='both', which='major', labelsize=14) axes[0, 0].set_yscale('log') axes[0, 0].plot(data_disc_fourier0[0], data_disc_fourier0[2], ':bs') @@ -219,19 +219,19 @@ def run(): axes[0, 0].tick_params(axis='both', which='major', labelsize=14) axes[0, 0].xaxis.set_major_locator(IndexLocator(base=4, offset=-0.5)) - # Plot duration against res (vortex) [top/right]: + # Plot duration against a (vortex) [top/right]: axes[1, 1].set_yscale('log') axes[1, 1].plot(data_vort_fourier0[0], data_vort_fourier0[1], ':bs') axes[1, 1].plot(data_vort_fourier1[0], data_vort_fourier1[1], ':bo') axes[1, 1].plot(data_vort_fourier10[0], data_vort_fourier10[1], ':b^') axes[1, 1].plot(data_vort_real_s[0], data_vort_real_s[1], '--rs') axes[1, 1].plot(data_vort_real_d[0], data_vort_real_d[1], '--ro') - axes[1, 1].set_xlabel('res [nm]', fontsize=15) + axes[1, 1].set_xlabel('a [nm]', fontsize=15) axes[1, 1].set_xlim(-0.5, 16.5) axes[1, 1].tick_params(axis='both', which='major', labelsize=14) axes[1, 1].xaxis.set_major_locator(IndexLocator(base=4, offset=-0.5)) - # Plot RMS against res (vortex) [bottom/right]: + # Plot RMS against a (vortex) [bottom/right]: axes[0, 1].set_yscale('log') axes[0, 1].plot(data_vort_fourier0[0], data_vort_fourier0[2], ':bs', label='Fourier padding=0') diff --git a/scripts/paper 1/ch5-4-comparison_of_methods_new.py b/scripts/paper 1/ch5-4-comparison_of_methods_new.py index b99f7646387ce0a346d9671bf1ab0b9b4e14f07a..6be62fcf7f172aaf5c53b626f1bdc66ec6a69775 100644 --- a/scripts/paper 1/ch5-4-comparison_of_methods_new.py +++ b/scripts/paper 1/ch5-4-comparison_of_methods_new.py @@ -24,6 +24,7 @@ import pyramid.projector as pj import pyramid.phasemapper as pm import pyramid.analytic as an from pyramid.magdata import MagData +from pyramid.kernel import Kernel import shelve @@ -50,7 +51,7 @@ def run(): else: # Input parameters: steps = 5 - res = 0.25 # in nm + a = 0.25 # in nm phi = pi/2 dim = (64, 512, 512) # in px (z, y, x) center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z, y, x) index starts at 0! @@ -61,9 +62,9 @@ def run(): mag_shape = mc.Shapes.disc(dim, center, radius, height) # Create MagData (4 times the size): print '--CREATE MAG. DIST. HOMOG. MAGN. DISC' - mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape, phi)) + mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape, phi)) print '--CREATE MAG. DIST. VORTEX STATE DISC' - mag_data_vort = MagData(res, mc.create_mag_dist_vortex(mag_shape, center)) + mag_data_vort = MagData(a, mc.create_mag_dist_vortex(mag_shape, center)) # Create Data Arrays: dim_list = [dim[2]/2**i for i in np.linspace(1, steps, steps)] @@ -79,26 +80,26 @@ def run(): data_vort_real_d = np.vstack((dim_list, np.zeros((2, steps)))) for i in range(steps): - # Scale mag_data, resolution and dimensions: + # Scale mag_data, grid spacing and dimensions: mag_data_disc.scale_down() mag_data_vort.scale_down() dim = mag_data_disc.dim - res = mag_data_disc.res + a = mag_data_disc.a center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px, index starts at 0! radius = dim[1]/4 # in px height = dim[0]/2 # in px - print '--res =', res, 'nm', 'dim =', dim + print '--a =', a, 'nm', 'dim =', dim print '----CALCULATE RMS/DURATION HOMOG. MAGN. DISC' # Create projections along z-axis: projection_disc = pj.simple_axis_projection(mag_data_disc) # Analytic solution: - phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height) + phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height) # Fourier unpadded: padding = 0 start_time = time.clock() - phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding) + phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding) data_disc_fourier0[2, i] = time.clock() - start_time print '------time (disc, fourier0) =', data_disc_fourier0[2, i] phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3 # in mrad -> *1000 @@ -106,7 +107,7 @@ def run(): # Fourier padding 3: padding = 3 start_time = time.clock() - phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding) + phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding) data_disc_fourier3[2, i] = time.clock() - start_time print '------time (disc, fourier3) =', data_disc_fourier3[2, i] phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3 # in mrad -> *1000 @@ -114,25 +115,23 @@ def run(): # Fourier padding 10: padding = 10 start_time = time.clock() - phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding) + phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding) data_disc_fourier10[2, i] = time.clock() - start_time print '------time (disc, fourier10) =', data_disc_fourier10[2, i] phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3 # in mrad -> *1000 data_disc_fourier10[1, i] = np.sqrt(np.mean(phase_diff_disc**2)) # Real space slab: - u_kern_f = pm.get_kernel_fourier('slab', 'u', np.shape(projection_disc[0]), res) - v_kern_f = pm.get_kernel_fourier('slab', 'v', np.shape(projection_disc[0]), res) + kernel = Kernel((dim[1], dim[2]), a, geometry='slab') start_time = time.clock() - phase_num_disc = pm.phase_mag_real_fast(res, projection_disc, (v_kern_f, u_kern_f)) + phase_num_disc = pm.phase_mag(a, projection_disc, kernel=kernel) data_disc_real_s[2, i] = time.clock() - start_time print '------time (disc, real slab) =', data_disc_real_s[2, i] phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3 # in mrad -> *1000 data_disc_real_s[1, i] = np.sqrt(np.mean(phase_diff_disc**2)) # Real space disc: - u_kern_f = pm.get_kernel_fourier('disc', 'u', np.shape(projection_disc[0]), res) - v_kern_f = pm.get_kernel_fourier('disc', 'v', np.shape(projection_disc[0]), res) + kernel = Kernel((dim[1], dim[2]), a, geometry='slab') start_time = time.clock() - phase_num_disc = pm.phase_mag_real_fast(res, projection_disc, (v_kern_f, u_kern_f)) + phase_num_disc = pm.phase_mag(a, projection_disc, kernel=kernel) data_disc_real_d[2, i] = time.clock() - start_time print '------time (disc, real disc) =', data_disc_real_d[2, i] phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3 # in mrad -> *1000 @@ -142,11 +141,11 @@ def run(): # Create projections along z-axis: projection_vort = pj.simple_axis_projection(mag_data_vort) # Analytic solution: - phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height) + phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height) # Fourier unpadded: padding = 0 start_time = time.clock() - phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding) + phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding) data_vort_fourier0[2, i] = time.clock() - start_time print '------time (vortex, fourier0) =', data_vort_fourier0[2, i] phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3 # in mrad -> *1000 @@ -154,7 +153,7 @@ def run(): # Fourier padding 3: padding = 3 start_time = time.clock() - phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding) + phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding) data_vort_fourier3[2, i] = time.clock() - start_time print '------time (vortex, fourier3) =', data_vort_fourier3[2, i] phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3 # in mrad -> *1000 @@ -162,25 +161,23 @@ def run(): # Fourier padding 10: padding = 10 start_time = time.clock() - phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding) + phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding) data_vort_fourier10[2, i] = time.clock() - start_time print '------time (vortex, fourier10) =', data_vort_fourier10[2, i] phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3 # in mrad -> *1000 data_vort_fourier10[1, i] = np.sqrt(np.mean(phase_diff_vort**2)) # Real space slab: - u_kern_f = pm.get_kernel_fourier('slab', 'u', np.shape(projection_vort[0]), res) - v_kern_f = pm.get_kernel_fourier('slab', 'v', np.shape(projection_vort[0]), res) + kernel = Kernel((dim[1], dim[2]), a, geometry='slab') start_time = time.clock() - phase_num_vort = pm.phase_mag_real_fast(res, projection_vort, (v_kern_f, u_kern_f)) + phase_num_vort = pm.phase_mag(a, projection_vort, kernel=kernel) data_vort_real_s[2, i] = time.clock() - start_time print '------time (vortex, real slab) =', data_vort_real_s[2, i] phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3 # in mrad -> *1000 data_vort_real_s[1, i] = np.sqrt(np.mean(phase_diff_vort**2)) # Real space disc: - u_kern_f = pm.get_kernel_fourier('disc', 'u', np.shape(projection_vort[0]), res) - v_kern_f = pm.get_kernel_fourier('disc', 'v', np.shape(projection_vort[0]), res) + kernel = Kernel((dim[1], dim[2]), a, geometry='disc') start_time = time.clock() - phase_num_vort = pm.phase_mag_real_fast(res, projection_vort, (v_kern_f, u_kern_f)) + phase_num_vort = pm.phase_mag(a, projection_vort, kernel=kernel) data_vort_real_d[2, i] = time.clock() - start_time print '------time (vortex, real disc) =', data_vort_real_d[2, i] phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3 # in mrad -> *1000 @@ -200,7 +197,7 @@ def run(): fig.tight_layout(rect=(0.05, 0.05, 0.95, 0.95)) fig.suptitle('Method Comparison', fontsize=20) - # Plot duration against res (disc) [top/left]: + # Plot duration against a (disc) [top/left]: axes[1, 0].set_xscale('log') axes[1, 0].set_yscale('log') axes[1, 0].plot(data_disc_fourier0[0], data_disc_fourier0[1], ':bs') @@ -217,7 +214,7 @@ def run(): axes[1, 0].xaxis.set_minor_locator(NullLocator()) axes[1, 0].grid() - # Plot RMS against res (disc) [bottom/left]: + # Plot RMS against a (disc) [bottom/left]: plt.tick_params(axis='both', which='major', labelsize=14) axes[0, 0].set_xscale('log') axes[0, 0].set_yscale('log') @@ -235,7 +232,7 @@ def run(): axes[0, 0].xaxis.set_minor_locator(NullLocator()) axes[0, 0].grid() - # Plot duration against res (vortex) [top/right]: + # Plot duration against a (vortex) [top/right]: axes[1, 1].set_xscale('log') axes[1, 1].set_yscale('log') axes[1, 1].plot(data_vort_fourier0[0], data_vort_fourier0[1], ':bs', @@ -256,7 +253,7 @@ def run(): axes[1, 1].xaxis.set_minor_locator(NullLocator()) axes[1, 1].grid() - # Plot RMS against res (vortex) [bottom/right]: + # Plot RMS against a (vortex) [bottom/right]: axes[0, 1].set_xscale('log') axes[0, 1].set_yscale('log') axes[0, 1].plot(data_vort_fourier0[0], data_vort_fourier0[2], ':bs', diff --git a/scripts/reconstruction/get_jacobi.py b/scripts/reconstruction/get_jacobi.py index 87a9b471ec3f0bceea2fbd7f03d4edfe345d6f15..c4919005a6a50178a8926915e18b4038ec879ed9 100644 --- a/scripts/reconstruction/get_jacobi.py +++ b/scripts/reconstruction/get_jacobi.py @@ -6,9 +6,6 @@ Created on Wed Apr 03 11:15:38 2013 """ import time -import pdb -import traceback -import sys import os import numpy as np @@ -21,85 +18,65 @@ from pyramid.magdata import MagData from pyramid.phasemap import PhaseMap -def get_jacobi(): - '''Calculate and display the phase map from a given magnetization. - Arguments: - None - Returns: - None - - ''' - directory = '../../output/reconstruction' - if not os.path.exists(directory): - os.makedirs(directory) - filename = directory + '/jacobi.npy' - # TODO: Input via GUI - b_0 = 1.0 # in T - dim = (1, 3, 3) # in px (y,x) - res = 10.0 # in nm - phi = pi/4 - - center = (0, int(dim[1]/2), int(dim[2]/2)) # in px (y,x) index starts with 0! - width = (0, 1, 1) # in px (y,x) - - mag_data = MagData(res, mc.create_mag_dist_homog(mc.Shapes.slab(dim, center, width), phi)) - projection = pj.simple_axis_projection(mag_data) - print 'Projection calculated!' - - '''NUMERICAL SOLUTION''' - # numerical solution Real Space: - dim_proj = np.shape(projection[0]) - size = np.prod(dim_proj) - kernel = pm.Kernel(dim_proj, res, 'disc') - - tic = time.clock() - kernel.multiply_jacobi(np.ones(2*size)) # column-wise - toc = time.clock() - print 'Time for one multiplication with the Jacobi-Matrix: ', toc - tic - - jacobi = np.zeros((size, 2*size)) - tic = time.clock() - phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'disc', b_0, jacobi=jacobi)) - toc = time.clock() - phase_map.display() - np.savetxt(filename, jacobi) - print 'Time for Jacobi-Matrix during phase calculation: ', toc - tic - - tic = time.clock() - jacobi_test = kernel.get_jacobi() - toc = time.clock() - print 'Time for Jacobi-Matrix from the Kernel: ', toc - tic - - unity = np.eye(2*size) - jacobi_test2 = np.zeros((size, 2*size)) - tic = time.clock() - for i in range(unity.shape[1]): - jacobi_test2[:, i] = kernel.multiply_jacobi(unity[:, i]) # column-wise - toc = time.clock() - print 'Time for getting the Jacobi-Matrix (vector-wise): ', toc - tic - - unity_transp = np.eye(size) - jacobi_transp = np.zeros((2*size, size)) - tic = time.clock() - for i in range(unity_transp.shape[1]): - jacobi_transp[:, i] = kernel.multiply_jacobi_T(unity_transp[:, i]) # column-wise - toc = time.clock() - print 'Time for getting the transp. Jacobi-Matrix (vector-wise):', toc - tic - - print 'Methods (during vs kernel) in accordance? ', \ - np.logical_not(np.all(jacobi-jacobi_test)) - print 'Methods (during vs vector-wise) in accordance? ', \ - np.logical_not(np.all(jacobi-jacobi_test2)) - print 'Methods (transponed Jacobi) in accordance? ', \ - np.logical_not(np.all(jacobi.T-jacobi_transp)) - - return (jacobi, jacobi_test, jacobi_test2, jacobi_transp) - - -if __name__ == "__main__": - try: - jacobi = get_jacobi() - except: - type, value, tb = sys.exc_info() - traceback.print_exc() - pdb.post_mortem(tb) +directory = '../../output/reconstruction' +if not os.path.exists(directory): + os.makedirs(directory) +filename = directory + '/jacobi.npy' +b_0 = 1.0 # in T +dim = (1, 8, 8) # in px (y,x) +res = 10.0 # in nm +phi = pi/4 + +center = (0, int(dim[1]/2), int(dim[2]/2)) # in px (y,x) index starts with 0! +width = (0, 1, 1) # in px (y,x) + +mag_data = MagData(res, mc.create_mag_dist_homog(mc.Shapes.slab(dim, center, width), phi)) +projection = pj.simple_axis_projection(mag_data) +print 'Projection calculated!' + +'''NUMERICAL SOLUTION''' +# numerical solution Real Space: +dim_proj = np.shape(projection[0]) +size = np.prod(dim_proj) +kernel = pm.Kernel(dim_proj, res, 'disc') + +tic = time.clock() +kernel.multiply_jacobi(np.ones(2*size)) # column-wise +toc = time.clock() +print 'Time for one multiplication with the Jacobi-Matrix: ', toc - tic + +jacobi = np.zeros((size, 2*size)) +tic = time.clock() +phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, b_0, 'disc', jacobi=jacobi)) +toc = time.clock() +phase_map.display() +np.savetxt(filename, jacobi) +print 'Time for Jacobi-Matrix during phase calculation: ', toc - tic + +tic = time.clock() +jacobi_test = kernel.get_jacobi() +toc = time.clock() +print 'Time for Jacobi-Matrix from the Kernel: ', toc - tic + +unity = np.eye(2*size) +jacobi_test2 = np.zeros((size, 2*size)) +tic = time.clock() +for i in range(unity.shape[1]): + jacobi_test2[:, i] = kernel.multiply_jacobi(unity[:, i]) # column-wise +toc = time.clock() +print 'Time for getting the Jacobi-Matrix (vector-wise): ', toc - tic + +unity_transp = np.eye(size) +jacobi_transp = np.zeros((2*size, size)) +tic = time.clock() +for i in range(unity_transp.shape[1]): + jacobi_transp[:, i] = kernel.multiply_jacobi_T(unity_transp[:, i]) # column-wise +toc = time.clock() +print 'Time for getting the transp. Jacobi-Matrix (vector-wise):', toc - tic + +print 'Methods (during vs kernel) in accordance? ', \ + np.logical_not(np.all(jacobi-jacobi_test)) +print 'Methods (during vs vector-wise) in accordance? ', \ + np.logical_not(np.all(jacobi-jacobi_test2)) +print 'Methods (transponed Jacobi) in accordance? ', \ + np.logical_not(np.all(jacobi.T-jacobi_transp)) diff --git a/scripts/reconstruction/reconstruct_core_shell.py b/scripts/reconstruction/reconstruct_core_shell.py index 56d2c033dcf75c55b02766f547bc32424e5ccf09..91e09676bf4373784a1d3e13ebc042cdf8e69c5b 100644 --- a/scripts/reconstruction/reconstruct_core_shell.py +++ b/scripts/reconstruction/reconstruct_core_shell.py @@ -5,9 +5,6 @@ Created on Wed Nov 13 10:25:53 2013 @author: Jan """ -import sys -import traceback -import pdb import os import numpy as np @@ -19,13 +16,12 @@ import pyramid.phasemapper as pm import pyramid.projector as pj import pyramid.holoimage as hi from pyramid.magdata import MagData +from pyramid.kernel import Kernel from pyramid.phasemap import PhaseMap import matplotlib.pyplot as plt from matplotlib.animation import ArtistAnimation -from matplotlib.ticker import FixedFormatter, IndexLocator, LinearLocator - print '\nACCESS SHELVE' # Create / Open databank: @@ -41,26 +37,27 @@ else: mag_data = MagData.load_from_llg(directory + '/magnetic distributions/mag_dist_core_shell_disc.txt') mag_data.quiver_plot() - res = mag_data.res + a = mag_data.a dim = mag_data.dim slices = 30 angles = np.linspace(0, 2*pi, slices, endpoint=True) projections = [] phase_maps = [] + kernel = Kernel((dim[1], dim[2]), a) for tilt_angle in angles: print '{:.2f} pi'.format(tilt_angle/pi) # Project along tilt_angle projection = pj.single_tilt_projection(mag_data, tilt_angle) projections.append(projection) # Construct phase maps: - phase_map = PhaseMap(res, pm.phase_mag_real_conv(res, projection), unit='rad') + phase_map = PhaseMap(a, pm.phase_mag(a, projection, kernel=kernel), unit='rad') phase_maps.append(phase_map) # Display the combinated plots with phasemap and holography image: title = 'Phase at {:.2f} pi'.format(tilt_angle/pi) - # phase_map.display(title, limit=None) - # hi.display_combined(phase_map, 1, title=title) - # plt.savefig(directory+'/reconstruction/tilt_series_comb_'+ - # '{:.2f}'.format(tilt_angle/pi)+'pi.png') + phase_map.display(title, limit=None) + hi.display_combined(phase_map, 1, title=title) + plt.savefig(directory+'/reconstruction/tilt_series_comb_'+ + '{:.2f}'.format(tilt_angle/pi)+'pi.png') # Save data data_shelve[key] = (projections, phase_maps, mag_data) @@ -87,7 +84,7 @@ plt.show() # RECONSTRUCTION: mask = mag_data.get_mask() dim = mag_data.dim -res = mag_data.res -mag_data_reconstruct = MagData(res, (np.zeros(dim),)*3) +a = mag_data.a +mag_data_reconstruct = MagData(a, (np.zeros(dim),)*3) mag_vector = mag_data_reconstruct.get_vector(mask) diff --git a/scripts/reconstruction/reconstruct_random_pixels.py b/scripts/reconstruction/reconstruct_random_pixels.py index 710293e4da4457d88efb966e08ea1be12044f1d9..a3a1aedf8346794af8cb1f8feecbf1d159df1149 100644 --- a/scripts/reconstruction/reconstruct_random_pixels.py +++ b/scripts/reconstruction/reconstruct_random_pixels.py @@ -3,10 +3,6 @@ import random as rnd -import pdb -import traceback -import sys -import numpy as np from numpy import pi import pyramid.magcreator as mc @@ -18,48 +14,31 @@ from pyramid.phasemap import PhaseMap import pyramid.reconstructor as rc -def reconstruct_random_distribution(): - '''Calculate and reconstruct a random magnetic distribution. - Arguments: - None - Returns: - None - - ''' - # Input parameters: - n_pixel = 5 - dim = (1, 16, 16) - b_0 = 1 # in T - res = 10.0 # in nm - rnd.seed(18) - - # Create empty MagData object and add random pixels: - mag_data = MagData(res) - for i in range(n_pixel): - pixel = (rnd.randrange(dim[0]), rnd.randrange(dim[1]), rnd.randrange(dim[2])) - mag_shape = mc.Shapes.pixel(dim, pixel) - phi = 2 * pi * rnd.random() - magnitude = rnd.random() - mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape, phi, magnitude)) - # Plot magnetic distribution, phase map and holographic contour map: - mag_data.quiver_plot() - projection = pj.simple_axis_projection(mag_data) - phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab', b_0)) - hi.display_combined(phase_map, 10, 'Generated Distribution') - - # Reconstruct the magnetic distribution: - mag_data_rec = rc.reconstruct_simple_leastsq(phase_map, mag_data.get_mask(), b_0) - - # Display the reconstructed phase map and holography image: - projection_rec = pj.simple_axis_projection(mag_data_rec) - phase_map_rec = PhaseMap(res, pm.phase_mag_real(res, projection_rec, 'slab', b_0)) - hi.display_combined(phase_map_rec, 10, 'Reconstructed Distribution') - - -if __name__ == "__main__": - try: - reconstruct_random_distribution() - except: - type, value, tb = sys.exc_info() - traceback.print_exc() - pdb.post_mortem(tb) +# Input parameters: +n_pixel = 5 +dim = (1, 16, 16) +b_0 = 1 # in T +a = 10.0 # in nm +rnd.seed(18) + +# Create empty MagData object and add random pixels: +mag_data = MagData(a) +for i in range(n_pixel): + pixel = (rnd.randrange(dim[0]), rnd.randrange(dim[1]), rnd.randrange(dim[2])) + mag_shape = mc.Shapes.pixel(dim, pixel) + phi = 2 * pi * rnd.random() + magnitude = rnd.random() + mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape, phi, magnitude)) +# Plot magnetic distribution, phase map and holographic contour map: +mag_data.quiver_plot() +projection = pj.simple_axis_projection(mag_data) +phase_map = PhaseMap(a, pm.phase_mag(a, projection, b_0)) +hi.display_combined(phase_map, 10, 'Generated Distribution') + +# Reconstruct the magnetic distribution: +mag_data_rec = rc.reconstruct_simple_leastsq(phase_map, mag_data.get_mask(), b_0) + +# Display the reconstructed phase map and holography image: +projection_rec = pj.simple_axis_projection(mag_data_rec) +phase_map_rec = PhaseMap(a, pm.phase_mag(a, projection_rec, b_0)) +hi.display_combined(phase_map_rec, 10, 'Reconstructed Distribution') diff --git a/scripts/test_arb_projection.py b/scripts/test_arb_projection.py index fa71062af5674e0491d12f725fa110e1872c4bdd..c652331cc2d894f43f44c6a9ce95b6547050b994 100644 --- a/scripts/test_arb_projection.py +++ b/scripts/test_arb_projection.py @@ -5,7 +5,6 @@ Created on Tue Sep 03 12:55:40 2013 @author: Jan """ -'''2D Case Bresenham's line algorithm''' import numpy as np from numpy import pi diff --git a/scripts/test_h5py.py b/scripts/test_h5py.py index 40271b226546467672ddde6727f53aaf23ecad0e..7132dba75c8f4fa279a98a5aa9b6fdd4ed9f4a79 100644 --- a/scripts/test_h5py.py +++ b/scripts/test_h5py.py @@ -5,33 +5,23 @@ Created on Thu Nov 21 17:35:37 2013 @author: Jan """ + import h5py import numpy as np -with h5py.File('testfile.hdf5', 'w') as f: +with h5py.File('testfile.hdf5', 'w') as f: dset = f.create_dataset('testdataset', (100,), dtype='i') - print 'dset.shape:', dset.shape - print 'dset.dtype:', dset.dtype - dset[...] = np.arange(100) - print 'dset[0]:', dset[0] - print 'dset[10]:', dset[10] - print 'dset[0:100:10]:', dset[0:100:10] - print 'dset.name:', dset.name - print 'f.name:', f.name - grp = f.create_group('subgroup') - dset_big = grp.create_dataset('another_set', (1000, 1000, 1000), dtype='f') - for i in range(dset_big.shape[0]): print 'i:', i dset_big[i, ...] = np.ones(dset_big.shape[1:]) diff --git a/scripts/test_methods.py b/scripts/test_methods.py index f52fcfeeb770fc2b2bce131fcfd5828bf23a8c58..c7af2e6872061092cf1ba9e3daded5aad459916d 100644 --- a/scripts/test_methods.py +++ b/scripts/test_methods.py @@ -2,10 +2,6 @@ # -*- coding: utf-8 -*- """Compare the different methods to create phase maps.""" -import pdb -import traceback -import sys - from numpy import pi import pyramid.magcreator as mc @@ -16,72 +12,52 @@ from pyramid.magdata import MagData from pyramid.phasemap import PhaseMap -def compare_methods(): - '''Calculate and display the phase map from a given magnetization. - Arguments: - None - Returns: - None - - ''' - # Input parameters: - res = 10.0 # in nm - phi = 0 - theta = pi/2 - tilt = pi/4 - density = 0.25 - dim = (128, 128, 128) # in px (z, y, x) - # Create magnetic shape: - geometry = 'sphere' - if geometry == 'slab': - center = (dim[0]/2-0.5, dim[1]/2-0.5, dim[2]/2.-0.5) # in px (z, y, x) index starts at 0! - width = (dim[0]/3., dim[1]/4., dim[2]/2.) # in px (z, y, x) - mag_shape = mc.Shapes.slab(dim, center, width) - elif geometry == 'disc': - center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z, y, x) index starts at 0! - radius = dim[1]/4 # in px - height = dim[0]/2 # in px - mag_shape = mc.Shapes.disc(dim, center, radius, height) - elif geometry == 'sphere': - center = (dim[0]/2, dim[1]/2, dim[2]/2) # in px (z, y, x) index starts with 0! - radius = dim[0]/4 # in px - mag_shape = mc.Shapes.sphere(dim, center, radius) - # Project the magnetization data: - mag_data = MagData(res, mc.create_mag_dist_homog(mag_shape, phi, theta)) - -# density = 0.3 -# mag_data = MagData.load_from_llg('../output/magnetic distributions/mag_dist_sphere.txt') - - res = mag_data.res - mag_data.quiver_plot(ax_slice=dim[1]/2) +# Input parameters: +a = 10.0 # in nm +phi = 0 +theta = pi/2 +tilt = pi/4 +density = 0.25 +dim = (128, 128, 128) # in px (z, y, x) +# Create magnetic shape: +geometry = 'sphere' +if geometry == 'slab': + center = (dim[0]/2-0.5, dim[1]/2-0.5, dim[2]/2.-0.5) # in px (z, y, x) index starts at 0! + width = (dim[0]/3., dim[1]/4., dim[2]/2.) # in px (z, y, x) + mag_shape = mc.Shapes.slab(dim, center, width) +elif geometry == 'disc': + center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z, y, x) index starts at 0! + radius = dim[1]/4 # in px + height = dim[0]/2 # in px + mag_shape = mc.Shapes.disc(dim, center, radius, height) +elif geometry == 'sphere': + center = (dim[0]/2, dim[1]/2, dim[2]/2) # in px (z, y, x) index starts with 0! + radius = dim[0]/4 # in px + mag_shape = mc.Shapes.sphere(dim, center, radius) +# Project the magnetization data: +mag_data = MagData(a, mc.create_mag_dist_homog(mag_shape, phi, theta)) + +a = mag_data.a +mag_data.quiver_plot(ax_slice=dim[1]/2) # mag_data.quiver_plot3d() - import time - start = time.time() - projection = pj.single_tilt_projection(mag_data, tilt) - print 'Total projection time:', time.time() - start - # Construct phase maps: - phase_map_mag = PhaseMap(res, pm.phase_mag_fourier(res, projection, padding=1)) - phase_map_elec = PhaseMap(res, pm.phase_elec(res, projection, v_0=3)) - # Display the combinated plots with phasemap and holography image: - hi.display_combined(phase_map_mag, density, title='Magnetic Phase') - hi.display_combined(phase_map_elec, density, title='Electric Phase') - - phase_map = PhaseMap(res, phase_map_mag.phase+phase_map_elec.phase) - hi.display_combined(phase_map, density) - - import matplotlib.pyplot as plt - x = range(dim[2]) - y = phase_map_elec.phase[dim[1]/2, :] - fig = plt.figure() - axis = fig.add_subplot(1, 1, 1) - axis.plot(x, y, label='Real space method') - axis.grid() - - -if __name__ == "__main__": - try: - compare_methods() - except: - type, value, tb = sys.exc_info() - traceback.print_exc() - pdb.post_mortem(tb) +import time +start = time.time() +projection = pj.single_tilt_projection(mag_data, tilt) +print 'Total projection time:', time.time() - start +# Construct phase maps: +phase_map_mag = PhaseMap(a, pm.phase_mag_fourier(a, projection, padding=1)) +phase_map_elec = PhaseMap(a, pm.phase_elec(a, projection, v_0=3)) +# Display the combinated plots with phasemap and holography image: +hi.display_combined(phase_map_mag, density, title='Magnetic Phase') +hi.display_combined(phase_map_elec, density, title='Electric Phase') + +phase_map = PhaseMap(a, phase_map_mag.phase+phase_map_elec.phase) +hi.display_combined(phase_map, density) + +import matplotlib.pyplot as plt +x = range(dim[2]) +y = phase_map_elec.phase[dim[1]/2, :] +fig = plt.figure() +axis = fig.add_subplot(1, 1, 1) +axis.plot(x, y, label='Real space method') +axis.grid() diff --git a/scripts/test_vadim.py b/scripts/test_vadim.py index ce1f3d5d9621ff73aedd566582c11653979ced15..229313c2f88afad9979393a1a3814ec526969a5a 100644 --- a/scripts/test_vadim.py +++ b/scripts/test_vadim.py @@ -19,6 +19,7 @@ from pyramid.phasemap import PhaseMap import matplotlib.pyplot as plt + Q_E = 1#1.602176565e-19 EPSILON_0 = 1#8.8e-9 C_E = 1 @@ -33,7 +34,7 @@ def calculate_charge_batch(phase_map): integral = left + top + right + bottom Q = -EPSILON_0/C_E * integral return Q - grad_y, grad_x = np.gradient(phase_map.phase, phase_map.res, phase_map.res) + grad_y, grad_x = np.gradient(phase_map.phase, phase_map.a, phase_map.a) xi, yi = np.zeros(t-b), np.zeros(t-b) for i, ti in enumerate(np.arange(b, t)): xi[i] = ti @@ -44,10 +45,10 @@ directory = '../output/vadim/' if not os.path.exists(directory): os.makedirs(directory) -res = 1.0 # in nm +a = 1.0 # in nm phi = pi/4 density = 30 -dim = (256, 256, 64) # in px (z, y, x) +dim = (128, 128, 128) # in px (z, y, x) l = dim[2]/4. r = dim[2]/4. + dim[2]/2. @@ -59,104 +60,104 @@ center = (dim[0]/2.-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z, y, x) index radius = dim[1]/8 # in px height = dim[0]/4 # in px width = (dim[0]/4, dim[1]/4, dim[2]/4) -#mag_shape_sphere = mc.Shapes.sphere(dim, center, radius) -#mag_shape_disc = mc.Shapes.disc(dim, center, radius, height) -#mag_shape_slab = mc.Shapes.slab(dim, center, (height, radius*2, radius*2)) +mag_shape_sphere = mc.Shapes.sphere(dim, center, radius) +mag_shape_disc = mc.Shapes.disc(dim, center, radius, height) +mag_shape_slab = mc.Shapes.slab(dim, center, (height, radius*2, radius*2)) mag_shape_ellipse = mc.Shapes.ellipsoid(dim, (center[0], 0*center[1], center[2]), (radius*5, radius*10, radius*2)) # Create magnetization distributions: -#mag_data_sphere = MagData(res, mc.create_mag_dist_homog(mag_shape_sphere, phi)) -#mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape_disc, phi)) -#mag_data_vortex = MagData(res, mc.create_mag_dist_vortex(mag_shape_disc)) -#mag_data_slab = MagData(res, mc.create_mag_dist_homog(mag_shape_slab, phi)) -mag_data_ellipse = MagData(res, mc.create_mag_dist_homog(mag_shape_ellipse, phi)) +mag_data_sphere = MagData(a, mc.create_mag_dist_homog(mag_shape_sphere, phi)) +mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape_disc, phi)) +mag_data_vortex = MagData(a, mc.create_mag_dist_vortex(mag_shape_disc)) +mag_data_slab = MagData(a, mc.create_mag_dist_homog(mag_shape_slab, phi)) +mag_data_ellipse = MagData(a, mc.create_mag_dist_homog(mag_shape_ellipse, phi)) # Project the magnetization data: -#projection_sphere = pj.simple_axis_projection(mag_data_sphere) -#projection_disc = pj.simple_axis_projection(mag_data_disc) -#projection_vortex = pj.simple_axis_projection(mag_data_vortex) -#projection_slab = pj.simple_axis_projection(mag_data_slab) +projection_sphere = pj.simple_axis_projection(mag_data_sphere) +projection_disc = pj.simple_axis_projection(mag_data_disc) +projection_vortex = pj.simple_axis_projection(mag_data_vortex) +projection_slab = pj.simple_axis_projection(mag_data_slab) projection_ellipse = pj.simple_axis_projection(mag_data_ellipse) -## Magnetic phase map of a homogeneously magnetized disc: -#phase_map_mag_disc = PhaseMap(res, pm.phase_mag_real_conv(res, projection_disc)) -#phase_map_mag_disc.save_to_txt(directory+'phase_map_mag_disc.txt') -#axis, _ = hi.display_combined(phase_map_mag_disc, density) -#axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g') -#axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g') -#axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g') -#axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g') -#axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True, -# head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g') -#plt.savefig(directory+'phase_map_mag_disc.png') -#x, y = calculate_charge_batch(phase_map_mag_disc) -#np.savetxt(directory+'charge_integral_mag_disc.txt', np.array([x, y]).T) -#plt.figure() -#plt.plot(x, y) -#plt.savefig(directory+'charge_integral_mag_disc.png') -## Magnetic phase map of a vortex state disc: -#phase_map_mag_vortex = PhaseMap(res, pm.phase_mag_real_conv(res, projection_vortex)) -#phase_map_mag_vortex.save_to_txt(directory+'phase_map_mag_vortex.txt') -#axis, _ = hi.display_combined(phase_map_mag_vortex, density) -#axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g') -#axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g') -#axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g') -#axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g') -#axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True, -# head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g') -#plt.savefig(directory+'phase_map_mag_vortex.png') -#x, y = calculate_charge_batch(phase_map_mag_vortex) -#np.savetxt(directory+'charge_integral_mag_vortex.txt', np.array([x, y]).T) -#plt.figure() -#plt.plot(x, y) -#plt.savefig(directory+'charge_integral_mag_vortex.png') -## MIP phase of a slab: -#phase_map_mip_slab = PhaseMap(res, pm.phase_elec(res, projection_slab, v_0=1, v_acc=300000)) -#phase_map_mip_slab.save_to_txt(directory+'phase_map_mip_slab.txt') -#axis, _ = hi.display_combined(phase_map_mip_slab, density) -#axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g') -#axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g') -#axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g') -#axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g') -#axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True, -# head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g') -#plt.savefig(directory+'phase_map_mip_slab.png') -#x, y = calculate_charge_batch(phase_map_mip_slab) -#np.savetxt(directory+'charge_integral_mip_slab.txt', np.array([x, y]).T) -#plt.figure() -#plt.plot(x, y) -#plt.savefig(directory+'charge_integral_mip_slab.png') -## MIP phase of a disc: -#phase_map_mip_disc = PhaseMap(res, pm.phase_elec(res, projection_disc, v_0=1, v_acc=300000)) -#phase_map_mip_disc.save_to_txt(directory+'phase_map_mip_disc.txt') -#axis, _ = hi.display_combined(phase_map_mip_disc, density) -#axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g') -#axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g') -#axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g') -#axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g') -#axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True, -# head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g') -#plt.savefig(directory+'phase_map_mip_disc.png') -#x, y = calculate_charge_batch(phase_map_mip_disc) -#np.savetxt(directory+'charge_integral_mip_disc.txt', np.array([x, y]).T) -#plt.figure() -#plt.plot(x, y) -#plt.savefig(directory+'charge_integral_mip_disc.png') -## MIP phase of a sphere: -#phase_map_mip_sphere = PhaseMap(res, pm.phase_elec(res, projection_sphere, v_0=1, v_acc=300000)) -#phase_map_mip_sphere.save_to_txt(directory+'phase_map_mip_sphere.txt') -#axis, _ = hi.display_combined(phase_map_mip_sphere, density) -#axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g') -#axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g') -#axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g') -#axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g') -#axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True, -# head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g') -#plt.savefig(directory+'phase_map_mip_sphere.png') -#x, y = calculate_charge_batch(phase_map_mip_sphere) -#np.savetxt(directory+'charge_integral_mip_sphere.txt', np.array([x, y]).T) -#plt.figure() -#plt.plot(x, y) -#plt.savefig(directory+'charge_integral_mip_sphere.png') +# Magnetic phase map of a homogeneously magnetized disc: +phase_map_mag_disc = PhaseMap(a, pm.phase_mag(a, projection_disc)) +phase_map_mag_disc.save_to_txt(directory+'phase_map_mag_disc.txt') +axis, _ = hi.display_combined(phase_map_mag_disc, density) +axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g') +axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g') +axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g') +axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g') +axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True, + head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g') +plt.savefig(directory+'phase_map_mag_disc.png') +x, y = calculate_charge_batch(phase_map_mag_disc) +np.savetxt(directory+'charge_integral_mag_disc.txt', np.array([x, y]).T) +plt.figure() +plt.plot(x, y) +plt.savefig(directory+'charge_integral_mag_disc.png') +# Magnetic phase map of a vortex state disc: +phase_map_mag_vortex = PhaseMap(a, pm.phase_mag(a, projection_vortex)) +phase_map_mag_vortex.save_to_txt(directory+'phase_map_mag_vortex.txt') +axis, _ = hi.display_combined(phase_map_mag_vortex, density) +axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g') +axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g') +axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g') +axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g') +axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True, + head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g') +plt.savefig(directory+'phase_map_mag_vortex.png') +x, y = calculate_charge_batch(phase_map_mag_vortex) +np.savetxt(directory+'charge_integral_mag_vortex.txt', np.array([x, y]).T) +plt.figure() +plt.plot(x, y) +plt.savefig(directory+'charge_integral_mag_vortex.png') +# MIP phase of a slab: +phase_map_mip_slab = PhaseMap(a, pm.phase_elec(a, projection_slab, v_0=1, v_acc=300000)) +phase_map_mip_slab.save_to_txt(directory+'phase_map_mip_slab.txt') +axis, _ = hi.display_combined(phase_map_mip_slab, density) +axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g') +axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g') +axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g') +axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g') +axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True, + head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g') +plt.savefig(directory+'phase_map_mip_slab.png') +x, y = calculate_charge_batch(phase_map_mip_slab) +np.savetxt(directory+'charge_integral_mip_slab.txt', np.array([x, y]).T) +plt.figure() +plt.plot(x, y) +plt.savefig(directory+'charge_integral_mip_slab.png') +# MIP phase of a disc: +phase_map_mip_disc = PhaseMap(a, pm.phase_elec(a, projection_disc, v_0=1, v_acc=300000)) +phase_map_mip_disc.save_to_txt(directory+'phase_map_mip_disc.txt') +axis, _ = hi.display_combined(phase_map_mip_disc, density) +axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g') +axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g') +axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g') +axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g') +axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True, + head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g') +plt.savefig(directory+'phase_map_mip_disc.png') +x, y = calculate_charge_batch(phase_map_mip_disc) +np.savetxt(directory+'charge_integral_mip_disc.txt', np.array([x, y]).T) +plt.figure() +plt.plot(x, y) +plt.savefig(directory+'charge_integral_mip_disc.png') +# MIP phase of a sphere: +phase_map_mip_sphere = PhaseMap(a, pm.phase_elec(a, projection_sphere, v_0=1, v_acc=300000)) +phase_map_mip_sphere.save_to_txt(directory+'phase_map_mip_sphere.txt') +axis, _ = hi.display_combined(phase_map_mip_sphere, density) +axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g') +axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g') +axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g') +axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g') +axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True, + head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g') +plt.savefig(directory+'phase_map_mip_sphere.png') +x, y = calculate_charge_batch(phase_map_mip_sphere) +np.savetxt(directory+'charge_integral_mip_sphere.txt', np.array([x, y]).T) +plt.figure() +plt.plot(x, y) +plt.savefig(directory+'charge_integral_mip_sphere.png') # MIP phase of an ellipsoid: -phase_map_mip_ellipsoid = PhaseMap(res, pm.phase_elec(res, projection_ellipse, v_0=1, v_acc=300000)) +phase_map_mip_ellipsoid = PhaseMap(a, pm.phase_elec(a, projection_ellipse, v_0=1, v_acc=300000)) phase_map_mip_ellipsoid.save_to_txt(directory+'phase_map_mip_ellipsoid.txt') axis, _ = hi.display_combined(phase_map_mip_ellipsoid, density) axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g') @@ -171,35 +172,3 @@ np.savetxt(directory+'charge_integral_mip_ellipsoid.txt', np.array([x, y]).T) plt.figure() plt.plot(x, y) plt.savefig(directory+'charge_integral_mip_ellipsoid.png') - - - - - -# Display phasemap and holography image: - -#y, x = np.mgrid[0:dim[1], 0:dim[2]] - -#phase_charge = 1/((xx-center[2])**2+(yy-center[1])**2) -#phase_map.phase = phase_charge - -#q_e = 1#1.602176565e-19 -#epsilon0 = 1#8.8e-9 -#C_e = 1 -# -#dist = np.sqrt((y-center[1])**2+(x-center[2])**2) -#V = q_e/((4*pi*epsilon0)*dist) -#thickness = 10000 -#phase = C_e*q_e/(4*pi*epsilon0) * 1/2*np.arcsinh(thickness/dist) - -#phase_map = PhaseMap(res, phase)#C_e * res * V.sum(axis=0) - - -## USER INPUT: -#phase_map.display() -#point1, point2 = plt.ginput(n=2, timeout=0) -#plt.close() -#l = np.round(min(point1[0], point2[0])) -#r = np.round(max(point1[0], point2[0])) -#b = np.round(min(point1[1], point2[1])) -#t = np.round(max(point1[1], point2[1]))