diff --git a/docs/pyramid.rst b/docs/pyramid.rst
index b4ade82b76e0c3727715973488714e50c216339e..3491e66ec3ab49baf2a06d77b1b654c0f9670ee2 100644
--- a/docs/pyramid.rst
+++ b/docs/pyramid.rst
@@ -19,6 +19,15 @@ pyramid Package
     :show-inheritance:
 	:special-members:
 
+:mod:`kernel` Module
+-----------------------
+
+.. automodule:: pyramid.kernel
+    :members:
+    :undoc-members:
+    :show-inheritance:
+	:special-members:
+
 :mod:`magcreator` Module
 ------------------------
 
diff --git a/pyramid/__init__.py b/pyramid/__init__.py
index 63782bf9bfa87bde56ac6e8719755cb19563eb06..d33e5c92653888980594ae4fa3f488e6269d3082 100644
--- a/pyramid/__init__.py
+++ b/pyramid/__init__.py
@@ -9,6 +9,8 @@ magdata
     Class for the storage of magnetizatin data.
 projector
     Create projections of a given magnetization distribution.
+kernel
+    Class for the kernel matrix representing one magnetized pixel.
 phasemapper
     Create magnetic and electric phase maps from magnetization data.
 phasemap
diff --git a/pyramid/analytic.py b/pyramid/analytic.py
index 6035de75c17f040bb87f45e8a252e0a8b91e239a..5445990a923ede7dccd77d4d1232bd90aeff8c27 100644
--- a/pyramid/analytic.py
+++ b/pyramid/analytic.py
@@ -15,15 +15,15 @@ from numpy import pi
 PHI_0 = -2067.83  # magnetic flux in T*nm²
 
 
-def phase_mag_slab(dim, res, phi, center, width, b_0=1):
+def phase_mag_slab(dim, a, phi, center, width, b_0=1):
     '''Calculate the analytic magnetic phase for a homogeneously magnetized slab.
 
     Parameters
     ----------
     dim : tuple (N=3)
         The dimensions of the grid `(z, y, x)`.
-    res : float
-        The resolution of the grid (grid spacing) in nm.
+    a : float
+        The grid spacing in nm.
     phi : float
         The azimuthal angle, describing the direction of the magnetization.
     center : tuple (N=3)
@@ -57,27 +57,27 @@ def phase_mag_slab(dim, res, phi, center, width, b_0=1):
                                              + F_0(y-y0+Ly/2, x-x0+Lx/2)))
     # Process input parameters:
     z_dim, y_dim, x_dim = dim
-    y0 = res * (center[1] + 0.5)  # y0, x0 define the center of a pixel,
-    x0 = res * (center[2] + 0.5)  # hence: (cellindex + 0.5) * resolution
-    Lz, Ly, Lx = res * width[0], res * width[1], res * width[2]
+    y0 = a * (center[1] + 0.5)  # y0, x0 define the center of a pixel,
+    x0 = a * (center[2] + 0.5)  # hence: (cellindex + 0.5) * grid spacing
+    Lz, Ly, Lx = a * width[0], a * width[1], a * width[2]
     coeff = b_0 / (4*PHI_0)
     # Create grid:
-    x = np.linspace(res/2, x_dim*res-res/2, num=x_dim)
-    y = np.linspace(res/2, y_dim*res-res/2, num=y_dim)
+    x = np.linspace(a/2, x_dim*a-a/2, num=x_dim)
+    y = np.linspace(a/2, y_dim*a-a/2, num=y_dim)
     xx, yy = np.meshgrid(x, y)
     # Return phase:
     return phi_mag(xx, yy)
 
 
-def phase_mag_disc(dim, res, phi, center, radius, height, b_0=1):
+def phase_mag_disc(dim, a, phi, center, radius, height, b_0=1):
     '''Calculate the analytic magnetic phase for a homogeneously magnetized disc.
 
     Parameters
     ----------
     dim : tuple (N=3)
         The dimensions of the grid `(z, y, x)`.
-    res : float
-        The resolution of the grid (grid spacing) in nm.
+    a : float
+        The grid spacing in nm.
     phi : float
         The azimuthal angle, describing the direction of the magnetization.
     center : tuple (N=3)
@@ -105,28 +105,28 @@ def phase_mag_disc(dim, res, phi, center, radius, height, b_0=1):
         return result
     # Process input parameters:
     z_dim, y_dim, x_dim = dim
-    y0 = res * (center[1] + 0.5)  # y0, x0 have to be in the center of a pixel,
-    x0 = res * (center[2] + 0.5)  # hence: cellindex + 0.5
-    Lz = res * height
-    R = res * radius
+    y0 = a * (center[1] + 0.5)  # y0, x0 have to be in the center of a pixel,
+    x0 = a * (center[2] + 0.5)  # hence: cellindex + 0.5
+    Lz = a * height
+    R = a * radius
     coeff = - pi * b_0 / (2*PHI_0)
     # Create grid:
-    x = np.linspace(res/2, x_dim*res-res/2, num=x_dim)
-    y = np.linspace(res/2, y_dim*res-res/2, num=y_dim)
+    x = np.linspace(a/2, x_dim*a-a/2, num=x_dim)
+    y = np.linspace(a/2, y_dim*a-a/2, num=y_dim)
     xx, yy = np.meshgrid(x, y)
     # Return phase:
     return phi_mag(xx, yy)
 
 
-def phase_mag_sphere(dim, res, phi, center, radius, b_0=1):
+def phase_mag_sphere(dim, a, phi, center, radius, b_0=1):
     '''Calculate the analytic magnetic phase for a homogeneously magnetized sphere.
 
     Parameters
     ----------
     dim : tuple (N=3)
         The dimensions of the grid `(z, y, x)`.
-    res : float
-        The resolution of the grid (grid spacing) in nm.
+    a : float
+        The grid spacing in nm.
     phi : float
         The azimuthal angle, describing the direction of the magnetization.
     center : tuple (N=3)
@@ -152,27 +152,27 @@ def phase_mag_sphere(dim, res, phi, center, radius, b_0=1):
         return result
     # Process input parameters:
     z_dim, y_dim, x_dim = dim
-    y0 = res * (center[1] + 0.5)  # y0, x0 have to be in the center of a pixel,
-    x0 = res * (center[2] + 0.5)  # hence: cellindex + 0.5
-    R = res * radius
+    y0 = a * (center[1] + 0.5)  # y0, x0 have to be in the center of a pixel,
+    x0 = a * (center[2] + 0.5)  # hence: cellindex + 0.5
+    R = a * radius
     coeff = - 2./3. * pi * b_0 / PHI_0
     # Create grid:
-    x = np.linspace(res / 2, x_dim * res - res / 2, num=x_dim)
-    y = np.linspace(res / 2, y_dim * res - res / 2, num=y_dim)
+    x = np.linspace(a / 2, x_dim * a - a / 2, num=x_dim)
+    y = np.linspace(a / 2, y_dim * a - a / 2, num=y_dim)
     xx, yy = np.meshgrid(x, y)
     # Return phase:
     return phi_mag(xx, yy)
 
 
-def phase_mag_vortex(dim, res, center, radius, height, b_0=1):
+def phase_mag_vortex(dim, a, center, radius, height, b_0=1):
     '''Calculate the analytic magnetic phase for a vortex state disc.
 
     Parameters
     ----------
     dim : tuple (N=3)
         The dimensions of the grid `(z, y, x)`.
-    res : float
-        The resolution of the grid (grid spacing) in nm.
+    a : float
+        The grid spacing in nm.
     center : tuple (N=3)
         The center of the disc in pixel coordinates `(z, y, x)`, which is also the vortex center.
     radius : float
@@ -196,14 +196,14 @@ def phase_mag_vortex(dim, res, center, radius, height, b_0=1):
         return result
     # Process input parameters:
     z_dim, y_dim, x_dim = dim
-    y0 = res * (center[1] + 0.5)  # y0, x0 have to be in the center of a pixel,
-    x0 = res * (center[2] + 0.5)  # hence: cellindex + 0.5
-    Lz = res * height
-    R = res * radius
+    y0 = a * (center[1] + 0.5)  # y0, x0 have to be in the center of a pixel,
+    x0 = a * (center[2] + 0.5)  # hence: cellindex + 0.5
+    Lz = a * height
+    R = a * radius
     coeff = pi * b_0 * Lz / PHI_0
     # Create grid:
-    x = np.linspace(res/2, x_dim*res-res/2, num=x_dim)
-    y = np.linspace(res/2, y_dim*res-res/2, num=y_dim)
+    x = np.linspace(a/2, x_dim*a-a/2, num=x_dim)
+    y = np.linspace(a/2, y_dim*a-a/2, num=y_dim)
     xx, yy = np.meshgrid(x, y)
     # Return phase:
     return phi_mag(xx, yy)
diff --git a/pyramid/holoimage.py b/pyramid/holoimage.py
index 639c90d2b8608399cbb4cc038c29b3ee2108a827..f48aa61327458ddbc47a9d57b75dc4d637dd9f2f 100644
--- a/pyramid/holoimage.py
+++ b/pyramid/holoimage.py
@@ -64,7 +64,7 @@ def holo_image(phase_map, density=1):
     # Calculate the holography image intensity:
     img_holo = (1 + np.cos(density * phase_map.phase)) / 2
     # Calculate the phase gradients, expressed by magnitude and angle:
-    phase_grad_y, phase_grad_x = np.gradient(phase_map.phase, phase_map.res, phase_map.res)
+    phase_grad_y, phase_grad_x = np.gradient(phase_map.phase, phase_map.a, phase_map.a)
     phase_angle = (1 - np.arctan2(phase_grad_y, phase_grad_x)/pi) / 2
     phase_magnitude = np.hypot(phase_grad_x, phase_grad_y)
     if phase_magnitude.max() != 0:
diff --git a/pyramid/kernel.py b/pyramid/kernel.py
new file mode 100644
index 0000000000000000000000000000000000000000..51bf156067655ca2d4ccef6badb7d550167b1a62
--- /dev/null
+++ b/pyramid/kernel.py
@@ -0,0 +1,206 @@
+# -*- coding: utf-8 -*-
+"""Class for the calculation and storage of kernel.
+
+This module provides the :class:`~.Kernel` class whose instances can be used to calculate and
+store the kernel matrix representing the phase of a single pixel for the convolution used in the
+phase calculation. The phasemap of a single pixel for two orthogonal directions (`u` and `v`) are
+stored seperately as 2-dimensional matrices. The Jacobi matrix of the phasemapping just depends
+on the kernel and can be calculated via the :func:`~.get_jacobi` function. Storing the Jacobi
+matrix uses much memory, thus it is also possible to directly get the multiplication of a given
+vector with the (transposed) Jacobi matrix without explicit calculation of the latter.
+It is possible to load data from and save them to NetCDF4 files. See :class:`~.Kernel` for further
+information.
+
+"""
+
+
+import numpy as np
+
+
+PHI_0 = -2067.83    # magnetic flux in T*nm²
+
+
+class Kernel:
+    '''Class for calculating kernel matrices for the phase calculation.
+
+    Represents the phase of a single magnetized pixel for two orthogonal directions (`u` and `v`),
+    which can be accessed via the corresponding attributes. The default elementary geometry is
+    `disc`, but can also be specified as the phase of a `slab` representation of a single
+    magnetized pixel. During the construction, a few attributes are calculated that are used in
+    the convolution during phase calculation.
+
+    Attributes
+    ----------
+    dim : tuple (N=2)
+        Dimensions of the projected magnetization grid.
+    a : float
+        The grid spacing in nm.
+    geometry : {'disc', 'slab'}, optional
+        The elementary geometry of the single magnetized pixel.
+    b_0 : float, optional
+        The saturation magnetic induction. Default is 1.
+    u : :class:`~numpy.ndarray` (N=3)
+        The phase contribution of one pixel magnetized in u-direction.
+    v : :class:`~numpy.ndarray` (N=3)
+        The phase contribution of one pixel magnetized in v-direction.
+    u_fft : :class:`~numpy.ndarray` (N=3)
+        The real FFT of the phase contribution of one pixel magnetized in u-direction.
+    v_fft : :class:`~numpy.ndarray` (N=3)
+        The real FFT of the phase contribution of one pixel magnetized in v-direction.
+    dim_fft : tuple (N=2)
+        Dimensions of the grid, which is used for the FFT. Calculated by adding the dimensions
+        `dim` of the magnetization grid and the dimensions of the kernel (given by ``2*dim-1``)
+        and increasing to the next multiple of 2 (for faster FFT).
+    slice_fft : tuple (N=2) of :class:`slice`
+        A tuple of :class:`slice` objects to extract the original field of view from the increased
+        size (size_fft) of the grid for the FFT-convolution.
+
+    '''
+    
+    def __init__(self, dim, a, b_0=1, geometry='disc'):
+        '''Constructor for a :class:`~.Kernel` object for representing a kernel matrix.
+
+        Parameters
+        ----------
+        dim : tuple (N=2)
+            Dimensions of the projected magnetization grid.
+        a : float
+            The grid spacing in nm.
+        b_0 : float, optional
+            The saturation magnetic induction. Default is 1.
+        geometry : {'disc', 'slab'}, optional
+            The elementary geometry of the single magnetized pixel.
+
+        '''
+        # Function for the phase of an elementary geometry:
+        def get_elementary_phase(geometry, n, m, res):
+            if geometry == 'disc':
+                in_or_out = np.logical_not(np.logical_and(n == 0, m == 0))
+                return m / (n**2 + m**2 + 1E-30) * in_or_out
+            elif geometry == 'slab':
+                def F_h(n, m):
+                    a = np.log(res**2 * (n**2 + m**2))
+                    b = np.arctan(n / m)
+                    return n*a - 2*n + 2*m*b
+                return 0.5 * (F_h(n-0.5, m-0.5) - F_h(n+0.5, m-0.5)
+                            - F_h(n-0.5, m+0.5) + F_h(n+0.5, m+0.5))
+        # Set basic properties:
+        self.dim = dim  # !!! size of the FOV, not the kernel (kernel is bigger)!
+        self.a = a
+        self.geometry = geometry
+        self.b_0 = b_0
+        # Calculate kernel (single pixel phase):
+        coeff = -a**2 / (2*PHI_0)
+        v_dim, u_dim = dim
+        u = np.linspace(-(u_dim-1), u_dim-1, num=2*u_dim-1)
+        v = np.linspace(-(v_dim-1), v_dim-1, num=2*v_dim-1)
+        uu, vv = np.meshgrid(u, v)
+        self.u = coeff * get_elementary_phase(geometry, uu, vv, a)
+        self.v = coeff * get_elementary_phase(geometry, vv, uu, a)
+        # Calculate Fourier trafo of kernel components:
+        dim_combined = 3*np.array(dim) - 1  # dim + (2*dim - 1) magnetisation + kernel
+        self.dim_fft = 2 ** np.ceil(np.log2(dim_combined)).astype(int)  # next multiple of 2
+        self.slice_fft = (slice(dim[0]-1, 2*dim[0]-1), slice(dim[1]-1, 2*dim[1]-1))
+        self.u_fft = np.fft.rfftn(self.u, self.dim_fft)
+        self.v_fft = np.fft.rfftn(self.v, self.dim_fft)
+
+    def get_jacobi(self):
+        '''Calculate the Jacobi matrix for the phase calculation from a projected magnetization.
+
+        Parameters
+        ----------
+        None
+        
+        Returns
+        -------
+        jacobi : :class:`~numpy.ndarray` (N=2)
+            Jacobi matrix containing the derivatives of the phase at every pixel with respect to
+            the projected magetization. Has `N` columns for the `u`-component of the magnetization
+            and `N` columns for the `v`-component (from left to right) and ``N**2`` rows for the
+            phase at every pixel.
+
+        Notes
+        -----
+        Just use for small dimensions, Jacobi Matrix scales with order of ``N**4``.
+
+        '''
+        v_dim, u_dim = self.dim
+        jacobi = np.zeros((v_dim*u_dim, 2*v_dim*u_dim))  
+#       nc.get_jacobi_core(dim[0], dim[1], v_phi, u_phi, jacobi)
+#       return jacobi
+        for j in range(v_dim):
+            for i in range(u_dim):
+                u_column = i + u_dim*j
+                v_column = i + u_dim*j + u_dim*v_dim
+                u_min = (u_dim-1) - i
+                u_max = (2*u_dim-1) - i
+                v_min = (v_dim-1) - j
+                v_max = (2*v_dim-1) - j
+                # u_dim*v_dim columns for the u-component:
+                jacobi[:, u_column] = self.u[v_min:v_max, u_min:u_max].reshape(-1)
+                # u_dim*v_dim columns for the v-component (note the minus!):
+                jacobi[:, v_column] = -self.v[v_min:v_max, u_min:u_max].reshape(-1)
+        return jacobi
+
+    def multiply_jacobi(self, vector):
+        '''Calculate the product of the Jacobi matrix with a given `vector`.
+
+        Parameters
+        ----------
+        vector : :class:`~numpy.ndarray` (N=1)
+            Vectorized form of the magnetization in `u`- and `v`-direction of every pixel
+            (row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next
+            ``N**2`` elements to the `v`-component of the magnetization.
+        
+        Returns
+        -------
+        result : :class:`~numpy.ndarray` (N=1)
+            Product of the Jacobi matrix (which is not explicitely calculated) with the vector.
+
+        '''
+        v_dim, u_dim = self.dim
+        size = v_dim * u_dim
+        assert len(vector) == 2*size, 'vector size not compatible!'
+        result = np.zeros(size)
+        for s in range(size):  # column-wise (two columns at a time, u- and v-component)
+            i = s % u_dim
+            j = int(s/u_dim)
+            u_min = (u_dim-1) - i
+            u_max = (2*u_dim-1) - i
+            v_min = (v_dim-1) - j
+            v_max = (2*v_dim-1) - j
+            result += vector[s]*self.u[v_min:v_max, u_min:u_max].reshape(-1)  # u
+            result += vector[s+size]*-self.v[v_min:v_max, u_min:u_max].reshape(-1)  # v        
+        return result
+
+    def multiply_jacobi_T(self, vector):
+        '''Calculate the product of the transposed Jacobi matrix with a given `vector`.
+
+        Parameters
+        ----------
+        vector : :class:`~numpy.ndarray` (N=1)
+            Vectorized form of the magnetization in `u`- and `v`-direction of every pixel
+            (row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next
+            ``N**2`` elements to the `v`-component of the magnetization.
+        
+        Returns
+        -------
+        result : :class:`~numpy.ndarray` (N=1)
+            Product of the transposed Jacobi matrix (which is not explicitely calculated) with
+            the vector.
+
+        '''
+        v_dim, u_dim = self.dim
+        size = v_dim * u_dim
+        assert len(vector) == size, 'vector size not compatible!'
+        result = np.zeros(2*size)
+        for s in range(size):  # row-wise (two rows at a time, u- and v-component)
+            i = s % u_dim
+            j = int(s/u_dim)
+            u_min = (u_dim-1) - i
+            u_max = (2*u_dim-1) - i
+            v_min = (v_dim-1) - j
+            v_max = (2*v_dim-1) - j
+            result[s] = np.sum(vector*self.u[v_min:v_max, u_min:u_max].reshape(-1))  # u
+            result[s+size] = np.sum(vector*-self.v[v_min:v_max, u_min:u_max].reshape(-1))  # v        
+        return result
diff --git a/pyramid/magcreator.py b/pyramid/magcreator.py
index 11eea245d188c37f7cb195dc55deb2353aa42c2d..4d8f6b4340a1c61e90ccb9abf1c51f0dc74bf354 100644
--- a/pyramid/magcreator.py
+++ b/pyramid/magcreator.py
@@ -22,7 +22,7 @@ class Shapes:
 
     '''Class containing functions for generating magnetic shapes.
 
-    The :class:`~.Shapes` class is a collection of some mehtods that return a 3-dimensional
+    The :class:`~.Shapes` class is a collection of some methods that return a 3-dimensional
     matrix that represents the magnetized volume and consists of values between 0 and 1.
     This matrix is used in the functions of the :mod:`~.magcreator` module to create
     :class:`~pyramid.magdata.MagData` objects which store the magnetic informations.
@@ -61,7 +61,7 @@ class Shapes:
 
     @classmethod
     def disc(cls, dim, center, radius, height, axis='z'):
-        '''Create the shape of a zylindrical disc in x-, y-, or z-direction.
+        '''Create the shape of a cylindrical disc in x-, y-, or z-direction.
 
         Parameters
         ----------
@@ -139,7 +139,7 @@ class Shapes:
 
     @classmethod
     def ellipsoid(cls, dim, center, width):
-        '''Create the shape of a sphere.
+        '''Create the shape of an ellipsoid.
 
         Parameters
         ----------
@@ -147,8 +147,8 @@ class Shapes:
             The dimensions of the grid `(z, y, x)`.
         center : tuple (N=3)
             The center of the sphere in pixel coordinates `(z, y, x)`.
-        radius : float
-            The radius of the sphere in pixel coordinates.
+        width : tuple (N=3)
+            The width of the ellipsoid `(z, y, x)`.
 
         Returns
         -------
@@ -158,7 +158,7 @@ class Shapes:
         '''
         assert np.shape(dim) == (3,), 'Parameter dim has to be a a tuple of length 3!'
         assert np.shape(center) == (3,), 'Parameter center has to be a a tuple of length 3!'
-#        assert radius > 0 and np.shape(radius) == (), 'Radius has to be a positive scalar value!'  # TODO: change
+        assert np.shape(width) == (3,), 'Parameter width has to be a a tuple of length 3!'
         mag_shape = np.array([[[np.sqrt((x-center[2])**2/(width[2]/2)**2
                                       + (y-center[1])**2/(width[1]/2)**2
                                       + (z-center[0])**2/(width[0]/2)**2) <= 1
diff --git a/pyramid/magdata.py b/pyramid/magdata.py
index 792ca026a4b1d12a43bd97dd3634763733da1b84..6ac5834f774c99c573da69c2e8c3dffdbc92a28a 100644
--- a/pyramid/magdata.py
+++ b/pyramid/magdata.py
@@ -2,9 +2,9 @@
 """Class for the storage of magnetizatin data.
 
 This module provides the :class:`~.MagData` class whose instances can be used to store
-magnetization data for 3 components for a 3-dimensional grid. It is possible to load data from
-NetCDF4 or LLG (.txt) files or to save the data in these formats. Also plotting methods are
-provided. See :class:`~.MagData` for further information.
+magnetization distributions with 3 components for a 3-dimensional grid. It is possible to load 
+data from NetCDF4 or LLG (.txt) files or to save the data in these formats. Plotting methods
+are also provided. See :class:`~.MagData` for further information.
 
 """
 
@@ -29,12 +29,13 @@ class MagData:
     This is useful, if the `magnitude` is more complex and more than one magnetized object should
     be represented by the :class:`~.MagData` object, which can be added one after another by the
     :func:`~.add_magnitude` function. The dimensions `dim` of the grid will be set as soon as the
-    magnitude is specified. However, `res` has to be always specified at construction time.
+    magnitude is specified. However, the grid spacding `a` has to be always specified at
+    construction time.
 
     Attributes
     ----------
-    res : float
-        The resolution of the grid (grid spacing in nm)
+    a : float
+        The grid spacing in nm.
     dim : tuple (N=3)
         Dimensions of the grid.
     magnitude : tuple (N=3) of :class:`~numpy.ndarray` (N=3)
@@ -43,22 +44,17 @@ class MagData:
 
     '''
 
-    def __init__(self, res, magnitude=None):
+    def __init__(self, a, magnitude=None):
         '''Constructor for a :class:`~.MagData` object for storing magnetization data.
 
         Parameters
         ----------
-        res : float
-            The resolution of the grid (grid spacing) in nm.
+        a : float
+            The grid spacing in nm.
         magnitude : tuple (N=3) of :class:`~numpy.ndarray` (N=3), optional
             The `z`-, `y`- and `x`-component of the magnetization vector for every 3D-gridpoint
             as a tuple. Is zero everywhere if not specified.
 
-        Returns
-        -------
-        mag_data : :class:`~.MagData`
-            The 3D magnetic distribution as a :class:`~.MagData` object.
-
         '''
         if magnitude is not None:
             dim = np.shape(magnitude[0])
@@ -70,7 +66,7 @@ class MagData:
         else:
             self.magnitude = None
             self.dim = None
-        self.res = res
+        self.a = a
 
     def add_magnitude(self, magnitude):
         '''Add a given magnitude to the magnitude of the :class:`~.MagData`.
@@ -175,7 +171,7 @@ class MagData:
 
         Notes
         -----
-        Acts in place and changes dimensions and resolution accordingly.
+        Acts in place and changes dimensions and grid spacing accordingly.
         Only possible, if each axis length is a power of 2!
 
         '''
@@ -188,43 +184,20 @@ class MagData:
             y_mag = self.magnitude[1].reshape(self.dim[0]/2, 2, self.dim[1]/2, 2, self.dim[2]/2, 2)
             x_mag = self.magnitude[2].reshape(self.dim[0]/2, 2, self.dim[1]/2, 2, self.dim[2]/2, 2)
             self.dim = (self.dim[0]/2, self.dim[1]/2, self.dim[2]/2)
-            self.res = self.res * 2
+            self.a = self.a * 2
             self.magnitude = (z_mag.mean(axis=5).mean(axis=3).mean(axis=1),
                               y_mag.mean(axis=5).mean(axis=3).mean(axis=1),
                               x_mag.mean(axis=5).mean(axis=3).mean(axis=1))
 
-    @classmethod
-    def load_from_llg(cls, filename):
-        '''Construct :class:`~.MagData` object from LLG-file.
-
-        Parameters
-        ----------
-        filename : string
-            The name of the LLG-file from which to load the data.
-
-        Returns
-        -------
-        mag_data: :class:`~.MagData`
-            A :class:`~.MagData` object containing the loaded data.
 
-        '''
-        SCALE = 1.0E-9 / 1.0E-2  # From cm to nm
-        data = np.genfromtxt(filename, skip_header=2)
-        x_dim, y_dim, z_dim = np.genfromtxt(filename, dtype=int, skip_header=1,
-                                            skip_footer=len(data[:, 0]))
-        res = (data[1, 0] - data[0, 0]) / SCALE
-        # Reshape in Python and Igor is different, Python fills rows first, Igor columns:
-        x_mag, y_mag, z_mag = [data[:, i].reshape(z_dim, y_dim, x_dim) for i in range(3, 6)]
-        return MagData(res, (z_mag, y_mag, x_mag))
-
-    def save_to_llg(self, filename='magdata_output.txt'):
+    def save_to_llg(self, filename='..\output\magdata_output.txt'):
         '''Save magnetization data in a file with LLG-format.
 
         Parameters
         ----------
         filename : string, optional
             The name of the LLG-file in which to store the magnetization data.
-            The default is 'magdata_output.txt'.
+            The default is '..\output\magdata_output.txt'.
 
         Returns
         -------
@@ -232,11 +205,11 @@ class MagData:
 
         '''
         dim = self.dim
-        res = self.res * 1.0E-9 / 1.0E-2  # from nm to cm
+        a = self.a * 1.0E-9 / 1.0E-2  # from nm to cm
         # Create 3D meshgrid and reshape it and the magnetization into a list where x varies first:
-        zz, yy, xx = np.mgrid[res/2:(dim[0]*res-res/2):dim[0]*1j,
-                              res/2:(dim[1]*res-res/2):dim[1]*1j,
-                              res/2:(dim[2]*res-res/2):dim[2]*1j]
+        zz, yy, xx = np.mgrid[a/2:(dim[0]*a-a/2):dim[0]*1j,
+                              a/2:(dim[1]*a-a/2):dim[1]*1j,
+                              a/2:(dim[2]*a-a/2):dim[2]*1j]
         xx = xx.reshape(-1)
         yy = yy.reshape(-1)
         zz = zz.reshape(-1)
@@ -252,13 +225,13 @@ class MagData:
                                           for cell in row) for row in data))
 
     @classmethod
-    def load_from_netcdf4(cls, filename):
-        '''Construct :class:`~.DataMag` object from NetCDF4-file.
+    def load_from_llg(cls, filename):
+        '''Construct :class:`~.MagData` object from LLG-file.
 
         Parameters
         ----------
         filename : string
-            The name of the NetCDF4-file from which to load the data. Standard format is '\*.nc'.
+            The name of the LLG-file from which to load the data.
 
         Returns
         -------
@@ -266,13 +239,14 @@ class MagData:
             A :class:`~.MagData` object containing the loaded data.
 
         '''
-        mag_file = netCDF4.Dataset(filename, 'r', format='NETCDF4')
-        res = mag_file.res
-        z_mag = mag_file.variables['z_mag'][:]
-        y_mag = mag_file.variables['y_mag'][:]
-        x_mag = mag_file.variables['x_mag'][:]
-        mag_file.close()
-        return MagData(res, (z_mag, y_mag, x_mag))
+        SCALE = 1.0E-9 / 1.0E-2  # From cm to nm
+        data = np.genfromtxt(filename, skip_header=2)
+        x_dim, y_dim, z_dim = np.genfromtxt(filename, dtype=int, skip_header=1,
+                                            skip_footer=len(data[:, 0]))
+        a = (data[1, 0] - data[0, 0]) / SCALE
+        # Reshape in Python and Igor is different, Python fills rows first, Igor columns:
+        x_mag, y_mag, z_mag = [data[:, i].reshape(z_dim, y_dim, x_dim) for i in range(3, 6)]
+        return MagData(a, (z_mag, y_mag, x_mag))
 
     def save_to_netcdf4(self, filename='..\output\magdata_output.nc'):
         '''Save magnetization data in a file with NetCDF4-format.
@@ -281,7 +255,7 @@ class MagData:
         ----------
         filename : string, optional
             The name of the NetCDF4-file in which to store the magnetization data.
-            The default is 'magdata_output.nc'.
+            The default is '..\output\magdata_output.nc'.
 
         Returns
         -------
@@ -289,7 +263,7 @@ class MagData:
 
         '''
         mag_file = netCDF4.Dataset(filename, 'w', format='NETCDF4')
-        mag_file.res = self.res
+        mag_file.a = self.a
         mag_file.createDimension('z_dim', self.dim[0])
         mag_file.createDimension('y_dim', self.dim[1])
         mag_file.createDimension('x_dim', self.dim[2])
@@ -299,9 +273,31 @@ class MagData:
         z_mag[:] = self.magnitude[0]
         y_mag[:] = self.magnitude[1]
         x_mag[:] = self.magnitude[2]
-        print mag_file
         mag_file.close()
 
+    @classmethod
+    def load_from_netcdf4(cls, filename):
+        '''Construct :class:`~.DataMag` object from NetCDF4-file.
+
+        Parameters
+        ----------
+        filename : string
+            The name of the NetCDF4-file from which to load the data. Standard format is '\*.nc'.
+
+        Returns
+        -------
+        mag_data: :class:`~.MagData`
+            A :class:`~.MagData` object containing the loaded data.
+
+        '''
+        mag_file = netCDF4.Dataset(filename, 'r', format='NETCDF4')
+        a = mag_file.a
+        z_mag = mag_file.variables['z_mag'][:]
+        y_mag = mag_file.variables['y_mag'][:]
+        x_mag = mag_file.variables['x_mag'][:]
+        mag_file.close()
+        return MagData(a, (z_mag, y_mag, x_mag))
+
     def quiver_plot(self, title='Magnetic Distribution', filename=None, axis=None,
                     proj_axis='z', ax_slice=None):
         '''Plot a slice of the magnetization as a quiver plot.
@@ -365,6 +361,7 @@ class MagData:
         axis.xaxis.set_major_locator(MaxNLocator(nbins=9, integer=True))
         axis.yaxis.set_major_locator(MaxNLocator(nbins=9, integer=True))
         plt.show()
+        return axis
 
     def quiver_plot3d(self):
         '''Plot the magnetization as 3D-vectors in a quiverplot.
@@ -378,12 +375,12 @@ class MagData:
         None
 
         '''
-        res = self.res
+        a = self.a
         dim = self.dim
         # Create points and vector components as lists:
-        zz, yy, xx = np.mgrid[res/2:(dim[0]*res-res/2):dim[0]*1j,
-                              res/2:(dim[1]*res-res/2):dim[1]*1j,
-                              res/2:(dim[2]*res-res/2):dim[2]*1j]
+        zz, yy, xx = np.mgrid[a/2:(dim[0]*a-a/2):dim[0]*1j,
+                              a/2:(dim[1]*a-a/2):dim[1]*1j,
+                              a/2:(dim[2]*a-a/2):dim[2]*1j]
         xx = xx.reshape(-1)
         yy = yy.reshape(-1)
         zz = zz.reshape(-1)
diff --git a/pyramid/numcore/phase_mag_real.pyx b/pyramid/numcore/phase_mag_real.pyx
index d67993367b216a854df217f5d9fa186f391979c1..d3a23568466b482c51e04087ef92196bd865a93a 100644
--- a/pyramid/numcore/phase_mag_real.pyx
+++ b/pyramid/numcore/phase_mag_real.pyx
@@ -66,8 +66,22 @@ def get_jacobi_core(
     unsigned int v_dim, unsigned int u_dim,
     double[:, :] v_phi, double[:, :] u_phi,
     double[:, :] jacobi):
-    '''DOCSTRING!'''
-    # TODO: Docstring!!!
+    '''Numerical core routine for the jacobi matrix calculation.
+
+    Parameters
+    ----------
+    v_dim, u_dim : int
+        Dimensions of the projection along the two major axes.
+    v_phi, u_phi : :class:`~numpy.ndarray` (N=2)
+        Lookup tables for the pixel fields oriented in `u`- and `v`-direction.
+    jacobi : :class:`~numpy.ndarray` (N=2)
+        Jacobi matrix which is filled by this routine.
+
+    Returns
+    -------
+    None
+
+    '''
     cdef unsigned int i, j, p, q, p_min, p_max, q_min, q_max, u_column, v_column, row
     for j in range(v_dim):
         for i in range(u_dim):
@@ -86,22 +100,3 @@ def get_jacobi_core(
                     jacobi[row, u_column] =  u_phi[q, p]
                     # v-component (note the minus!):
                     jacobi[row, v_column] = -v_phi[q, p]
-
-
-@cython.boundscheck(False)
-@cython.wraparound(False)
-def get_jacobi_core(
-    unsigned int v_dim, unsigned int u_dim,
-    np.ndarray v_phi, np.ndarray u_phi,
-    np.ndarray jacobi):
-    '''DOCSTRING!'''
-    # TODO: Docstring!!!
-    cdef unsigned int i, j, p, q, p_min, p_max, q_min, q_max, u_column, v_column, row
-    for j in range(v_dim):
-        for i in range(u_dim):
-            # v_dim*u_dim columns for the u-component:
-            jacobi[:, i+u_dim*j] = \
-                np.reshape(u_phi[v_dim-1-j:(2*v_dim-1)-j, u_dim-1-i:(2*u_dim-1)-i], -1)
-            # v_dim*u_dim columns for the v-component (note the minus!):
-            jacobi[:, u_dim*v_dim+i+u_dim*j] = \
-                -np.reshape(v_phi[v_dim-1-j:(2*v_dim-1)-j, u_dim-1-i:(2*u_dim-1)-i], -1)
diff --git a/pyramid/phasemap.py b/pyramid/phasemap.py
index 90623640ff7c23e5824d111b289a5a98f3b6b493..2fd0e669d39eb3af758878deb04609769932d800 100644
--- a/pyramid/phasemap.py
+++ b/pyramid/phasemap.py
@@ -2,8 +2,8 @@
 """Class for the storage of phase data.
 
 This module provides the :class:`~.PhaseMap` class whose instances can be used to store
-phase data for a 2-dimensional grid. It is possible to load data from NetCDF4 or LLG (.txt) files
-or to save the data in these formats. Also plotting methods are provided. See :class:`~.PhaseMap`
+phase data for a 2-dimensional grid. It is possible to load data from NetCDF4 or textfiles or to
+save the data in these formats. Also plotting methods are provided. See :class:`~.PhaseMap`
 for further information.
 
 """
@@ -23,13 +23,13 @@ class PhaseMap:
     '''Class for storing phase map data.
 
     Represents 2-dimensional phase maps. the phase information itself is stored in `phase`.
-    The dimensions `dim` of the grid with resolution `res` will be calculated at construction
-    time, but `res` has to be specified.
+    The dimensions `dim` of the grid with grid spacing `a` will be calculated at construction
+    time, but `a` has to be specified.
 
     Attributes
     ----------
-    res : float
-        The resolution of the grid (grid spacing in nm)
+    a : float
+        The grid spacing in nm.
     dim : tuple (N=2)
         Dimensions of the grid.
     phase : :class:`~numpy.ndarray` (N=2)
@@ -45,13 +45,13 @@ class PhaseMap:
                 'mrad': 1E3,
                 'µrad': 1E6}
 
-    def __init__(self, res, phase, unit='rad'):
+    def __init__(self, a, phase, unit='rad'):
         '''Constructor for a :class:`~.PhaseMap` object for storing phase data.
 
         Parameters
         ----------
-        res : float
-            The resolution of the grid (grid spacing) in nm.
+        a : float
+            The grid spacing in nm.
         phase : :class:`~numpy.ndarray` (N=2)
             Matrix containing the phase shift.
         unit : {'rad', 'mrad', 'µrad'}, optional
@@ -59,15 +59,10 @@ class PhaseMap:
             because the phase is scaled accordingly. Does not change the phase itself, which is
             always in `rad`.
 
-        Returns
-        -------
-        phase_map : :class:`~.PhaseMap`
-            The 2D phase shift as a :class:`~.PhaseMap` object.
-
         '''
         dim = np.shape(phase)
         assert len(dim) == 2, 'Phasemap has to be 2-dimensional!'
-        self.res = res
+        self.a = a
         self.dim = dim
         self.unit = unit
         self.phase = phase
@@ -90,27 +85,6 @@ class PhaseMap:
         assert unit in ['rad', 'mrad']
         self.unit = unit
 
-    @classmethod
-    def load_from_txt(cls, filename):
-        '''Construct :class:`~.PhaseMap` object from a human readable txt-file.
-
-        Parameters
-        ----------
-        filename : string
-            The name of the file from which to load the data.
-
-        Returns
-        -------
-        phase_map : :class:`~.PhaseMap`
-            A :class:`~.PhaseMap` object containing the loaded data.
-
-        '''
-        with open(filename, 'r') as phase_file:
-            phase_file.readline()  # Headerline is not used
-            res = float(phase_file.readline()[13:-4])
-            phase = np.loadtxt(filename, delimiter='\t', skiprows=2)
-        return PhaseMap(res, phase)
-
     def save_to_txt(self, filename='..\output\phasemap_output.txt'):
         '''Save :class:`~.PhaseMap` data in a file with txt-format.
 
@@ -118,7 +92,7 @@ class PhaseMap:
         ----------
         filename : string
             The name of the file in which to store the phase map data.
-            The default is 'phasemap_output.txt'.
+            The default is '..\output\phasemap_output.txt'.
 
         Returns
         -------
@@ -127,29 +101,29 @@ class PhaseMap:
         '''
         with open(filename, 'w') as phase_file:
             phase_file.write('{}\n'.format(filename.replace('.txt', '')))
-            phase_file.write('resolution = {} nm\n'.format(self.res))
+            phase_file.write('grid spacing = {} nm\n'.format(self.a))
             np.savetxt(phase_file, self.phase, fmt='%7.6e', delimiter='\t')
 
     @classmethod
-    def load_from_netcdf4(cls, filename):
-        '''Construct :class:`~.PhaseMap` object from NetCDF4-file.
+    def load_from_txt(cls, filename):
+        '''Construct :class:`~.PhaseMap` object from a human readable txt-file.
 
         Parameters
         ----------
         filename : string
-            The name of the NetCDF4-file from which to load the data. Standard format is '\*.nc'.
+            The name of the file from which to load the data.
 
         Returns
         -------
-        phase_map: :class:`~.PhaseMap`
+        phase_map : :class:`~.PhaseMap`
             A :class:`~.PhaseMap` object containing the loaded data.
 
         '''
-        phase_file = netCDF4.Dataset(filename, 'r', format='NETCDF4')
-        res = phase_file.res
-        phase = phase_file.variables['phase'][:]
-        phase_file.close()
-        return PhaseMap(res, phase)
+        with open(filename, 'r') as phase_file:
+            phase_file.readline()  # Headerline is not used
+            a = float(phase_file.readline()[15:-4])
+            phase = np.loadtxt(filename, delimiter='\t', skiprows=2)
+        return PhaseMap(a, phase)
 
     def save_to_netcdf4(self, filename='..\output\phasemap_output.nc'):
         '''Save :class:`~.PhaseMap` data in a file with NetCDF4-format.
@@ -158,7 +132,7 @@ class PhaseMap:
         ----------
         filename : string, optional
             The name of the NetCDF4-file in which to store the phase data.
-            The default is 'phasemap_output.nc'.
+            The default is '..\output\phasemap_output.nc'.
 
         Returns
         -------
@@ -166,14 +140,34 @@ class PhaseMap:
 
         '''
         phase_file = netCDF4.Dataset(filename, 'w', format='NETCDF4')
-        phase_file.res = self.res
+        phase_file.a = self.a
         phase_file.createDimension('v_dim', self.dim[0])
         phase_file.createDimension('u_dim', self.dim[1])
         phase = phase_file.createVariable('phase', 'f', ('v_dim', 'u_dim'))
         phase[:] = self.phase
-        print phase_file
         phase_file.close()
 
+    @classmethod
+    def load_from_netcdf4(cls, filename):
+        '''Construct :class:`~.PhaseMap` object from NetCDF4-file.
+
+        Parameters
+        ----------
+        filename : string
+            The name of the NetCDF4-file from which to load the data. Standard format is '\*.nc'.
+
+        Returns
+        -------
+        phase_map: :class:`~.PhaseMap`
+            A :class:`~.PhaseMap` object containing the loaded data.
+
+        '''
+        phase_file = netCDF4.Dataset(filename, 'r', format='NETCDF4')
+        a = phase_file.a
+        phase = phase_file.variables['phase'][:]
+        phase_file.close()
+        return PhaseMap(a, phase)
+
     def display(self, title='Phase Map', cmap='RdBu', limit=None, norm=None, axis=None):
         '''Display the phasemap as a colormesh.
 
@@ -214,8 +208,8 @@ class PhaseMap:
         axis.set_ylim(0, np.shape(phase)[0])
         axis.xaxis.set_major_locator(MaxNLocator(nbins=9, integer=True))
         axis.yaxis.set_major_locator(MaxNLocator(nbins=9, integer=True))
-        axis.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*self.res)))
-        axis.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*self.res)))
+        axis.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*self.a)))
+        axis.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*self.a)))
         axis.tick_params(axis='both', which='major', labelsize=14)
         axis.set_title(title, fontsize=18)
         axis.set_xlabel('x [nm]', fontsize=15)
diff --git a/pyramid/phasemapper.py b/pyramid/phasemapper.py
index 8ddf90be580397e29c19657c99326174ec0abb7b..d69f262a2deaf273e855435044153fcc5e6833d9 100644
--- a/pyramid/phasemapper.py
+++ b/pyramid/phasemapper.py
@@ -4,9 +4,7 @@
 This module executes several forward models to calculate the magnetic or electric phase map from
 a given projection of a 3-dimensional magnetic distribution (see :mod:`~pyramid.projector`).
 For the magnetic phase map, an approach using real space and one using Fourier space is provided.
-The real space approach also calculates the Jacobi matrix, which is used for the reconstruction in
-the :mod:`~pyramid.reconstructor` module. The electrostatic contribution is calculated by using
-the assumption of a mean inner potentail (MIP).
+The electrostatic contribution is calculated by using the assumption of a mean inner potential.
 
 """
 
@@ -15,8 +13,7 @@ import numpy as np
 from numpy import pi
 
 import pyramid.numcore as nc
-
-from scipy.signal import fftconvolve
+from pyramid.kernel import Kernel
 
 
 PHI_0 = -2067.83    # magnetic flux in T*nm²
@@ -26,117 +23,22 @@ Q_E = 1.602E-19    # electron charge in C
 C = 2.998E8        # speed of light in m/s
 
 
-# TODO: Kernel class? Creator, transform to fourier, get_jacobi?
-
-class Kernel:
-    # TODO: Docstrings!!!
-    
-    def __init__(self, dim, res, geometry='disc', b_0=1):
-        # TODO: Docstring!!!
-        def get_elementary_phase(geometry, n, m, res):
-            if geometry == 'slab':
-                def F_h(n, m):
-                    a = np.log(res**2 * (n**2 + m**2))
-                    b = np.arctan(n / m)
-                    return n*a - 2*n + 2*m*b
-                return 0.5 * (F_h(n-0.5, m-0.5) - F_h(n+0.5, m-0.5)
-                            - F_h(n-0.5, m+0.5) + F_h(n+0.5, m+0.5))
-            elif geometry == 'disc':
-                in_or_out = np.logical_not(np.logical_and(n == 0, m == 0))
-                return m / (n**2 + m**2 + 1E-30) * in_or_out
-        self.dim = dim  # !!! size of the FOV, kernel is bigger!
-        self.res = res
-        self.geometry = geometry
-        self.b_0 = b_0
-        coeff = -res**2 / (2*PHI_0)
-        v_dim, u_dim = dim
-        u = np.linspace(-(u_dim-1), u_dim-1, num=2*u_dim-1)
-        v = np.linspace(-(v_dim-1), v_dim-1, num=2*v_dim-1)
-        uu, vv = np.meshgrid(u, v)
-        self.u = coeff * get_elementary_phase(geometry, uu, vv, res)
-        self.v = coeff * get_elementary_phase(geometry, vv, uu, res)
-        size = 3*np.array(dim) - 1  # dim + (2*dim - 1) magnetisation + kernel
-        fsize = 2 ** np.ceil(np.log2(size)).astype(int)  # next multiple of 2
-        self.u_fft = np.fft.rfftn(self.u, fsize)
-        self.v_fft = np.fft.rfftn(self.v, fsize)
-
-    def get_jacobi(self):
-        # TODO: Docstring!!!
-        '''CAUTIOUS! Just use for small dimensions or computer will explode violently!'''
-        v_dim, u_dim = self.dim
-        jacobi = np.zeros((v_dim*u_dim, 2*v_dim*u_dim))  
-    #    nc.get_jacobi_core(dim[0], dim[1], v_phi, u_phi, jacobi)
-    #    return jacobi
-        for j in range(v_dim):
-            for i in range(u_dim):
-                u_column = i + u_dim*j
-                v_column = i + u_dim*j + u_dim*v_dim
-                u_min = (u_dim-1) - i
-                u_max = (2*u_dim-1) - i
-                v_min = (v_dim-1) - j
-                v_max = (2*v_dim-1) - j
-                # u_dim*v_dim columns for the u-component:
-                jacobi[:, u_column] = self.u[v_min:v_max, u_min:u_max].reshape(-1)
-                # u_dim*v_dim columns for the v-component (note the minus!):
-                jacobi[:, v_column] = -self.v[v_min:v_max, u_min:u_max].reshape(-1)
-        return jacobi
-
-    def multiply_jacobi(self, vector):
-        # TODO: Docstring!!!
-        # vector: v_dim*u_dim elements for u_mag and v_dim*u_dim elements for v_mag
-        v_dim, u_dim = self.dim
-        size = v_dim * u_dim
-        assert len(vector) == 2*size, 'vector size not compatible!'
-        result = np.zeros(size)
-        for s in range(size):  # column-wise (two columns at a time, u- and v-component)
-            i = s % u_dim
-            j = int(s/u_dim)
-            u_min = (u_dim-1) - i
-            u_max = (2*u_dim-1) - i
-            v_min = (v_dim-1) - j
-            v_max = (2*v_dim-1) - j
-            result += vector[s]*self.u[v_min:v_max, u_min:u_max].reshape(-1)  # u
-            result += vector[s+size]*-self.v[v_min:v_max, u_min:u_max].reshape(-1)  # v        
-        return result
-
-    def multiply_jacobi_T(self, vector):
-        # TODO: Docstring!!!
-        # vector: v_dim*u_dim elements for u_mag and v_dim*u_dim elements for v_mag
-        v_dim, u_dim = self.dim
-        size = v_dim * u_dim
-        assert len(vector) == size, 'vector size not compatible!'
-        result = np.zeros(2*size)
-        for s in range(size):  # row-wise (two rows at a time, u- and v-component)
-            i = s % u_dim
-            j = int(s/u_dim)
-            u_min = (u_dim-1) - i
-            u_max = (2*u_dim-1) - i
-            v_min = (v_dim-1) - j
-            v_max = (2*v_dim-1) - j
-            result[s] = np.sum(vector*self.u[v_min:v_max, u_min:u_max].reshape(-1))  # u
-            result[s+size] = np.sum(vector*-self.v[v_min:v_max, u_min:u_max].reshape(-1))  # v        
-        return result
-
-
-def phase_mag_real(res, projection, geometry='disc', b_0=1, jacobi=None):
-    '''Calculate the magnetic phase from magnetization data (real space approach).
+def phase_mag(a, projection, b_0=1, kernel=None):
+    '''Calculate the magnetic phase from magnetization data.
 
     Parameters
     ----------
-    res : float
-        The resolution of the grid (grid spacing) in nm.
+    a : float
+        The grid spacing in nm.
     projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2)
         The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component
         of the magnetization and the thickness projection for the resulting 2D-grid.
-    geometry : {'disc', 'slab'}, optional
-        Specifies the elemental geometry to use for the pixel field.
-        The default is 'disc', because of the smaller computational overhead.
     b_0 : float, optional
         The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T.
         The default is 1.
-    jacobi : :class:`~numpy.ndarray` (N=2), optional
-        Specifies the matrix in which to save the jacobi matrix. The jacobi matrix will not be
-        calculated, if no matrix is specified (default), resulting in a faster computation.
+    kernel : :class:`~pyramid.kernel.Kernel`, optional
+        Specifies the kernel for the convolution with the magnetization data. If none is specified,
+        one will be created with `disc` as the default geometry.
 
     Returns
     -------
@@ -144,86 +46,65 @@ def phase_mag_real(res, projection, geometry='disc', b_0=1, jacobi=None):
         The phase as a 2-dimensional array.
 
     '''
-    # Process input parameters: 
-    dim = np.shape(projection[0])
+    # Process input parameters:
     v_mag, u_mag = projection[:-1]
+    dim = np.shape(u_mag)
 
-    # Create kernel (lookup-tables for the phase of one pixel):
-    kernel = Kernel(dim, res, geometry, b_0)
-    u_phi = kernel.u
-    v_phi = kernel.v
+    # Create kernel (lookup-tables for the phase of one pixel) if none is given:
+    if kernel is None:
+        kernel = Kernel(dim, a, b_0)
 
-    # Calculation of the phase:
-    phase = np.zeros(dim)
-    threshold = 0
-    if jacobi is not None:  # With Jacobian matrix (slower)
-        jacobi[:] = 0  # Jacobi matrix --> zeros
-        for j in range(dim[0]):
-            for i in range(dim[1]):
-                u_phase = u_phi[dim[0]-1-j:(2*dim[0]-1)-j, dim[1]-1-i:(2*dim[1]-1)-i]
-                jacobi[:, i+dim[1]*j] = u_phase.reshape(-1)
-                if abs(u_mag[j, i]) > threshold:
-                    phase += u_mag[j, i] * u_phase
-                v_phase = v_phi[dim[0]-1-j:(2*dim[0]-1)-j, dim[1]-1-i:(2*dim[1]-1)-i]
-                jacobi[:, dim[1]*dim[0]+i+dim[1]*j] = -v_phase.reshape(-1)
-                if abs(v_mag[j, i]) > threshold:
-                    phase -= v_mag[j, i] * v_phase
-    else:  # Without Jacobi matrix (faster)
-        nc.phase_mag_real_core(dim[0], dim[1], v_phi, u_phi, v_mag, u_mag, phase, threshold)
-    # Return the phase:
-    return phase
+    # Fourier transform the projected magnetisation:
+    u_mag_fft = np.fft.rfftn(u_mag, kernel.dim_fft)
+    v_mag_fft = np.fft.rfftn(v_mag, kernel.dim_fft)
 
+    # Convolve the magnetization with the kernel in Fourier space:
+    u_phase = np.fft.irfftn(u_mag_fft * kernel.u_fft, kernel.dim_fft)[kernel.slice_fft].copy()
+    v_phase = np.fft.irfftn(v_mag_fft * kernel.v_fft, kernel.dim_fft)[kernel.slice_fft].copy()
 
-def phase_mag_real_conv(res, projection, method='disc', b_0=1):
-    '''Calculate the magnetic phase from magnetization data (real space approach).
+    # Return the result:
+    return u_phase - v_phase
+
+
+def phase_elec(a, projection, v_0=1, v_acc=30000):
+    '''Calculate the electric phase from magnetization distributions.
 
     Parameters
     ----------
-    res : float
-        The resolution of the grid (grid spacing) in nm.
+    a : float
+        The grid spacing in nm.
     projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2)
-        The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component
+        The in-plane projection of the magnetization as a tuple, storing the u- and v-component
         of the magnetization and the thickness projection for the resulting 2D-grid.
-    method : {'disc', 'slab'}, optional
-        Specifies the elemental geometry to use for the pixel field.
-        The default is 'disc', because of the smaller computational overhead.
-    b_0 : float, optional
-        The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T.
-        The default is 1.
-    jacobi : :class:`~numpy.ndarray` (N=2), optional
-        Specifies the matrix in which to save the jacobi matrix. The jacobi matrix will not be
-        calculated, if no matrix is specified (default), resulting in a faster computation.
+    v_0 : float, optional
+        The mean inner potential of the specimen in V. The default is 1.
+    v_acc : float, optional
+        The acceleration voltage of the electron microscope in V. The default is 30000.
 
     Returns
     -------
     phase : :class:`~numpy.ndarray` (N=2)
         The phase as a 2-dimensional array.
 
-    '''  # TODO: Docstring!!!
+    '''
     # Process input parameters:
-    dim = np.shape(projection[0])
-    v_mag, u_mag = projection[:-1]
-
-    # Get lookup-tables for the phase of one pixel:
-    u_phi = get_kernel(method, 'u', dim, res, b_0)
-    v_phi = get_kernel(method, 'v', dim, res, b_0)
-
-    # Return the phase:
-    result = fftconvolve(u_mag, u_phi, 'same') - fftconvolve(v_mag, v_phi, 'same')
-    return result
+    lam = H_BAR / np.sqrt(2 * M_E * Q_E * v_acc * (1 + Q_E*v_acc / (2*M_E*C**2)))
+    Ce = 2*pi*Q_E/lam * (Q_E*v_acc + M_E*C**2) / (Q_E*v_acc * (Q_E*v_acc + 2*M_E*C**2))
+    # return phase:
+    return v_0 * Ce * projection[-1] * a*1E-9
 
 
-def phase_mag_real_fast(res, projection, kernels_fourier, b_0=1):
-    '''Calculate the magnetic phase from magnetization data (real space approach).
+def phase_mag_real(a, projection, b_0=1, geometry='disc', jacobi=None):
+    '''Calculate the magnetic phase from magnetization data (pure real space, no FFT-convolution).
 
     Parameters
     ----------
-    res : float
-        The resolution of the grid (grid spacing) in nm.
+    a : float
+        The grid spacing in nm.
     projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2)
         The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component
         of the magnetization and the thickness projection for the resulting 2D-grid.
-    method : {'disc', 'slab'}, optional
+    geometry : {'disc', 'slab'}, optional
         Specifies the elemental geometry to use for the pixel field.
         The default is 'disc', because of the smaller computational overhead.
     b_0 : float, optional
@@ -238,33 +119,44 @@ def phase_mag_real_fast(res, projection, kernels_fourier, b_0=1):
     phase : :class:`~numpy.ndarray` (N=2)
         The phase as a 2-dimensional array.
 
-    '''  # TODO: Docstring!!!
-    # Process input parameters:
+    '''
+    # Process input parameters: 
+    dim = np.shape(projection[0])
     v_mag, u_mag = projection[:-1]
-    dim = np.shape(u_mag)
-
-    size = 3*np.array(dim) - 1  # dim + (2*dim - 1) magnetisation + kernel
-    fsize = 2 ** np.ceil(np.log2(size)).astype(int)
-    fslice = tuple([slice(0, int(sz)) for sz in size])
 
-    u_mag_f = np.fft.rfftn(u_mag, fsize)
-    v_mag_f = np.fft.rfftn(v_mag, fsize)
-
-    v_kern_f, u_kern_f = kernels_fourier
+    # Create kernel (lookup-tables for the phase of one pixel):
+    kernel = Kernel(dim, a, b_0, geometry)
+    u_phi = kernel.u
+    v_phi = kernel.v
 
-    fslice = (slice(dim[0]-1, 2*dim[0]-1), slice(dim[1]-1, 2*dim[1]-1))
-    u_phase = np.fft.irfftn(u_mag_f * u_kern_f, fsize)[fslice].copy()
-    v_phase = np.fft.irfftn(v_mag_f * v_kern_f, fsize)[fslice].copy()
-    return u_phase - v_phase
+    # Calculation of the phase:
+    phase = np.zeros(dim)
+    threshold = 0
+    if jacobi is not None:  # With Jacobian matrix (slower)
+        jacobi[:] = 0  # Jacobi matrix --> zeros
+        for j in range(dim[0]):
+            for i in range(dim[1]):
+                u_phase = u_phi[dim[0]-1-j:(2*dim[0]-1)-j, dim[1]-1-i:(2*dim[1]-1)-i]
+                jacobi[:, i+dim[1]*j] = u_phase.reshape(-1)
+                if abs(u_mag[j, i]) > threshold:
+                    phase += u_mag[j, i] * u_phase
+                v_phase = v_phi[dim[0]-1-j:(2*dim[0]-1)-j, dim[1]-1-i:(2*dim[1]-1)-i]
+                jacobi[:, dim[1]*dim[0]+i+dim[1]*j] = -v_phase.reshape(-1)
+                if abs(v_mag[j, i]) > threshold:
+                    phase -= v_mag[j, i] * v_phase
+    else:  # Without Jacobi matrix (faster)
+        nc.phase_mag_real_core(dim[0], dim[1], v_phi, u_phi, v_mag, u_mag, phase, threshold)
+    # Return the phase:
+    return phase
 
 
-def phase_mag_fourier(res, projection, padding=0, b_0=1):
+def phase_mag_fourier(a, projection, padding=0, b_0=1):
     '''Calculate the magnetic phase from magnetization data (Fourier space approach).
 
     Parameters
     ----------
-    res : float
-        The resolution of the grid (grid spacing) in nm.
+    a : float
+        The grid spacing in nm.
     projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2)
         The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component
         of the magnetization and the thickness projection for the resulting 2D-grid.
@@ -294,86 +186,13 @@ def phase_mag_fourier(res, projection, padding=0, b_0=1):
     u_mag_fft = np.fft.fftshift(np.fft.rfft2(u_mag_big), axes=0)
     v_mag_fft = np.fft.fftshift(np.fft.rfft2(v_mag_big), axes=0)
     # Calculate the Fourier transform of the phase:
-    nyq = 0.5 / res  # nyquist frequency
-    f_u = np.linspace(0, nyq, u_mag_fft.shape[1])
-    f_v = np.linspace(-nyq, nyq, u_mag_fft.shape[0], endpoint=False)
+    f_nyq = 0.5 / a  # nyquist frequency
+    f_u = np.linspace(0, f_nyq, u_mag_fft.shape[1])
+    f_v = np.linspace(-f_nyq, f_nyq, u_mag_fft.shape[0], endpoint=False)
     f_uu, f_vv = np.meshgrid(f_u, f_v)
     coeff = (1j*b_0) / (2*PHI_0)
-    phase_fft = coeff * res * (u_mag_fft*f_vv - v_mag_fft*f_uu) / (f_uu**2 + f_vv**2 + 1e-30) #* (8*(res/2)**3)*np.sinc(res/2*f_uu)*np.sinc(res/2*f_vv) * np.exp(2*pi*1j*())
+    phase_fft = coeff * a * (u_mag_fft*f_vv - v_mag_fft*f_uu) / (f_uu**2 + f_vv**2 + 1e-30)
     # Transform to real space and revert padding:
     phase_big = np.fft.irfft2(np.fft.ifftshift(phase_fft, axes=0))
     phase = phase_big[v_pad:v_pad+v_dim, u_pad:u_pad+u_dim]
     return phase
-
-
-def phase_mag(res, projection, kernel, b_0=1):
-    '''Calculate the magnetic phase from magnetization data (real space approach).
-
-    Parameters
-    ----------
-    res : float
-        The resolution of the grid (grid spacing) in nm.
-    projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2)
-        The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component
-        of the magnetization and the thickness projection for the resulting 2D-grid.
-    method : {'disc', 'slab'}, optional
-        Specifies the elemental geometry to use for the pixel field.
-        The default is 'disc', because of the smaller computational overhead.
-    b_0 : float, optional
-        The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T.
-        The default is 1.
-    jacobi : :class:`~numpy.ndarray` (N=2), optional
-        Specifies the matrix in which to save the jacobi matrix. The jacobi matrix will not be
-        calculated, if no matrix is specified (default), resulting in a faster computation.
-
-    Returns
-    -------
-    phase : :class:`~numpy.ndarray` (N=2)
-        The phase as a 2-dimensional array.
-
-    '''  # TODO: Docstring!!!
-    # Process input parameters:
-    v_mag, u_mag = projection[:-1]
-    dim = np.shape(u_mag)
-
-    size = 3*np.array(dim) - 1  # dim + (2*dim - 1) magnetisation + kernel
-    fsize = 2 ** np.ceil(np.log2(size)).astype(int)
-    fslice = tuple([slice(0, int(sz)) for sz in size])
-
-    u_mag_f = np.fft.rfftn(u_mag, fsize)
-    v_mag_f = np.fft.rfftn(v_mag, fsize)
-
-    v_kern_f, u_kern_f = kernels_fourier
-
-    fslice = (slice(dim[0]-1, 2*dim[0]-1), slice(dim[1]-1, 2*dim[1]-1))
-    u_phase = np.fft.irfftn(u_mag_f * u_kern_f, fsize)[fslice].copy()
-    v_phase = np.fft.irfftn(v_mag_f * v_kern_f, fsize)[fslice].copy()
-    return u_phase - v_phase
-
-
-def phase_elec(res, projection, v_0=1, v_acc=30000):
-    '''Calculate the electric phase from magnetization distributions.
-
-    Parameters
-    ----------
-    res : float
-        The resolution of the grid (grid spacing) in nm.
-    projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2)
-        The in-plane projection of the magnetization as a tuple, storing the u- and v-component
-        of the magnetization and the thickness projection for the resulting 2D-grid.
-    v_0 : float, optional
-        The mean inner potential of the specimen in V. The default is 1.
-    v_acc : float, optional
-        The acceleration voltage of the electron microscope in V. The default is 30000.
-
-    Returns
-    -------
-    phase : :class:`~numpy.ndarray` (N=2)
-        The phase as a 2-dimensional array.
-
-    '''
-    # Process input parameters:
-    lam = H_BAR / np.sqrt(2 * M_E * Q_E * v_acc * (1 + Q_E*v_acc / (2*M_E*C**2)))
-    Ce = 2*pi*Q_E/lam * (Q_E*v_acc + M_E*C**2) / (Q_E*v_acc * (Q_E*v_acc + 2*M_E*C**2))
-    # return phase:
-    return v_0 * Ce * projection[-1] * res*1E-9
diff --git a/pyramid/projection.py b/pyramid/projection.py
new file mode 100644
index 0000000000000000000000000000000000000000..01aa038965abdd8d36ab8ac2f25e8f686bb581ae
--- /dev/null
+++ b/pyramid/projection.py
@@ -0,0 +1,7 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Nov 29 12:07:44 2013
+
+@author: Jan
+"""
+
diff --git a/pyramid/projector.py b/pyramid/projector.py
index 00d56c82b364d6b93e65d4485ebab99f08820de5..9fa94d265d7414b04044f63dbc3098597da6a9c2 100644
--- a/pyramid/projector.py
+++ b/pyramid/projector.py
@@ -3,8 +3,8 @@
 
 This module creates 2-dimensional projections from 3-dimensional magnetic distributions, which
 are stored in :class:`~pyramid.magdata.MagData` objects. Either simple projections along the
-major axes are possible (:func:`~.simple_axis_projection`), or projections along arbitrary
-directions with the use of transfer functions (work in progress).
+major axes are possible (:func:`~.simple_axis_projection`), or projections with a tilt around
+the y-axis. The thickness profile is also calculated and can be used for electric phase maps.
 
 """
 
@@ -12,8 +12,6 @@ directions with the use of transfer functions (work in progress).
 import numpy as np
 from numpy import pi
 
-import matplotlib.pyplot as plt
-from matplotlib.ticker import MaxNLocator
 import itertools
 
 from pyramid.magdata import MagData
@@ -38,7 +36,7 @@ def simple_axis_projection(mag_data, axis='z', threshold=0):
     projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2)
         The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component
         of the magnetization and the thickness projection for the resulting 2D-grid. The latter
-        has to be multiplied with the resolution for a value in nm.
+        has to be multiplied with the grid spacing for a value in nm.
 
     '''
     assert isinstance(mag_data, MagData), 'Parameter mag_data has to be a MagData object!'
@@ -58,16 +56,30 @@ def simple_axis_projection(mag_data, axis='z', threshold=0):
     return projection
 
 
-def single_tilt_projection(mag_data, tilt=0, threshold=0):
-    # TODO: Docstring!!!
-    '''Projection with tilt around the (centered!) y-axis'''
+def single_tilt_projection(mag_data, tilt=0):
+    '''
+    Project a magnetization distribution which is tilted around the centered y-axis.
+
+    Parameters
+    ----------
+    mag_data : :class:`~pyramid.magdata.MagData`
+        A :class:`~pyramid.magdata.MagData` object storing the magnetization distribution,
+        which should be projected.
+    tilt : float, optional
+        The counter-clockwise tilt angle around the y-axis. Default is 1.
+
+    Returns
+    -------
+    projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2)
+        The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component
+        of the magnetization and the thickness projection for the resulting 2D-grid. The latter
+        has to be multiplied with the grid spacing for a value in nm.
+
+    '''
     assert isinstance(mag_data, MagData), 'Parameter mag_data has to be a MagData object!'
-#    assert axis == 'z' or axis == 'y' or axis == 'x', 'Axis has to be x, y or z (as string)!'
 
     def get_position(p, m, b, size):
         y, x = np.array(p)[:, 0]+0.5, np.array(p)[:, 1]+0.5
-#        print 'p:', p
-#        print 'position:', (y-m*x-b)/np.sqrt(m**2+1)# + size/2.
         return (y-m*x-b)/np.sqrt(m**2+1) + size/2.
 
     def get_impact(pos, r, size):
@@ -75,21 +87,18 @@ def single_tilt_projection(mag_data, tilt=0, threshold=0):
                 if 0 <= x < size]
 
     def get_weight(delta, rho):  # use circles to represent the voxels
-        a, b = delta-rho, delta+rho
-        if a >= 1 or b <= -1:  # TODO: Should not be necessary!
-            print 'Outside of bounds:', delta
-            return 0
+        lo, up = delta-rho, delta+rho
         # Upper boundary:
-        if b >= 1:
-            w_b = 0.5
+        if up >= 1:
+            w_up = 0.5
         else:
-            w_b = (b*np.sqrt(1-b**2) + np.arctan(b/np.sqrt(1-b**2))) / pi
+            w_up = (up*np.sqrt(1-up**2) + np.arctan(up/np.sqrt(1-up**2))) / pi
         # Lower boundary:
-        if a <= -1:
-            w_a = -0.5
+        if lo <= -1:
+            w_lo = -0.5
         else:
-            w_a = (a*np.sqrt(1-a**2) + np.arctan(a/np.sqrt(1-a**2))) / pi
-        return w_b - w_a
+            w_lo = (lo*np.sqrt(1-lo**2) + np.arctan(lo/np.sqrt(1-lo**2))) / pi
+        return w_up - w_lo
 
     # Set starting variables:
     # length along projection (proj, z), rotation (rot, y) and perpendicular (perp, x) axis:
@@ -101,22 +110,17 @@ def single_tilt_projection(mag_data, tilt=0, threshold=0):
                   np.zeros((dim_rot, dim_perp)))
     # Creating coordinate list of all voxels:
     voxels = list(itertools.product(range(dim_proj), range(dim_perp)))
-#    print 'voxels:', voxels
 
     # Calculate positions along the projected pixel coordinate system:
     center = (dim_proj/2., dim_perp/2.)
-#    direction = (-np.cos(tilt), np.sin(tilt))
-    m = np.where(tilt<=pi, -1/np.tan(tilt+1E-30), 1/np.tan(tilt+1E-30))#direction[0]/(direction[1]+1E-30)
-#    print 'm:', m
+    m = np.where(tilt<=pi, -1/np.tan(tilt+1E-30), 1/np.tan(tilt+1E-30))
     b = center[0] - m * center[1]
-#    print 'b:', b
     positions = get_position(voxels, m, b, dim_perp)
-#    print positions
 
     # Calculate weights:
     r = 1/np.sqrt(np.pi)  # radius of the voxel circle
-    rho = 0.5 / r  # TODO: ratio of radii
-    weights = []
+    rho = 0.5 / r
+    weights = {}
     for i, voxel in enumerate(voxels):
         voxel_weights = []
         impacts = get_impact(positions[i], r, dim_perp)
@@ -124,12 +128,11 @@ def single_tilt_projection(mag_data, tilt=0, threshold=0):
             distance = np.abs(impact+0.5 - positions[i])
             delta = distance / r
             voxel_weights.append((impact, get_weight(delta, rho)))
-        weights.append((voxel, voxel_weights))
-    
-#    print weights
+        weights[voxel] = voxel_weights
     
     # Calculate projection with the calculated weights for the voxels (rotation around y-axis):
-    for i, (voxel, voxel_weights) in enumerate(weights):
+    for i, voxel in enumerate(weights):
+        voxel_weights = weights[voxel]
         for pixel, weight in voxel_weights:
             # Component parallel to tilt axis (':' goes over all slices):
             projection[0][:, pixel] += weight * y_mag[voxel[0], :, voxel[1]]
@@ -140,3 +143,199 @@ def single_tilt_projection(mag_data, tilt=0, threshold=0):
             projection[2][:, pixel] += weight * mask[voxel[0], :, voxel[1]]
     
     return projection
+    
+class Projection:
+
+    '''Class for calculating kernel matrices for the phase calculation.
+
+    Represents the phase of a single magnetized pixel for two orthogonal directions (`u` and `v`),
+    which can be accessed via the corresponding attributes. The default elementary geometry is
+    `disc`, but can also be specified as the phase of a `slab` representation of a single
+    magnetized pixel. During the construction, a few attributes are calculated that are used in
+    the convolution during phase calculation.
+
+    Attributes
+    ----------
+    dim : tuple (N=2)
+        Dimensions of the projected magnetization grid.
+    a : float
+        The grid spacing in nm.
+    geometry : {'disc', 'slab'}, optional
+        The elementary geometry of the single magnetized pixel.
+    b_0 : float, optional
+        The saturation magnetic induction. Default is 1.
+    u : :class:`~numpy.ndarray` (N=3)
+        The phase contribution of one pixel magnetized in u-direction.
+    v : :class:`~numpy.ndarray` (N=3)
+        The phase contribution of one pixel magnetized in v-direction.
+    u_fft : :class:`~numpy.ndarray` (N=3)
+        The real FFT of the phase contribution of one pixel magnetized in u-direction.
+    v_fft : :class:`~numpy.ndarray` (N=3)
+        The real FFT of the phase contribution of one pixel magnetized in v-direction.
+    dim_fft : tuple (N=2)
+        Dimensions of the grid, which is used for the FFT. Calculated by adding the dimensions
+        `dim` of the magnetization grid and the dimensions of the kernel (given by ``2*dim-1``)
+        and increasing to the next multiple of 2 (for faster FFT).
+    slice_fft : tuple (N=2) of :class:`slice`
+        A tuple of :class:`slice` objects to extract the original field of view from the increased
+        size (size_fft) of the grid for the FFT-convolution.
+
+    ''' # TODO: Docstring!
+    
+    def __init__(self, u_mag, v_mag, thickness, weights):
+        '''Constructor for a :class:`~.Kernel` object for representing a kernel matrix.
+
+        Parameters
+        ----------
+        dim : tuple (N=2)
+            Dimensions of the projected magnetization grid.
+        a : float
+            The grid spacing in nm.
+        b_0 : float, optional
+            The saturation magnetic induction. Default is 1.
+        geometry : {'disc', 'slab'}, optional
+            The elementary geometry of the single magnetized pixel.
+
+        ''' # TODO: Docstring!
+        self.dim = np.shape(u_mag)
+#        self.a = a
+#        self.b_0 = b_0
+        self.u = u_mag
+        self.v = v_mag
+        self.weights = weights
+
+    def get_jacobi(self):
+        '''Calculate the Jacobi matrix for the phase calculation from a projected magnetization.
+
+        Parameters
+        ----------
+        None
+        
+        Returns
+        -------
+        jacobi : :class:`~numpy.ndarray` (N=2)
+            Jacobi matrix containing the derivatives of the phase at every pixel with respect to
+            the projected magetization. Has `N` columns for the `u`-component of the magnetization
+            and `N` columns for the `v`-component (from left to right) and ``N**2`` rows for the
+            phase at every pixel.
+
+        Notes
+        -----
+        Just use for small dimensions, Jacobi Matrix scales with order of ``N**4``.
+
+        ''' # TODO: Docstring!
+        v_dim, u_dim = self.dim
+        size = v_dim * u_dim
+        jacobi = np.zeros((v_dim*u_dim, 2*v_dim*u_dim))  
+        weight_matrix = np.zeros(dim)  # Check if correct (probably not, x and z instead of x and y)
+        voxels = list(itertools.product(range(dim_proj), range(dim_perp)))
+        for i, voxel in enumerate(self.weights):
+            voxel_weights = self.weights[voxel]
+            for pixel, weight in voxel_weights:
+                # Component parallel to tilt axis (':' goes over all slices):
+                projection[0][:, pixel] += weight * y_mag[voxel[0], :, voxel[1]]
+                # Component perpendicular to tilt axis:
+                projection[1][:, pixel] += weight * (x_mag[voxel[0], :, voxel[1]]*np.cos(tilt)
+                                                   + z_mag[voxel[0], :, voxel[1]]*np.sin(tilt))
+                # Thickness profile:
+                projection[2][:, pixel] += weight * mask[voxel[0], :, voxel[1]]
+        
+        for i, vx in enumerate(self.weights):
+            vx_pos = vx[1]*3 + vx[0]
+            for px, weight in self.weights[voxel]:
+                px_pos = (px[2]*3 + px[1])*3 + px[0]
+                weight_matrix[vx_pos, px_pos] = weight
+            
+        
+        
+        
+        
+        
+        
+        
+        
+        
+        
+        
+        
+        
+        v_dim, u_dim = self.dim
+        jacobi = np.zeros((v_dim*u_dim, 2*v_dim*u_dim))  
+#       nc.get_jacobi_core(dim[0], dim[1], v_phi, u_phi, jacobi)
+#       return jacobi
+        for j in range(v_dim):
+            for i in range(u_dim):
+                u_column = i + u_dim*j
+                v_column = i + u_dim*j + u_dim*v_dim
+                u_min = (u_dim-1) - i
+                u_max = (2*u_dim-1) - i
+                v_min = (v_dim-1) - j
+                v_max = (2*v_dim-1) - j
+                # u_dim*v_dim columns for the u-component:
+                jacobi[:, u_column] = self.u[v_min:v_max, u_min:u_max].reshape(-1)
+                # u_dim*v_dim columns for the v-component (note the minus!):
+                jacobi[:, v_column] = -self.v[v_min:v_max, u_min:u_max].reshape(-1)
+        return jacobi
+
+    def multiply_jacobi(self, vector):
+        '''Calculate the product of the Jacobi matrix with a given `vector`.
+
+        Parameters
+        ----------
+        vector : :class:`~numpy.ndarray` (N=1)
+            Vectorized form of the magnetization in `u`- and `v`-direction of every pixel
+            (row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next
+            ``N**2`` elements to the `v`-component of the magnetization.
+        
+        Returns
+        -------
+        result : :class:`~numpy.ndarray` (N=1)
+            Product of the Jacobi matrix (which is not explicitely calculated) with the vector.
+
+        ''' # TODO: Docstring!
+        v_dim, u_dim = self.dim
+        size = v_dim * u_dim
+        assert len(vector) == 2*size, 'vector size not compatible!'
+        result = np.zeros(size)
+        for s in range(size):  # column-wise (two columns at a time, u- and v-component)
+            i = s % u_dim
+            j = int(s/u_dim)
+            u_min = (u_dim-1) - i
+            u_max = (2*u_dim-1) - i
+            v_min = (v_dim-1) - j
+            v_max = (2*v_dim-1) - j
+            result += vector[s]*self.u[v_min:v_max, u_min:u_max].reshape(-1)  # u
+            result += vector[s+size]*-self.v[v_min:v_max, u_min:u_max].reshape(-1)  # v        
+        return result
+
+    def multiply_jacobi_T(self, vector):
+        '''Calculate the product of the transposed Jacobi matrix with a given `vector`.
+
+        Parameters
+        ----------
+        vector : :class:`~numpy.ndarray` (N=1)
+            Vectorized form of the magnetization in `u`- and `v`-direction of every pixel
+            (row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next
+            ``N**2`` elements to the `v`-component of the magnetization.
+        
+        Returns
+        -------
+        result : :class:`~numpy.ndarray` (N=1)
+            Product of the transposed Jacobi matrix (which is not explicitely calculated) with
+            the vector.
+
+        ''' # TODO: Docstring!
+        v_dim, u_dim = self.dim
+        size = v_dim * u_dim
+        assert len(vector) == size, 'vector size not compatible!'
+        result = np.zeros(2*size)
+        for s in range(size):  # row-wise (two rows at a time, u- and v-component)
+            i = s % u_dim
+            j = int(s/u_dim)
+            u_min = (u_dim-1) - i
+            u_max = (2*u_dim-1) - i
+            v_min = (v_dim-1) - j
+            v_max = (2*v_dim-1) - j
+            result[s] = np.sum(vector*self.u[v_min:v_max, u_min:u_max].reshape(-1))  # u
+            result[s+size] = np.sum(vector*-self.v[v_min:v_max, u_min:u_max].reshape(-1))  # v        
+        return result
diff --git a/pyramid/reconstructor.py b/pyramid/reconstructor.py
index b31d3e5f2312ccd86fb53cdba909c74d212f362b..7c995dc7d1eb54bc4d5e1ea3755cfa6c4b8fd7cb 100644
--- a/pyramid/reconstructor.py
+++ b/pyramid/reconstructor.py
@@ -49,17 +49,17 @@ def reconstruct_simple_leastsq(phase_map, mask, b_0=1):
     '''
     # Read in parameters:
     y_m = phase_map.phase.reshape(-1)  # Measured phase map as a vector
-    res = phase_map.res  # Resolution
+    a = phase_map.a  # Grid spacing
     dim = mask.shape  # Dimensions of the mag. distr.
     count = mask.sum()  # Number of pixels with magnetization
     lam = 1e-6  # Regularisation parameter
     # Create empty MagData object for the reconstruction:
-    mag_data_rec = MagData(res, (np.zeros(dim), np.zeros(dim), np.zeros(dim)))
+    mag_data_rec = MagData(a, (np.zeros(dim), np.zeros(dim), np.zeros(dim)))
 
     # Function that returns the phase map for a magnetic configuration x:
     def F(x):
         mag_data_rec.set_vector(mask, x)
-        phase = pm.phase_mag_real(res, pj.simple_axis_projection(mag_data_rec), 'slab', b_0)
+        phase = pm.phase_mag_real(a, pj.simple_axis_projection(mag_data_rec), b_0)
         return phase.reshape(-1)
 
     # Cost function which should be minimized:
diff --git a/scripts/compare methods/compare_methods.py b/scripts/compare methods/compare_methods.py
index dd32b50dcfe677f84845008b385478cb1fd2dbb4..c949a8ae9ab21e95c452955341baa483cf547887 100644
--- a/scripts/compare methods/compare_methods.py	
+++ b/scripts/compare methods/compare_methods.py	
@@ -17,6 +17,7 @@ import pyramid.phasemapper as pm
 import pyramid.holoimage as hi
 import pyramid.analytic as an
 from pyramid.magdata import MagData
+from pyramid.kernel import Kernel
 from pyramid.phasemap import PhaseMap
 
 
@@ -30,7 +31,7 @@ def compare_methods():
     '''
     # Input parameters:
     b_0 = 1.0    # in T
-    res = 1.0  # in nm
+    a = 1.0  # in nm
     phi = pi/4
     padding = 3
     density = 10
@@ -41,56 +42,52 @@ def compare_methods():
         center = (dim[0]/2.-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px (z,y,x) index starts at 0!
         width = (dim[0]/2, dim[1]/2, dim[2]/2)  # in px (z, y, x)
         mag_shape = mc.Shapes.slab(dim, center, width)
-        phase_ana = an.phase_mag_slab(dim, res, phi, center, width, b_0)
+        phase_ana = an.phase_mag_slab(dim, a, phi, center, width, b_0)
     elif geometry == 'disc':
         center = (dim[0]/2.-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px (z,y,x) index starts at 0!
         radius = dim[1]/4  # in px
         height = dim[0]/2  # in px
         mag_shape = mc.Shapes.disc(dim, center, radius, height)
-        phase_ana = an.phase_mag_disc(dim, res, phi, center, radius, height, b_0)
+        phase_ana = an.phase_mag_disc(dim, a, phi, center, radius, height, b_0)
     elif geometry == 'sphere':
         center = (dim[0]/2.-0.5, dim[1]/2.-0.5, dim[2]/2.-0.50)  # in px (z, y, x) index starts with 0!
         radius = dim[1]/4  # in px
         mag_shape = mc.Shapes.sphere(dim, center, radius)
-        phase_ana = an.phase_mag_sphere(dim, res, phi, center, radius, b_0)
+        phase_ana = an.phase_mag_sphere(dim, a, phi, center, radius, b_0)
     # Project the magnetization data:
-    mag_data = MagData(res, mc.create_mag_dist_homog(mag_shape, phi))
+    mag_data = MagData(a, mc.create_mag_dist_homog(mag_shape, phi))
     mag_data.quiver_plot(ax_slice=int(center[0]))
     projection = pj.simple_axis_projection(mag_data)
-    pj.quiver_plot(projection)
     # Construct phase maps:
-    phase_map_ana = PhaseMap(res, phase_ana)
+    phase_map_ana = PhaseMap(a, phase_ana)
     start_time = time.time()
-    phase_map_fft = PhaseMap(res, pm.phase_mag_fourier(res, projection, padding, b_0))
-    print 'Time for Fourier space approach:         ', time.time() - start_time
+    phase_map_fft = PhaseMap(a, pm.phase_mag_fourier(a, projection, padding, b_0))
+    print 'Time for Fourier space approach:               ', time.time() - start_time
     start_time = time.time()
-    phase_map_slab = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab', b_0))
-    print 'Time for real space approach (Slab):     ', time.time() - start_time
+    phase_map_slab = PhaseMap(a, pm.phase_mag_real(a, projection, b_0, 'slab'))
+    print 'Time for real space approach (Slab):           ', time.time() - start_time
     start_time = time.time()
-    phase_map_disc = PhaseMap(res, pm.phase_mag_real(res, projection, 'disc', b_0))
-    print 'Time for real space approach (Disc):     ', time.time() - start_time
+    phase_map_disc = PhaseMap(a, pm.phase_mag_real(a, projection, b_0, 'disc'))
+    print 'Time for real space approach (Disc):           ', time.time() - start_time
     start_time = time.time()
-    phase_map_slab_conv = PhaseMap(res, pm.phase_mag_real_conv(res, projection, 'slab', b_0))
-    print 'Time for real space approach (Slab Conv):', time.time() - start_time
+    kernel = Kernel(np.shape(projection[0]), a, b_0, 'slab')
+    phase_map_slab_conv = PhaseMap(a, pm.phase_mag(a, projection, b_0, kernel))
+    print 'Time for real space approach (Slab Conv):      ', time.time() - start_time
     start_time = time.time()
-    phase_map_disc_conv = PhaseMap(res, pm.phase_mag_real_conv(res, projection,'disc', b_0))
-    print 'Time for real space approach (Disc Conv):', time.time() - start_time
-#    start_time = time.time()
-    u_kern_f = pm.get_kernel_fourier('slab', 'u', np.shape(projection[0]), res, b_0)
-    v_kern_f = pm.get_kernel_fourier('slab', 'v', np.shape(projection[0]), res, b_0)
-#    print 'Time for kernel (Slab):', time.time() - start_time
+    phase_map_disc_conv = PhaseMap(a, pm.phase_mag(a, projection, b_0))
+    print 'Time for real space approach (Disc Conv):      ', time.time() - start_time
     start_time = time.time()
-    phase = pm.phase_mag_real_fast(res, projection, (v_kern_f, u_kern_f), b_0)
-    phase_map_slab_fast = PhaseMap(res, phase)
-    print 'Time for real space approach (Slab Fast):', time.time() - start_time
-#    start_time = time.time()
-    u_kern_f = pm.get_kernel_fourier('disc', 'u', np.shape(projection[0]), res, b_0)
-    v_kern_f = pm.get_kernel_fourier('disc', 'v', np.shape(projection[0]), res, b_0)
-#    print 'Time for kernel (Disc):', time.time() - start_time
+    kernel = Kernel(np.shape(projection[0]), a, b_0, 'slab')
+    print 'Time for kernel (Slab):                        ', time.time() - start_time
     start_time = time.time()
-    phase = pm.phase_mag_real_fast(res, projection, (v_kern_f, u_kern_f), b_0)
-    phase_map_disc_fast = PhaseMap(res, phase)
-    print 'Time for real space approach (Disc Fast):', time.time() - start_time    
+    phase_map_slab_fast = PhaseMap(a, pm.phase_mag(a, projection, b_0, kernel))
+    print 'Time for real space approach (Slab, no kernel):', time.time() - start_time
+    start_time = time.time()
+    kernel = Kernel(np.shape(projection[0]), a, b_0)
+    print 'Time for kernel (Disc):                        ', time.time() - start_time
+    start_time = time.time()
+    phase_map_disc_fast = PhaseMap(a, pm.phase_mag(a, projection, b_0, kernel))
+    print 'Time for real space approach (Disc, no kernel):', time.time() - start_time    
     # Display the combinated plots with phasemap and holography image:
     hi.display_combined(phase_map_ana, density, 'Analytic Solution')
     hi.display_combined(phase_map_fft, density, 'Fourier Space')
@@ -101,11 +98,11 @@ def compare_methods():
     hi.display_combined(phase_map_slab_fast, density, 'Real Space (Slab Fast)')
     hi.display_combined(phase_map_disc_fast, density, 'Real Space (Disc Disc)')
     # Plot differences to the analytic solution:
-    phase_map_diff_fft = PhaseMap(res, phase_map_ana.phase-phase_map_fft.phase)
-    phase_map_diff_slab = PhaseMap(res, phase_map_ana.phase-phase_map_slab.phase)
-    phase_map_diff_disc = PhaseMap(res, phase_map_ana.phase-phase_map_disc.phase)
-    phase_map_diff_slab_conv = PhaseMap(res, phase_map_ana.phase-phase_map_slab_conv.phase)
-    phase_map_diff_disc_conv = PhaseMap(res, phase_map_ana.phase-phase_map_disc_conv.phase)
+    phase_map_diff_fft = PhaseMap(a, phase_map_ana.phase-phase_map_fft.phase)
+    phase_map_diff_slab = PhaseMap(a, phase_map_ana.phase-phase_map_slab.phase)
+    phase_map_diff_disc = PhaseMap(a, phase_map_ana.phase-phase_map_disc.phase)
+    phase_map_diff_slab_conv = PhaseMap(a, phase_map_ana.phase-phase_map_slab_conv.phase)
+    phase_map_diff_disc_conv = PhaseMap(a, phase_map_ana.phase-phase_map_disc_conv.phase)
     RMS_fft = np.std(phase_map_diff_fft.phase)
     RMS_slab = np.std(phase_map_diff_slab.phase)
     RMS_disc = np.std(phase_map_diff_disc.phase)
diff --git a/scripts/compare methods/compare_pixel_fields.py b/scripts/compare methods/compare_pixel_fields.py
index a3f680504c0d7765b74d50f4ac3db6298b48dc26..b24e54a2187016ded9fe506059ba93d2fcf19fdf 100644
--- a/scripts/compare methods/compare_pixel_fields.py	
+++ b/scripts/compare methods/compare_pixel_fields.py	
@@ -1,6 +1,6 @@
 #! python
 # -*- coding: utf-8 -*-
-"""Compare the phase map of one pixel for different real space approaches."""
+"""Compare the phase map of one pixel for different approaches."""
 
 
 import pdb
@@ -31,7 +31,7 @@ def compare_pixel_fields():
     if not os.path.exists(directory):
         os.makedirs(directory)
     # Input parameters:
-    res = 1.0  # in nm
+    a = 1.0  # in nm
     phi = 0  # in rad
     dim = (1, 64, 64)
     pixel = (0,  int(dim[1]/2),  int(dim[2]/2))
@@ -40,46 +40,46 @@ def compare_pixel_fields():
     def get_fourier_kernel():
         PHI_0 = 2067.83    # magnetic flux in T*nm²
         b_0 = 1
-        coeff = - 1j * b_0 * res**2 / (2*PHI_0)
-        nyq = 1 / res  # nyquist frequency
+        coeff = - 1j * b_0 * a**2 / (2*PHI_0)
+        nyq = 1 / a  # nyquist frequency
         f_u = np.linspace(0, nyq/2, dim[2]/2.+1)
         f_v = np.linspace(-nyq/2, nyq/2, dim[1], endpoint=False)
         f_uu, f_vv = np.meshgrid(f_u, f_v)
-        phase_fft = coeff * f_vv / (f_uu**2 + f_vv**2 + 1e-30) #* (8*(res/2)**3)*np.sinc(res/2*f_uu)*np.sinc(res/2*f_vv)
+        phase_fft = coeff * f_vv / (f_uu**2 + f_vv**2 + 1e-30) #* (8*(a/2)**3)*np.sinc(a/2*f_uu)*np.sinc(a/2*f_vv)
         # Transform to real space and revert padding:
         phase_fft = np.fft.ifftshift(phase_fft, axes=0)
         phase_fft_kernel = np.fft.fftshift(np.fft.irfft2(phase_fft), axes=(0, 1))
         return phase_fft_kernel
 
     # Create magnetic data, project it, get the phase map and display the holography image:
-    mag_data = MagData(res, mc.create_mag_dist_homog(mc.Shapes.pixel(dim, pixel), phi))
+    mag_data = MagData(a, mc.create_mag_dist_homog(mc.Shapes.pixel(dim, pixel), phi))
     mag_data.save_to_llg(directory + '/mag_dist_single_pixel.txt')
     projection = pj.simple_axis_projection(mag_data)
     # Kernel of a disc in real space:
-    phase_map_disc = PhaseMap(res, pm.phase_mag_real(res, projection, 'disc'), 'mrad')
+    phase_map_disc = PhaseMap(a, pm.phase_mag_real(a, projection, 'disc'), 'mrad')
 #    phase_map_disc.display('Phase of one Pixel (Disc)', limit=limit)
     # Kernel of a slab in real space:
-    phase_map_slab = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab'), 'mrad')
+    phase_map_slab = PhaseMap(a, pm.phase_mag_real(a, projection, 'slab'), 'mrad')
 #    phase_map_slab.display('Phase of one Pixel (Slab)', limit=limit)
     # Kernel of the Fourier method:
-    phase_map_fft = PhaseMap(res, pm.phase_mag_fourier(res, projection, padding=0), 'mrad')
+    phase_map_fft = PhaseMap(a, pm.phase_mag_fourier(a, projection, padding=0), 'mrad')
     phase_map_fft.display('Phase of one Pixel (Fourier)', limit=limit)
     
     # Kernel of the Fourier method, calculated directly:
-    phase_map_fft_kernel = PhaseMap(res, get_fourier_kernel(), 'mrad')
+    phase_map_fft_kernel = PhaseMap(a, get_fourier_kernel(), 'mrad')
 #    phase_map_fft_kernel.display('Phase of one Pixel (Fourier Kernel)', limit=limit)
     # Kernel differences:
     print 'Fourier Kernel, direct and indirect method are identical:', \
           np.all(phase_map_fft_kernel.phase - phase_map_fft.phase) == 0
-    phase_map_diff = PhaseMap(res, phase_map_disc.phase - phase_map_fft.phase, 'mrad')
+    phase_map_diff = PhaseMap(a, phase_map_disc.phase - phase_map_fft.phase, 'mrad')
 #    phase_map_diff.display('Phase difference of one Pixel (Disc - Fourier)')
 
     phase_inv_fft = np.abs(np.fft.ifftshift(np.fft.rfft2(phase_map_fft.phase), axes=0))**2
-    phase_map_inv_fft = PhaseMap(res, phase_inv_fft)
+    phase_map_inv_fft = PhaseMap(a, phase_inv_fft)
 #    phase_map_inv_fft.display('FT of the Phase of one Pixel (Fourier, Power)')
 
     phase_inv_disc = np.abs(np.fft.ifftshift(np.fft.rfft2(phase_map_disc.phase), axes=0))**2
-    phase_map_inv_disc = PhaseMap(res, phase_inv_disc)
+    phase_map_inv_disc = PhaseMap(a, phase_inv_disc)
 #    phase_map_inv_disc.display('FT of the Phase of one Pixel (Disc, Power)')
     
     import matplotlib.pyplot as plt
@@ -87,7 +87,7 @@ def compare_pixel_fields():
     
     fig = plt.figure()
     axis = fig.add_subplot(1, 1, 1)
-    x = np.linspace(-dim[1]/res/2, dim[1]/res/2-1, dim[1])
+    x = np.linspace(-dim[1]/a/2, dim[1]/a/2-1, dim[1])
     y_ft = phase_map_fft.phase[:, dim[1]/2]
     y_re = phase_map_disc.phase[:, dim[1]/2]
     axis.axhline(0, color='k')
@@ -110,11 +110,11 @@ def compare_pixel_fields():
 
 
     phase = np.fft.ifftshift(np.fft.rfft2(phase_map_fft.phase), axes=0)
-    nyq = 0.5 / res
+    nyq = 0.5 / a
     f_u = np.linspace(0, nyq, dim[2]/2.+1)
     f_v = np.linspace(-nyq, nyq, dim[1], endpoint=False)
     f_uu, f_vv = np.meshgrid(f_u, f_v)
-    kern = 4*(res/2)**2*np.sinc(f_uu*res/2)*np.sinc(f_vv*res/2)
+    kern = 4*(a/2)**2*np.sinc(f_uu*a/2)*np.sinc(f_vv*a/2)
     phase_mod = fftconvolve(phase, kern, 'same')
     k_ft_mod = np.abs(phase_mod)[:, 0]**2
 #    sincy = np.sinc((np.asarray(x)-(dim[1]/2-1))*dim[1])
diff --git a/scripts/create distributions/create_alternating_filaments.py b/scripts/create distributions/create_alternating_filaments.py
index 3c4073067ae282186293f2adee2837c452a1ccbb..08e77fe9c647dd08ec6320ac98ad09bb2b3a318f 100644
--- a/scripts/create distributions/create_alternating_filaments.py	
+++ b/scripts/create distributions/create_alternating_filaments.py	
@@ -28,11 +28,11 @@ def create_alternating_filaments():
     # Input parameters:
     filename = directory + '/mag_dist_alt_filaments.txt'
     dim = (1, 21, 21)  # in px (z, y, x)
-    res = 10.0  # in nm
+    a = 10.0  # in nm
     phi = pi/2
     spacing = 5
     # Create empty MagData object:
-    mag_data = MagData(res)
+    mag_data = MagData(a)
     count = int((dim[1]-1) / spacing) + 1
     for i in range(count):
         pos = i * spacing
diff --git a/scripts/create distributions/create_core_shell_disc.py b/scripts/create distributions/create_core_shell_disc.py
index 41d1231ad5378f1b51339c77abb3037e732b574c..a8720895377448ec086316acf70b43cbc93fad5e 100644
--- a/scripts/create distributions/create_core_shell_disc.py	
+++ b/scripts/create distributions/create_core_shell_disc.py	
@@ -1,3 +1,4 @@
+#! python
 # -*- coding: utf-8 -*-
 """Create a core-shell disc."""
 
@@ -32,7 +33,7 @@ def create_core_shell_disc():
         os.makedirs(directory)
     # Input parameters:
     filename = directory + '/mag_dist_core_shell_disc.txt'
-    res = 1.0  # in nm
+    a = 1.0  # in nm
     density = 1
     dim = (32, 32, 32)
     center = (dim[0]/2-0.5, int(dim[1]/2)-0.5, int(dim[2]/2)-0.5)
@@ -43,7 +44,7 @@ def create_core_shell_disc():
     mag_shape_core = mc.Shapes.disc(dim, center, radius_core, height)
     mag_shape_outer = mc.Shapes.disc(dim, center, radius_shell, height)
     mag_shape_shell = np.logical_xor(mag_shape_outer, mag_shape_core)
-    mag_data = MagData(res, mc.create_mag_dist_vortex(mag_shape_shell, magnitude=0.75))
+    mag_data = MagData(a, mc.create_mag_dist_vortex(mag_shape_shell, magnitude=0.75))
     mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape_core, phi=0, theta=0))
     mag_data.quiver_plot('z-projection', proj_axis='z')
     mag_data.quiver_plot('x-projection', proj_axis='x')
@@ -51,8 +52,8 @@ def create_core_shell_disc():
     mag_data.save_to_llg(filename)
     projection_z = pj.simple_axis_projection(mag_data, axis='z')
     projection_x = pj.simple_axis_projection(mag_data, axis='x')
-    phase_map_z = PhaseMap(res, pm.phase_mag_real(res, projection_z, 'slab'))
-    phase_map_x = PhaseMap(res, pm.phase_mag_real(res, projection_x, 'slab'))
+    phase_map_z = PhaseMap(a, pm.phase_mag(a, projection_z))
+    phase_map_x = PhaseMap(a, pm.phase_mag(a, projection_x))
     hi.display_combined(phase_map_z, density, 'Core-Shell structure (z-projection)')
     phase_axis, holo_axis = hi.display_combined(phase_map_x, density, 
                                                 'Core-Shell structure (x-projection)')
diff --git a/scripts/create distributions/create_core_shell_sphere.py b/scripts/create distributions/create_core_shell_sphere.py
index dd6c0aaba8fc8d3f805d846a26ad18bb38db7dd2..e35aef9c6256a45442ae62deb318c19a90ea6a94 100644
--- a/scripts/create distributions/create_core_shell_sphere.py	
+++ b/scripts/create distributions/create_core_shell_sphere.py	
@@ -1,3 +1,4 @@
+#! python
 # -*- coding: utf-8 -*-
 """Create a core-shell disc."""
 
@@ -32,7 +33,7 @@ def create_core_shell_sphere():
         os.makedirs(directory)
     # Input parameters:
     filename = directory + '/mag_dist_core_shell_sphere.txt'
-    res = 1.0  # in nm
+    a = 1.0  # in nm
     density = 1
     dim = (32, 32, 32)
     center = (dim[0]/2-0.5, int(dim[1]/2)-0.5, int(dim[2]/2)-0.5)
@@ -43,7 +44,7 @@ def create_core_shell_sphere():
     mag_shape_disc = mc.Shapes.disc(dim, center, radius_core, height=dim[0])
     mag_shape_core = np.logical_and(mag_shape_sphere, mag_shape_disc)
     mag_shape_shell = np.logical_and(mag_shape_sphere, np.logical_not(mag_shape_core))
-    mag_data = MagData(res, mc.create_mag_dist_vortex(mag_shape_shell, magnitude=0.75))
+    mag_data = MagData(a, mc.create_mag_dist_vortex(mag_shape_shell, magnitude=0.75))
     mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape_core, phi=0, theta=0))
     mag_data.quiver_plot('z-projection', proj_axis='z')
     mag_data.quiver_plot('x-projection', proj_axis='x')
@@ -51,8 +52,8 @@ def create_core_shell_sphere():
     mag_data.save_to_llg(filename)
     projection_z = pj.simple_axis_projection(mag_data, axis='z')
     projection_x = pj.simple_axis_projection(mag_data, axis='x')
-    phase_map_z = PhaseMap(res, pm.phase_mag_real(res, projection_z, 'slab'))
-    phase_map_x = PhaseMap(res, pm.phase_mag_real(res, projection_x, 'slab'))
+    phase_map_z = PhaseMap(a, pm.phase_mag(a, projection_z))
+    phase_map_x = PhaseMap(a, pm.phase_mag(a, projection_x))
     hi.display_combined(phase_map_z, density, 'Core-Shell structure (z-projection)')
     phase_axis, holo_axis = hi.display_combined(phase_map_x, density, 
                                                 'Core-Shell structure (x-projection)')
diff --git a/scripts/create distributions/create_logo.py b/scripts/create distributions/create_logo.py
index f800275d4aa7ce88d1f837e51a07a958e53c3270..fe6cde5f940dadc1f24e5ed954c4a6684a23ec64 100644
--- a/scripts/create distributions/create_logo.py	
+++ b/scripts/create distributions/create_logo.py	
@@ -27,7 +27,7 @@ def create_logo():
 
     '''
     # Input parameters:
-    res = 10.0  # in nm
+    a = 10.0  # in nm
     phi = -pi/2  # in rad
     density = 10
     dim = (1, 128, 128)
@@ -41,10 +41,10 @@ def create_logo():
     right = np.fliplr(left)
     mag_shape[0, ...] = np.logical_and(np.logical_and(left, right), bottom)
     # Create magnetic data, project it, get the phase map and display the holography image:
-    mag_data = MagData(res, mc.create_mag_dist_homog(mag_shape, phi))
+    mag_data = MagData(a, mc.create_mag_dist_homog(mag_shape, phi))
     mag_data.quiver_plot()
     projection = pj.simple_axis_projection(mag_data)
-    phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab'))
+    phase_map = PhaseMap(a, pm.phase_mag(a, projection))
     hi.display(hi.holo_image(phase_map, density), 'PYRAMID - LOGO', interpolation='bilinear')
 
 
diff --git a/scripts/create distributions/create_multiple_samples.py b/scripts/create distributions/create_multiple_samples.py
index 9590e784a2a1892e9ea9a024b08b146c73cf99a5..1236fb1efc8a9e87b962ae2605b2295bdb8ddd00 100644
--- a/scripts/create distributions/create_multiple_samples.py	
+++ b/scripts/create distributions/create_multiple_samples.py	
@@ -1,3 +1,4 @@
+#! python
 # -*- coding: utf-8 -*-
 """Create random magnetic distributions."""
 
@@ -30,7 +31,7 @@ def create_multiple_samples():
         os.makedirs(directory)
     # Input parameters:
     filename = directory + '/mag_dist_multiple_samples.txt'
-    res = 10.0  # nm
+    a = 10.0  # nm
     dim = (64, 128, 128)
     # Slab:
     center = (32, 32, 32)  # in px (z, y, x), index starts with 0!
@@ -46,7 +47,7 @@ def create_multiple_samples():
     radius = 24  # in px
     mag_shape_sphere = mc.Shapes.sphere(dim, center, radius)
     # Create empty MagData object and add magnetized objects:
-    mag_data = MagData(res)
+    mag_data = MagData(a)
     mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape_slab, pi/4))
     mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape_disc, pi/2))
     mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape_sphere, pi))
@@ -54,7 +55,7 @@ def create_multiple_samples():
     mag_data.quiver_plot()
     mag_data.save_to_llg(filename)
     projection = pj.simple_axis_projection(mag_data)
-    phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab'))
+    phase_map = PhaseMap(a, pm.phase_mag(a, projection))
     phase_map.display()
     hi.display(hi.holo_image(phase_map, 0.5))
 
diff --git a/scripts/create distributions/create_random_pixels.py b/scripts/create distributions/create_random_pixels.py
index e6eea7ad67dda36ed75cc9b2b9e8fbe103db9ba5..570c427dd493acd4a2ca4261c94e77ce49b61bdc 100644
--- a/scripts/create distributions/create_random_pixels.py	
+++ b/scripts/create distributions/create_random_pixels.py	
@@ -1,3 +1,4 @@
+#! python
 # -*- coding: utf-8 -*-
 """Create random magnetic distributions."""
 
@@ -7,7 +8,6 @@ import traceback
 import sys
 import os
 
-import numpy as np
 from numpy import pi
 
 import pyramid.magcreator as mc
@@ -34,21 +34,21 @@ def create_random_pixels():
     # Input parameters:
     count = 10
     dim = (1, 128, 128)
-    res = 10  # in nm
+    a = 10  # in nm
     rnd.seed(12)
     # Create empty MagData object and add pixels:
-    mag_data = MagData(res)
+    mag_data = MagData(a)
     for i in range(count):
         pixel = (rnd.randrange(dim[0]), rnd.randrange(dim[1]), rnd.randrange(dim[2]))
         mag_shape = mc.Shapes.pixel(dim, pixel)
         phi = 2 * pi * rnd.random()
-        magnitude = 1  # TODO: rnd.random()
+        magnitude = 1
         mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape, phi, magnitude=magnitude))
     # Plot magnetic distribution, phase map and holographic contour map:
     mag_data.quiver_plot()
     mag_data.save_to_llg(filename)
     projection = pj.simple_axis_projection(mag_data)
-    phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab'))
+    phase_map = PhaseMap(a, pm.phase_mag(a, projection))
     hi.display(hi.holo_image(phase_map, 10))
 
 
diff --git a/scripts/create distributions/create_random_slabs.py b/scripts/create distributions/create_random_slabs.py
index c54b27c9635c8de05d00d8f5fe3bf0ba6a0b1520..513fcb97765336d01d67c9c97838e7fa3b87caac 100644
--- a/scripts/create distributions/create_random_slabs.py	
+++ b/scripts/create distributions/create_random_slabs.py	
@@ -1,3 +1,4 @@
+#! python
 # -*- coding: utf-8 -*-
 """Create random magnetic distributions."""
 
@@ -7,7 +8,6 @@ import traceback
 import sys
 import os
 
-import numpy as np
 from numpy import pi
 
 import pyramid.magcreator as mc
@@ -33,11 +33,11 @@ def create_random_slabs():
     filename = directory + '/mag_dist_random_pixels.txt'
     count = 10
     dim = (1, 128, 128)
-    res = 10  # in nm
+    a = 10  # in nm
     rnd.seed(42)
     w_max = 10
     # Create empty MagData object and add slabs:
-    mag_data = MagData(res)
+    mag_data = MagData(a)
     for i in range(count):
         width = (1, rnd.randint(1, w_max), rnd.randint(1, w_max))
         center = (rnd.randrange(int(width[0]/2), dim[0]-int(width[0]/2)),
@@ -51,7 +51,7 @@ def create_random_slabs():
     mag_data.quiver_plot()
     mag_data.save_to_llg(filename)
     projection = pj.simple_axis_projection(mag_data)
-    phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab'))
+    phase_map = PhaseMap(a, pm.phase_mag(a, projection))
     hi.display(hi.holo_image(phase_map, 10))
 
 
diff --git a/scripts/create distributions/create_sample.py b/scripts/create distributions/create_sample.py
index cfc625a49e2ea419a1a13f1b4d5a222bba81f80f..1478606ee154da4541467c9be332ff80a1e43272 100644
--- a/scripts/create distributions/create_sample.py	
+++ b/scripts/create distributions/create_sample.py	
@@ -1,3 +1,4 @@
+#! python
 # -*- coding: utf-8 -*-
 """Create magnetic distributions with simple geometries."""
 
@@ -26,10 +27,10 @@ def create_sample():
     if not os.path.exists(directory):
         os.makedirs(directory)
     # Input parameters:
-    key = 'pixel'
+    key = 'sphere'
     filename = directory + '/mag_dist_' + key + '.txt'
-    dim = (1, 1, 5)  # in px (z, y, x)
-    res = 1.0  # in nm
+    dim = (64, 64, 64)  # in px (z, y, x)
+    a = 1.0  # in nm
     phi = pi/2
     # Geometry parameters:
     center = (dim[0]/2-0.5, dim[1]/2-0.5, dim[2]/2-0.5)  # in px (z, y, x), index starts with 0!
@@ -51,7 +52,7 @@ def create_sample():
         mag_shape = mc.Shapes.pixel(dim, pixel)
     # Create magnetic distribution
     magnitude = mc.create_mag_dist_homog(mag_shape, phi)
-    mag_data = MagData(res, magnitude)
+    mag_data = MagData(a, magnitude)
     mag_data.quiver_plot()
     mag_data.save_to_llg(filename)
 
diff --git a/scripts/create distributions/create_vortex.py b/scripts/create distributions/create_vortex.py
index 794a02b920c612c3f34e8dc7d745883880c752ce..9b6879aadd1f1f208006470d10f31aa65627bcf4 100644
--- a/scripts/create distributions/create_vortex.py	
+++ b/scripts/create distributions/create_vortex.py	
@@ -1,3 +1,4 @@
+#! python
 # -*- coding: utf-8 -*-
 """Create the Pyramid-Logo."""
 
@@ -30,7 +31,7 @@ def create_vortex():
         os.makedirs(directory)
     # Input parameters:
     filename = directory + '/mag_dist_vortex.txt'
-    res = 10.0  # in nm
+    a = 10.0  # in nm
     density = 1
     dim = (64, 64, 64)
     center = (int(dim[0]/2)-0.5, int(dim[1]/2)-0.5, int(dim[2]/2)-0.5)
@@ -38,12 +39,11 @@ def create_vortex():
     height = dim[0]/4
     # Create magnetic shape:
     mag_shape = mc.Shapes.disc(dim, center, radius, height)
-    mag_data = MagData(res, mc.create_mag_dist_vortex(mag_shape))
+    mag_data = MagData(a, mc.create_mag_dist_vortex(mag_shape))
     mag_data.quiver_plot()
-    mag_data.quiver_plot3d()
     mag_data.save_to_llg(filename)
     projection = pj.simple_axis_projection(mag_data)
-    phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab'))
+    phase_map = PhaseMap(a, pm.phase_mag(a, projection))
     hi.display_combined(phase_map, density, 'Vortex State')
     phase_slice = phase_map.phase[dim[1]/2, :]
     fig = plt.figure()
diff --git a/scripts/get_jacobi_projection.py b/scripts/get_jacobi_projection.py
new file mode 100644
index 0000000000000000000000000000000000000000..079c39ab40854ab769c18e05fda7dcc4ea0259a4
--- /dev/null
+++ b/scripts/get_jacobi_projection.py
@@ -0,0 +1,20 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Nov 29 16:45:13 2013
+
+@author: Jan
+"""
+
+import pyramid.magcreator as mc
+from pyramid.magdata import MagData
+import pyramid.projector as pj
+from pyramid.projector import Projection
+
+
+a = 1.0
+dim = (2, 2, 2)
+px = (0, 0, 0)
+mag_data = MagData(a, mc.create_mag_dist_homog(mc.Shapes.pixel(dim, px), 0))
+
+proj = pj.simple_axis_projection(mag_data)
+
diff --git a/scripts/gui/gui_create_logo.py b/scripts/gui/gui_create_logo.py
index c7b7e52a843d974a4adff3165f93946c3aa236a4..071d866f1f22fae05630fe88847f4dff04a87afc 100644
--- a/scripts/gui/gui_create_logo.py
+++ b/scripts/gui/gui_create_logo.py
@@ -107,7 +107,7 @@ def create_logo(dim, axis):
 
     '''
     # Input parameters:
-    res = 10.0  # in nm
+    a = 10.0  # in nm
     phi = -pi/2  # in rad
     density = 10
     # Create magnetic shape:
@@ -120,9 +120,9 @@ def create_logo(dim, axis):
     right = np.fliplr(left)
     mag_shape[0, ...] = np.logical_and(np.logical_and(left, right), bottom)
     # Create magnetic data, project it, get the phase map and display the holography image:
-    mag_data = MagData(res, mc.create_mag_dist_homog(mag_shape, phi))
+    mag_data = MagData(a, mc.create_mag_dist_homog(mag_shape, phi))
     projection = pj.simple_axis_projection(mag_data)
-    phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab'))
+    phase_map = PhaseMap(a, pm.phase_mag_real(a, projection, 'slab'))
     hi.display(hi.holo_image(phase_map, density), 'PYRAMID - LOGO', axis)
 
 
diff --git a/scripts/kernel.py b/scripts/kernel.py
index 6fc4bd05ed4b3a8246bfb363a88e878778b673e4..4e0291bfa886d364f342df8b4c2f48cb91e5bd12 100644
--- a/scripts/kernel.py
+++ b/scripts/kernel.py
@@ -5,12 +5,14 @@ Created on Fri Sep 27 14:35:46 2013
 @author: Jan
 """
 
+
 import numpy as np
 from numpy import pi
 
 import matplotlib.pyplot as plt
 from matplotlib.ticker import IndexLocator 
 
+
 N = 16
 T = 1
 fs = 1. / T
@@ -28,7 +30,6 @@ y_ft = np.fft.fftshift(np.fft.irfft(Y))
 
 #np.abs(np.fft.ifftshift(np.fft.rfft2(phase_map_disc.phase), axes=0))[:, 0]**2
 
-
 fig = plt.figure()
 axis = fig.add_subplot(1, 1, 1)
 axis.axhline(0, color='k')
diff --git a/scripts/paper 1/ch5-0-evaluation_and_comparison.py b/scripts/paper 1/ch5-0-evaluation_and_comparison.py
index 1f53da28d2bb45814db3c1444469530f93ae05e2..bdae2361b751c18660361391eae14d978f1a4d0d 100644
--- a/scripts/paper 1/ch5-0-evaluation_and_comparison.py	
+++ b/scripts/paper 1/ch5-0-evaluation_and_comparison.py	
@@ -21,7 +21,7 @@ from pyramid.magdata import MagData
 
 import matplotlib.pyplot as plt
 
-from matplotlib.ticker import FixedFormatter, IndexLocator, LinearLocator
+from matplotlib.ticker import FixedFormatter, IndexLocator
 
 
 def run():
@@ -60,7 +60,7 @@ def run():
     else:
         print '--CREATE MAGNETIC DISTRIBUTIONS'
         # Input parameters:
-        res = 1.0  # in nm
+        a = 1.0  # in nm
         phi = pi/2
         dim = (16, 128, 128)  # in px (z, y, x)
         # Create magnetic shape:
@@ -69,10 +69,10 @@ def run():
         height = dim[0]/2  # in px
         mag_shape = mc.Shapes.disc(dim, center, radius, height)
         print '--CREATE MAGN. DISTR. OF HOMOG. MAG. DISC'
-        mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape, phi))
+        mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape, phi))
         mag_data_disc.scale_down(2)
         print '--CREATE MAGN. DISTR. OF VORTEX STATE DISC'
-        mag_data_vort = MagData(res, mc.create_mag_dist_vortex(mag_shape, center))
+        mag_data_vort = MagData(a, mc.create_mag_dist_vortex(mag_shape, center))
         mag_data_vort.scale_down(2)
         # Mayavi-Plots:
         mag_data_disc.quiver_plot3d()
diff --git a/scripts/paper 1/ch5-1-evaluation_real_space.py b/scripts/paper 1/ch5-1-evaluation_real_space.py
index 2bf7b23d18e2a3ee5e2f63f6a27d910e62e03795..babbdcbac83173d0d34f09b82c35f37221461444 100644
--- a/scripts/paper 1/ch5-1-evaluation_real_space.py	
+++ b/scripts/paper 1/ch5-1-evaluation_real_space.py	
@@ -47,7 +47,7 @@ def run():
     print 'CH5-1 ANALYTIC SOLUTIONS'
 
     # Input parameters:
-    res = 0.125  # in nm
+    a = 0.125  # in nm
     phi = pi/2
     dim = (128, 1024, 1024)  # in px (z, y, x)
     density = 100
@@ -57,10 +57,10 @@ def run():
     height = dim[0]/2  # in px
     print '--CALCULATE ANALYTIC SOLUTIONS'
     # Get analytic solution:
-    phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height)
-    phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height)
-    phase_map_ana_disc = PhaseMap(res, phase_ana_disc)
-    phase_map_ana_vort = PhaseMap(res, phase_ana_vort)
+    phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height)
+    phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height)
+    phase_map_ana_disc = PhaseMap(a, phase_ana_disc)
+    phase_map_ana_vort = PhaseMap(a, phase_ana_vort)
     print '--PLOT/SAVE ANALYTIC SOLUTIONS'
     hi.display_combined(phase_map_ana_disc, density,
                         'Analytic solution: hom. magn. disc', 'bilinear')
@@ -85,7 +85,7 @@ def run():
     print 'CH5-1 PHASE SLICES REAL SPACE'
 
     # Input parameters:
-    res = 0.25  # in nm
+    a = 0.25  # in nm
     phi = pi/2
     density = 100
     dim = (64, 512, 512)  # in px (z, y, x)
@@ -108,8 +108,8 @@ def run():
         y_d = []
         dy_d = []
         # Analytic solution:
-        L = dim[1] * res  # in px/nm
-        Lz = 0.5 * dim[0] * res  # in px/nm
+        L = dim[1] * a  # in px/nm
+        Lz = 0.5 * dim[0] * a  # in px/nm
         R = 0.25 * L  # in px/nm
         x0 = L / 2  # in px/nm
 
@@ -123,16 +123,15 @@ def run():
         y_d.append(F_disc(x_d[0]))
         dy_d.append(np.zeros_like(x_d[0]))
         # Create MagData (Disc):
-        mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape, phi))
+        mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape, phi))
         for i in range(5):
             mag_data_disc.scale_down()
-            print '----res =', mag_data_disc.res, 'nm', 'dim =', mag_data_disc.dim
+            print '----a =', mag_data_disc.a, 'nm', 'dim =', mag_data_disc.dim
             projection = pj.simple_axis_projection(mag_data_disc)
-            phase_map = PhaseMap(mag_data_disc.res,
-                                 pm.phase_mag_real(mag_data_disc.res, projection, 'slab'))
-            hi.display_combined(phase_map, density, 'Disc, res = {} nm'.format(mag_data_disc.res))
-            x_d.append(np.linspace(mag_data_disc.res * 0.5,
-                                   mag_data_disc.res * (mag_data_disc.dim[1]-0.5),
+            phase_map = PhaseMap(mag_data_disc.a, pm.phase_mag(mag_data_disc.a, projection))
+            hi.display_combined(phase_map, density, 'Disc, a = {} nm'.format(mag_data_disc.a))
+            x_d.append(np.linspace(mag_data_disc.a * 0.5,
+                                   mag_data_disc.a * (mag_data_disc.dim[1]-0.5),
                                    mag_data_disc.dim[1]))
             slice_pos = int(mag_data_disc.dim[1]/2)
             y_d.append(phase_map.phase[slice_pos, :]*1E3)  # *1E3: rad to mrad
@@ -143,8 +142,8 @@ def run():
         y_v = []
         dy_v = []
         # Analytic solution:
-        L = dim[1] * res  # in px/nm
-        Lz = 0.5 * dim[0] * res  # in px/nm
+        L = dim[1] * a  # in px/nm
+        Lz = 0.5 * dim[0] * a  # in px/nm
         R = 0.25 * L  # in px/nm
         x0 = L / 2  # in px/nm
 
@@ -157,16 +156,15 @@ def run():
         y_v.append(F_vort(x_v[0]))
         dy_v.append(np.zeros_like(x_v[0]))
         # Create MagData (Vortex):
-        mag_data_vort = MagData(res, mc.create_mag_dist_vortex(mag_shape))
+        mag_data_vort = MagData(a, mc.create_mag_dist_vortex(mag_shape))
         for i in range(5):
             mag_data_vort.scale_down()
-            print '----res =', mag_data_vort.res, 'nm', 'dim =', mag_data_vort.dim
+            print '----a =', mag_data_vort.a, 'nm', 'dim =', mag_data_vort.dim
             projection = pj.simple_axis_projection(mag_data_vort)
-            phase_map = PhaseMap(mag_data_vort.res,
-                                 pm.phase_mag_real(mag_data_vort.res, projection, 'slab'))
-            hi.display_combined(phase_map, density, 'Disc, res = {} nm'.format(mag_data_vort.res))
-            x_v.append(np.linspace(mag_data_vort.res * 0.5,
-                                   mag_data_vort.res * (mag_data_vort.dim[1]-0.5),
+            phase_map = PhaseMap(mag_data_vort.a, pm.phase_mag(mag_data_vort.a, projection))
+            hi.display_combined(phase_map, density, 'Disc, a = {} nm'.format(mag_data_vort.a))
+            x_v.append(np.linspace(mag_data_vort.a * 0.5,
+                                   mag_data_vort.a * (mag_data_vort.dim[1]-0.5),
                                    mag_data_vort.dim[1]))
             slice_pos = int(mag_data_vort.dim[1]/2)
             y_v.append(phase_map.phase[slice_pos, :]*1E3)  # *1E3: rad to mrad
@@ -296,7 +294,7 @@ def run():
     print 'CH5-1 PHASE DIFFERENCES REAL SPACE'
 
     # Input parameters:
-    res = 1.0  # in nm
+    a = 1.0  # in nm
     phi = pi/2
     dim = (16, 128, 128)  # in px (z, y, x)
     center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px (z, y, x) index starts with 0!
@@ -310,16 +308,16 @@ def run():
     else:
         print '--CREATE MAGNETIC DISTRIBUTIONS'
         # Create magnetic shape (4 times the size):
-        res_big = res / 2
+        a_big = a / 2
         dim_big = (dim[0]*2, dim[1]*2, dim[2]*2)
         center_big = (dim_big[0]/2-0.5, dim_big[1]/2.-0.5, dim_big[2]/2.-0.5)
         radius_big = dim_big[1]/4  # in px
         height_big = dim_big[0]/2  # in px
         mag_shape = mc.Shapes.disc(dim_big, center_big, radius_big, height_big)
         # Create MagData (4 times the size):
-        mag_data_disc = MagData(res_big, mc.create_mag_dist_homog(mag_shape, phi))
-        mag_data_vort = MagData(res_big, mc.create_mag_dist_vortex(mag_shape, center_big))
-        # Scale mag_data, resolution and dimensions:
+        mag_data_disc = MagData(a_big, mc.create_mag_dist_homog(mag_shape, phi))
+        mag_data_vort = MagData(a_big, mc.create_mag_dist_vortex(mag_shape, center_big))
+        # Scale mag_data, grid spacing and dimensions:
         mag_data_disc.scale_down()
         mag_data_vort.scale_down()
         print '--SAVE MAGNETIC DISTRIBUTIONS'
@@ -331,18 +329,18 @@ def run():
     projection_disc = pj.simple_axis_projection(mag_data_disc)
     projection_vort = pj.simple_axis_projection(mag_data_vort)
     # Get analytic solutions:
-    phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height)
-    phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height)
+    phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height)
+    phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height)
     # Create norm for the plots:
     bounds = np.array([-3, -0.5, -0.25, -0.1, 0, 0.1, 0.25, 0.5, 3])
     norm = BoundaryNorm(bounds, RdBu.N)
     # Calculations (Disc):
-    phase_num_disc = pm.phase_mag_real(res, projection_disc, 'slab')
-    phase_diff_disc = PhaseMap(res, (phase_num_disc-phase_ana_disc), 'mrad')
+    phase_num_disc = pm.phase_mag(a, projection_disc)
+    phase_diff_disc = PhaseMap(a, (phase_num_disc-phase_ana_disc), 'mrad')
     RMS_disc = np.sqrt(np.mean(phase_diff_disc.phase**2))
     # Calculations (Vortex):
-    phase_num_vort = pm.phase_mag_real(res, projection_vort, 'slab')
-    phase_diff_vort = PhaseMap(res, (phase_num_vort-phase_ana_vort), 'mrad')
+    phase_num_vort = pm.phase_mag(a, projection_vort)
+    phase_diff_vort = PhaseMap(a, (phase_num_vort-phase_ana_vort), 'mrad')
     RMS_vort = np.sqrt(np.mean(phase_diff_vort.phase**2))
 
     print '--PLOT/SAVE PHASE DIFFERENCES'
diff --git a/scripts/paper 1/ch5-2-evaluation_fourier_space.py b/scripts/paper 1/ch5-2-evaluation_fourier_space.py
index 13f4e2f03146556e545ec8c0231a18ca83845309..4a1ef4596f874aaf1cb39fb8d9be64a597f09651 100644
--- a/scripts/paper 1/ch5-2-evaluation_fourier_space.py	
+++ b/scripts/paper 1/ch5-2-evaluation_fourier_space.py	
@@ -47,7 +47,7 @@ def run():
     print 'CH5-1 PHASE SLICES FOURIER SPACE'
 
     # Input parameters:
-    res = 0.25  # in nm
+    a = 0.25  # in nm
     phi = pi/2
     density = 100
     dim = (64, 512, 512)  # in px (z, y, x)
@@ -72,8 +72,8 @@ def run():
         dy_d0 = []
         dy_d10 = []
         # Analytic solution:
-        L = dim[1] * res  # in px/nm
-        Lz = 0.5 * dim[0] * res  # in px/nm
+        L = dim[1] * a  # in px/nm
+        Lz = 0.5 * dim[0] * a  # in px/nm
         R = 0.25 * L  # in px/nm
         x0 = L / 2  # in px/nm
 
@@ -89,23 +89,23 @@ def run():
         dy_d0.append(np.zeros_like(x_d[0]))
         dy_d10.append(np.zeros_like(x_d[0]))
         # Create MagData (Disc):
-        mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape, phi))
+        mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape, phi))
         for i in range(5):
             mag_data_disc.scale_down()
-            print '----res =', mag_data_disc.res, 'nm', 'dim =', mag_data_disc.dim
+            print '----a =', mag_data_disc.a, 'nm', 'dim =', mag_data_disc.dim
             projection = pj.simple_axis_projection(mag_data_disc)
-            phase_map0 = PhaseMap(mag_data_disc.res,
-                                  pm.phase_mag_fourier(mag_data_disc.res, projection,
+            phase_map0 = PhaseMap(mag_data_disc.a,
+                                  pm.phase_mag_fourier(mag_data_disc.a, projection,
                                                        padding=0), 'mrad')
-            phase_map10 = PhaseMap(mag_data_disc.res,
-                                   pm.phase_mag_fourier(mag_data_disc.res, projection,
+            phase_map10 = PhaseMap(mag_data_disc.a,
+                                   pm.phase_mag_fourier(mag_data_disc.a, projection,
                                                         padding=10), 'mrad')
             hi.display_combined(phase_map0, density,
-                                'Disc, res = {} nm'.format(mag_data_disc.res))
+                                'Disc, a = {} nm'.format(mag_data_disc.a))
             hi.display_combined(phase_map10, density,
-                                'Disc, res = {} nm'.format(mag_data_disc.res))
-            x_d.append(np.linspace(mag_data_disc.res * 0.5,
-                                   mag_data_disc.res * (mag_data_disc.dim[1]-0.5),
+                                'Disc, a = {} nm'.format(mag_data_disc.a))
+            x_d.append(np.linspace(mag_data_disc.a * 0.5,
+                                   mag_data_disc.a * (mag_data_disc.dim[1]-0.5),
                                    mag_data_disc.dim[1]))
             slice_pos = int(mag_data_disc.dim[1]/2)
             y_d0.append(phase_map0.phase[slice_pos, :]*1E3)  # *1E3: rad to mrad
@@ -120,8 +120,8 @@ def run():
         dy_v0 = []
         dy_v10 = []
         # Analytic solution:
-        L = dim[1] * res  # in px/nm
-        Lz = 0.5 * dim[0] * res  # in px/nm
+        L = dim[1] * a  # in px/nm
+        Lz = 0.5 * dim[0] * a  # in px/nm
         R = 0.25 * L  # in px/nm
         x0 = L / 2  # in px/nm
 
@@ -136,23 +136,23 @@ def run():
         dy_v0.append(np.zeros_like(x_v[0]))
         dy_v10.append(np.zeros_like(x_v[0]))
         # Create MagData (Vortex):
-        mag_data_vort = MagData(res, mc.create_mag_dist_vortex(mag_shape))
+        mag_data_vort = MagData(a, mc.create_mag_dist_vortex(mag_shape))
         for i in range(5):
             mag_data_vort.scale_down()
-            print '----res =', mag_data_vort.res, 'nm', 'dim =', mag_data_vort.dim
+            print '----a =', mag_data_vort.a, 'nm', 'dim =', mag_data_vort.dim
             projection = pj.simple_axis_projection(mag_data_vort)
-            phase_map0 = PhaseMap(mag_data_vort.res,
-                                  pm.phase_mag_fourier(mag_data_vort.res, projection,
+            phase_map0 = PhaseMap(mag_data_vort.a,
+                                  pm.phase_mag_fourier(mag_data_vort.a, projection,
                                                        padding=0), 'mrad')
-            phase_map10 = PhaseMap(mag_data_vort.res,
-                                   pm.phase_mag_fourier(mag_data_vort.res, projection,
+            phase_map10 = PhaseMap(mag_data_vort.a,
+                                   pm.phase_mag_fourier(mag_data_vort.a, projection,
                                                         padding=10), 'mrad')
             hi.display_combined(phase_map0, density,
-                                'Disc, res = {} nm'.format(mag_data_vort.res))
+                                'Disc, a = {} nm'.format(mag_data_vort.a))
             hi.display_combined(phase_map10, density,
-                                'Disc, res = {} nm'.format(mag_data_vort.res))
-            x_v.append(np.linspace(mag_data_vort.res * 0.5,
-                                   mag_data_vort.res * (mag_data_vort.dim[1]-0.5),
+                                'Disc, a = {} nm'.format(mag_data_vort.a))
+            x_v.append(np.linspace(mag_data_vort.a * 0.5,
+                                   mag_data_vort.a * (mag_data_vort.dim[1]-0.5),
                                    mag_data_vort.dim[1]))
             slice_pos = int(mag_data_vort.dim[1]/2)
             y_v0.append(phase_map0.phase[slice_pos, :]*1E3)  # *1E3: rad to mrad
@@ -400,7 +400,7 @@ def run():
     print 'CH5-2 PHASE DIFFERENCES FOURIER SPACE'
 
     # Input parameters:
-    res = 1.0  # in nm
+    a = 1.0  # in nm
     phi = pi/2
     dim = (16, 128, 128)  # in px (z, y, x)
     center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px (z, y, x) index starts with 0!
@@ -414,16 +414,16 @@ def run():
     else:
         print '--CREATE MAGNETIC DISTRIBUTIONS'
         # Create magnetic shape (4 times the size):
-        res_big = res / 2
+        a_big = a / 2
         dim_big = (dim[0]*2, dim[1]*2, dim[2]*2)
         center_big = (dim_big[0]/2-0.5, dim_big[1]/2.-0.5, dim_big[2]/2.-0.5)
         radius_big = dim_big[1]/4  # in px
         height_big = dim_big[0]/2  # in px
         mag_shape = mc.Shapes.disc(dim_big, center_big, radius_big, height_big)
         # Create MagData (4 times the size):
-        mag_data_disc = MagData(res_big, mc.create_mag_dist_homog(mag_shape, phi))
-        mag_data_vort = MagData(res_big, mc.create_mag_dist_vortex(mag_shape, center_big))
-        # Scale mag_data, resolution and dimensions:
+        mag_data_disc = MagData(a_big, mc.create_mag_dist_homog(mag_shape, phi))
+        mag_data_vort = MagData(a_big, mc.create_mag_dist_vortex(mag_shape, center_big))
+        # Scale mag_data, grid spacing and dimensions:
         mag_data_disc.scale_down()
         mag_data_vort.scale_down()
         print '--SAVE MAGNETIC DISTRIBUTIONS'
@@ -435,8 +435,8 @@ def run():
     projection_disc = pj.simple_axis_projection(mag_data_disc)
     projection_vort = pj.simple_axis_projection(mag_data_vort)
     # Get analytic solutions:
-    phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height)
-    phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height)
+    phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height)
+    phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height)
 
     # Create figure:
     fig, axes = plt.subplots(1, 2, figsize=(16, 7))
@@ -445,15 +445,15 @@ def run():
     bounds = np.array([-100, -50, -25, -5, 0, 5, 25, 50, 100])
     norm = BoundaryNorm(bounds, RdBu.N)
     # Disc:
-    phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=0)
-    phase_diff_disc = PhaseMap(res, (phase_num_disc-phase_ana_disc), 'mrad')
+    phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=0)
+    phase_diff_disc = PhaseMap(a, (phase_num_disc-phase_ana_disc), 'mrad')
     RMS_disc = np.sqrt(np.mean(phase_diff_disc.phase**2))
     phase_diff_disc.display('Homog. magn. disc, RMS = {:3.2f} mrad'.format(RMS_disc),
                             axis=axes[0], limit=np.max(bounds), norm=norm)
     axes[0].set_aspect('equal')
     # Vortex:
-    phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=0)
-    phase_diff_vort = PhaseMap(res, (phase_num_vort-phase_ana_vort), 'mrad')
+    phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=0)
+    phase_diff_vort = PhaseMap(a, (phase_num_vort-phase_ana_vort), 'mrad')
     RMS_vort = np.sqrt(np.mean(phase_diff_vort.phase**2))
     phase_diff_vort.display('Vortex state disc, RMS = {:3.2f} mrad'.format(RMS_vort),
                             axis=axes[1], limit=np.max(bounds), norm=norm)
@@ -471,15 +471,15 @@ def run():
     bounds = np.array([-3, -0.5, -0.25, -0.1, 0, 0.1, 0.25, 0.5, 3])
     norm = BoundaryNorm(bounds, RdBu.N)
     # Disc:
-    phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=10)
-    phase_diff_disc = PhaseMap(res, (phase_num_disc-phase_ana_disc), 'mrad')
+    phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=10)
+    phase_diff_disc = PhaseMap(a, (phase_num_disc-phase_ana_disc), 'mrad')
     RMS_disc = np.sqrt(np.mean(phase_diff_disc.phase**2))
     phase_diff_disc.display('Homog. magn. disc, RMS = {:3.2f} mrad'.format(RMS_disc),
                             axis=axes[0], limit=np.max(bounds), norm=norm)
     axes[0].set_aspect('equal')
     # Vortex:
-    phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=10)
-    phase_diff_vort = PhaseMap(res, (phase_num_vort-phase_ana_vort), 'mrad')
+    phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=10)
+    phase_diff_vort = PhaseMap(a, (phase_num_vort-phase_ana_vort), 'mrad')
     RMS_vort = np.sqrt(np.mean(phase_diff_vort.phase**2))
     phase_diff_vort.display('Vortex state disc, RMS = {:3.2f} mrad'.format(RMS_vort),
                             axis=axes[1], limit=np.max(bounds), norm=norm)
@@ -494,7 +494,7 @@ def run():
     print 'CH5-2 FOURIER PADDING VARIATION'
 
     # Input parameters:
-    res = 1.0  # in nm
+    a = 1.0  # in nm
     phi = pi/2
     dim = (16, 128, 128)  # in px (z, y, x)
     center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px (z, y, x) index starts with 0!
@@ -508,16 +508,16 @@ def run():
     else:
         print '--CREATE MAGNETIC DISTRIBUTIONS'
         # Create magnetic shape (4 times the size):
-        res_big = res / 2
+        a_big = a / 2
         dim_big = (dim[0]*2, dim[1]*2, dim[2]*2)
         center_big = (dim_big[0]/2-0.5, dim_big[1]/2.-0.5, dim_big[2]/2.-0.5)
         radius_big = dim_big[1]/4  # in px
         height_big = dim_big[0]/2  # in px
         mag_shape = mc.Shapes.disc(dim_big, center_big, radius_big, height_big)
         # Create MagData (4 times the size):
-        mag_data_disc = MagData(res_big, mc.create_mag_dist_homog(mag_shape, phi))
-        mag_data_vort = MagData(res_big, mc.create_mag_dist_vortex(mag_shape, center_big))
-        # Scale mag_data, resolution and dimensions:
+        mag_data_disc = MagData(a_big, mc.create_mag_dist_homog(mag_shape, phi))
+        mag_data_vort = MagData(a_big, mc.create_mag_dist_vortex(mag_shape, center_big))
+        # Scale mag_data, grid spacing and dimensions:
         mag_data_disc.scale_down()
         mag_data_vort.scale_down()
         print '--SAVE MAGNETIC DISTRIBUTIONS'
@@ -528,8 +528,8 @@ def run():
     projection_disc = pj.simple_axis_projection(mag_data_disc)
     projection_vort = pj.simple_axis_projection(mag_data_vort)
     # Get analytic solutions:
-    phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height)
-    phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height)
+    phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height)
+    phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height)
 
     # List of applied paddings:
     padding_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
@@ -539,16 +539,16 @@ def run():
     data_disc[0, :] = padding_list
     for (i, padding) in enumerate(padding_list):
         key = ', '.join(['Padding->RMS|duration', 'Fourier', 'padding={}'.format(padding_list[i]),
-                        'res={}'.format(res), 'dim={}'.format(dim), 'phi={}'.format(phi), 'disc'])
+                        'a={}'.format(a), 'dim={}'.format(dim), 'phi={}'.format(phi), 'disc'])
         if key in data_shelve:
             data_disc[:, i] = data_shelve[key]
         else:
             print '----calculate and save padding =', padding_list[i]
             start_time = time.time()
-            phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding_list[i])
+            phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding_list[i])
             data_disc[2, i] = time.time() - start_time
             phase_diff = (phase_num_disc-phase_ana_disc)
-            phase_map_diff = PhaseMap(res, phase_diff, 'mrad')
+            phase_map_diff = PhaseMap(a, phase_diff, 'mrad')
             phase_map_diff.display()
             data_disc[1, i] = np.sqrt(np.mean(phase_map_diff.phase**2))*1E3  # *1E3: rad to mraddd
             data_shelve[key] = data_disc[:, i]
@@ -580,7 +580,7 @@ def run():
     axes[1].set_xlabel('padding', fontsize=15)
     axes[1].set_ylabel('duration [s]', fontsize=15)
     axes[1].set_xlim(-0.5, 16.5)
-    axes[1].set_ylim(-0.05, 1.5)
+    axes[1].set_ylim(-0.05, 3)
     axes[1].xaxis.set_major_locator(MaxNLocator(nbins=10, integer=True))
     axes[1].yaxis.set_major_locator(MaxNLocator(nbins=10))
     axes[1].tick_params(axis='both', which='major', labelsize=14)
@@ -595,16 +595,16 @@ def run():
     data_vort[0, :] = padding_list
     for (i, padding) in enumerate(padding_list):
         key = ', '.join(['Padding->RMS|duration', 'Fourier', 'padding={}'.format(padding_list[i]),
-                        'res={}'.format(res), 'dim={}'.format(dim), 'phi={}'.format(phi), 'vort'])
+                        'a={}'.format(a), 'dim={}'.format(dim), 'phi={}'.format(phi), 'vort'])
         if key in data_shelve:
             data_vort[:, i] = data_shelve[key]
         else:
             print '----calculate and save padding =', padding_list[i]
             start_time = time.time()
-            phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding_list[i])
+            phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding_list[i])
             data_vort[2, i] = time.time() - start_time
             phase_diff = (phase_num_vort-phase_ana_vort)
-            phase_map_diff = PhaseMap(res, phase_diff, 'mrad')
+            phase_map_diff = PhaseMap(a, phase_diff, 'mrad')
             phase_map_diff.display()
             data_vort[1, i] = np.sqrt(np.mean(phase_map_diff.phase**2))*1E3  # *1E3: rad to mrad
             data_shelve[key] = data_vort[:, i]
@@ -636,7 +636,7 @@ def run():
     axes[1].set_xlabel('padding', fontsize=15)
     axes[1].set_ylabel('duration [s]', fontsize=15)
     axes[1].set_xlim(-0.5, 16.5)
-    axes[1].set_ylim(-0.05, 1.5)
+    axes[1].set_ylim(-0.05, 3)
     axes[1].xaxis.set_major_locator(MaxNLocator(nbins=10, integer=True))
     axes[1].yaxis.set_major_locator(MaxNLocator(nbins=10))
     axes[1].tick_params(axis='both', which='major', labelsize=14)
diff --git a/scripts/paper 1/ch5-3-comparison_of_methods.py b/scripts/paper 1/ch5-3-comparison_of_methods.py
index 7ba66098201465433c58a20d551eee4eda1b2a6c..6d230f049699fe388d30d5c117f6512aa225f03e 100644
--- a/scripts/paper 1/ch5-3-comparison_of_methods.py	
+++ b/scripts/paper 1/ch5-3-comparison_of_methods.py	
@@ -50,7 +50,7 @@ def run():
     else:
         # Input parameters:
         steps = 6
-        res = 0.25  # in nm
+        a = 0.25  # in nm
         phi = pi/2
         dim = (64, 512, 512)  # in px (z, y, x)
         center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px (z, y, x) index starts at 0!
@@ -61,44 +61,44 @@ def run():
         mag_shape = mc.Shapes.disc(dim, center, radius, height)
         # Create MagData (4 times the size):
         print '--CREATE MAG. DIST. HOMOG. MAGN. DISC'
-        mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape, phi))
+        mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape, phi))
         print '--CREATE MAG. DIST. VORTEX STATE DISC'
-        mag_data_vort = MagData(res, mc.create_mag_dist_vortex(mag_shape, center))
+        mag_data_vort = MagData(a, mc.create_mag_dist_vortex(mag_shape, center))
 
         # Create Data Arrays:
-        res_list = [res*2**i for i in np.linspace(1, steps, steps)]
-        data_disc_fourier0 = np.vstack((res_list, np.zeros((2, steps))))
-        data_vort_fourier0 = np.vstack((res_list, np.zeros((2, steps))))
-        data_disc_fourier1 = np.vstack((res_list, np.zeros((2, steps))))
-        data_vort_fourier1 = np.vstack((res_list, np.zeros((2, steps))))
-        data_disc_fourier10 = np.vstack((res_list, np.zeros((2, steps))))
-        data_vort_fourier10 = np.vstack((res_list, np.zeros((2, steps))))
-        data_disc_real_s = np.vstack((res_list, np.zeros((2, steps))))
-        data_vort_real_s = np.vstack((res_list, np.zeros((2, steps))))
-        data_disc_real_d = np.vstack((res_list, np.zeros((2, steps))))
-        data_vort_real_d = np.vstack((res_list, np.zeros((2, steps))))
+        a_list = [a*2**i for i in np.linspace(1, steps, steps)]
+        data_disc_fourier0 = np.vstack((a_list, np.zeros((2, steps))))
+        data_vort_fourier0 = np.vstack((a_list, np.zeros((2, steps))))
+        data_disc_fourier1 = np.vstack((a_list, np.zeros((2, steps))))
+        data_vort_fourier1 = np.vstack((a_list, np.zeros((2, steps))))
+        data_disc_fourier10 = np.vstack((a_list, np.zeros((2, steps))))
+        data_vort_fourier10 = np.vstack((a_list, np.zeros((2, steps))))
+        data_disc_real_s = np.vstack((a_list, np.zeros((2, steps))))
+        data_vort_real_s = np.vstack((a_list, np.zeros((2, steps))))
+        data_disc_real_d = np.vstack((a_list, np.zeros((2, steps))))
+        data_vort_real_d = np.vstack((a_list, np.zeros((2, steps))))
 
         for i in range(steps):
-            # Scale mag_data, resolution and dimensions:
+            # Scale mag_data, grid spacing and dimensions:
             mag_data_disc.scale_down()
             mag_data_vort.scale_down()
             dim = mag_data_disc.dim
-            res = mag_data_disc.res
+            a = mag_data_disc.a
             center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px, index starts at 0!
             radius = dim[1]/4  # in px
             height = dim[0]/2  # in px
 
-            print '--res =', res, 'nm', 'dim =', dim
+            print '--a =', a, 'nm', 'dim =', dim
 
             print '----CALCULATE RMS/DURATION HOMOG. MAGN. DISC'
             # Create projections along z-axis:
             projection_disc = pj.simple_axis_projection(mag_data_disc)
             # Analytic solution:
-            phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height)
+            phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height)
             # Fourier unpadded:
             padding = 0
             start_time = time.clock()
-            phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding)
+            phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding)
             data_disc_fourier0[2, i] = time.clock() - start_time
             print '------time (disc, fourier0) =', data_disc_fourier0[2, i]
             phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3  # in mrad -> *1000
@@ -106,7 +106,7 @@ def run():
             # Fourier padding 1:
             padding = 1
             start_time = time.clock()
-            phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding)
+            phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding)
             data_disc_fourier1[2, i] = time.clock() - start_time
             print '------time (disc, fourier1) =', data_disc_fourier1[2, i]
             phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3  # in mrad -> *1000
@@ -114,35 +114,35 @@ def run():
             # Fourier padding 10:
             padding = 10
             start_time = time.clock()
-            phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding)
+            phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding)
             data_disc_fourier10[2, i] = time.clock() - start_time
             print '------time (disc, fourier10) =', data_disc_fourier10[2, i]
             phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3  # in mrad -> *1000
             data_disc_fourier10[1, i] = np.sqrt(np.mean(phase_diff_disc**2))
             # Real space slab:
             start_time = time.clock()
-            phase_num_disc = pm.phase_mag_real(res, projection_disc, 'slab')
+            phase_num_disc = pm.phase_mag_real(a, projection_disc, geometry='slab')
             data_disc_real_s[2, i] = time.clock() - start_time
             print '------time (disc, real slab) =', data_disc_real_s[2, i]
             phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3  # in mrad -> *1000
             data_disc_real_s[1, i] = np.sqrt(np.mean(phase_diff_disc**2))
             # Real space disc:
             start_time = time.clock()
-            phase_num_disc = pm.phase_mag_real(res, projection_disc, 'disc')
+            phase_num_disc = pm.phase_mag_real(a, projection_disc, geometry='disc')
             data_disc_real_d[2, i] = time.clock() - start_time
             print '------time (disc, real disc) =', data_disc_real_d[2, i]
             phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3  # in mrad -> *1000
             data_disc_real_d[1, i] = np.sqrt(np.mean(phase_diff_disc**2))
 
-            print '----CALCULATE RMS/DURATION HOMOG. MAGN. DISC'
+            print '----CALCULATE RMS/DURATION VORTEX STATE DISC'
             # Create projections along z-axis:
             projection_vort = pj.simple_axis_projection(mag_data_vort)
             # Analytic solution:
-            phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height)
+            phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height)
             # Fourier unpadded:
             padding = 0
             start_time = time.clock()
-            phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding)
+            phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding)
             data_vort_fourier0[2, i] = time.clock() - start_time
             print '------time (vortex, fourier0) =', data_vort_fourier0[2, i]
             phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3  # in mrad -> *1000
@@ -150,7 +150,7 @@ def run():
             # Fourier padding 1:
             padding = 1
             start_time = time.clock()
-            phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding)
+            phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding)
             data_vort_fourier1[2, i] = time.clock() - start_time
             print '------time (vortex, fourier1) =', data_vort_fourier1[2, i]
             phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3  # in mrad -> *1000
@@ -158,21 +158,21 @@ def run():
             # Fourier padding 10:
             padding = 10
             start_time = time.clock()
-            phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding)
+            phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding)
             data_vort_fourier10[2, i] = time.clock() - start_time
             print '------time (vortex, fourier10) =', data_vort_fourier10[2, i]
             phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3  # in mrad -> *1000
             data_vort_fourier10[1, i] = np.sqrt(np.mean(phase_diff_vort**2))
             # Real space slab:
             start_time = time.clock()
-            phase_num_vort = pm.phase_mag_real(res, projection_vort, 'slab')
+            phase_num_vort = pm.phase_mag_real(a, projection_vort, geometry='slab')
             data_vort_real_s[2, i] = time.clock() - start_time
             print '------time (vortex, real slab) =', data_vort_real_s[2, i]
             phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3  # in mrad -> *1000
             data_vort_real_s[1, i] = np.sqrt(np.mean(phase_diff_vort**2))
             # Real space disc:
             start_time = time.clock()
-            phase_num_vort = pm.phase_mag_real(res, projection_vort, 'disc')
+            phase_num_vort = pm.phase_mag_real(a, projection_vort, geometry='disc')
             data_vort_real_d[2, i] = time.clock() - start_time
             print '------time (vortex, real disc) =', data_vort_real_d[2, i]
             phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3  # in mrad -> *1000
@@ -192,20 +192,20 @@ def run():
     fig.tight_layout(rect=(0.05, 0.05, 0.95, 0.95))
     fig.suptitle('Method Comparison', fontsize=20)
 
-    # Plot duration against res (disc) [top/left]:
+    # Plot duration against a (disc) [top/left]:
     axes[1, 0].set_yscale('log')
     axes[1, 0].plot(data_disc_fourier0[0], data_disc_fourier0[1], ':bs')
     axes[1, 0].plot(data_disc_fourier1[0], data_disc_fourier1[1], ':bo')
     axes[1, 0].plot(data_disc_fourier10[0], data_disc_fourier10[1], ':b^')
     axes[1, 0].plot(data_disc_real_s[0], data_disc_real_s[1], '--rs')
     axes[1, 0].plot(data_disc_real_d[0], data_disc_real_d[1], '--ro')
-    axes[1, 0].set_xlabel('res [nm]', fontsize=15)
+    axes[1, 0].set_xlabel('a [nm]', fontsize=15)
     axes[1, 0].set_ylabel('RMS [mrad]', fontsize=15)
     axes[1, 0].set_xlim(-0.5, 16.5)
     axes[1, 0].tick_params(axis='both', which='major', labelsize=14)
     axes[1, 0].xaxis.set_major_locator(IndexLocator(base=4, offset=-0.5))
 
-    # Plot RMS against res (disc) [bottom/left]:
+    # Plot RMS against a (disc) [bottom/left]:
     plt.tick_params(axis='both', which='major', labelsize=14)
     axes[0, 0].set_yscale('log')
     axes[0, 0].plot(data_disc_fourier0[0], data_disc_fourier0[2], ':bs')
@@ -219,19 +219,19 @@ def run():
     axes[0, 0].tick_params(axis='both', which='major', labelsize=14)
     axes[0, 0].xaxis.set_major_locator(IndexLocator(base=4, offset=-0.5))
 
-    # Plot duration against res (vortex) [top/right]:
+    # Plot duration against a (vortex) [top/right]:
     axes[1, 1].set_yscale('log')
     axes[1, 1].plot(data_vort_fourier0[0], data_vort_fourier0[1], ':bs')
     axes[1, 1].plot(data_vort_fourier1[0], data_vort_fourier1[1], ':bo')
     axes[1, 1].plot(data_vort_fourier10[0], data_vort_fourier10[1], ':b^')
     axes[1, 1].plot(data_vort_real_s[0], data_vort_real_s[1], '--rs')
     axes[1, 1].plot(data_vort_real_d[0], data_vort_real_d[1], '--ro')
-    axes[1, 1].set_xlabel('res [nm]', fontsize=15)
+    axes[1, 1].set_xlabel('a [nm]', fontsize=15)
     axes[1, 1].set_xlim(-0.5, 16.5)
     axes[1, 1].tick_params(axis='both', which='major', labelsize=14)
     axes[1, 1].xaxis.set_major_locator(IndexLocator(base=4, offset=-0.5))
 
-    # Plot RMS against res (vortex) [bottom/right]:
+    # Plot RMS against a (vortex) [bottom/right]:
     axes[0, 1].set_yscale('log')
     axes[0, 1].plot(data_vort_fourier0[0], data_vort_fourier0[2], ':bs',
                     label='Fourier padding=0')
diff --git a/scripts/paper 1/ch5-4-comparison_of_methods_new.py b/scripts/paper 1/ch5-4-comparison_of_methods_new.py
index b99f7646387ce0a346d9671bf1ab0b9b4e14f07a..6be62fcf7f172aaf5c53b626f1bdc66ec6a69775 100644
--- a/scripts/paper 1/ch5-4-comparison_of_methods_new.py	
+++ b/scripts/paper 1/ch5-4-comparison_of_methods_new.py	
@@ -24,6 +24,7 @@ import pyramid.projector as pj
 import pyramid.phasemapper as pm
 import pyramid.analytic as an
 from pyramid.magdata import MagData
+from pyramid.kernel import Kernel
 import shelve
 
 
@@ -50,7 +51,7 @@ def run():
     else:
         # Input parameters:
         steps = 5
-        res = 0.25  # in nm
+        a = 0.25  # in nm
         phi = pi/2
         dim = (64, 512, 512)  # in px (z, y, x)
         center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px (z, y, x) index starts at 0!
@@ -61,9 +62,9 @@ def run():
         mag_shape = mc.Shapes.disc(dim, center, radius, height)
         # Create MagData (4 times the size):
         print '--CREATE MAG. DIST. HOMOG. MAGN. DISC'
-        mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape, phi))
+        mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape, phi))
         print '--CREATE MAG. DIST. VORTEX STATE DISC'
-        mag_data_vort = MagData(res, mc.create_mag_dist_vortex(mag_shape, center))
+        mag_data_vort = MagData(a, mc.create_mag_dist_vortex(mag_shape, center))
 
         # Create Data Arrays:
         dim_list = [dim[2]/2**i for i in np.linspace(1, steps, steps)]
@@ -79,26 +80,26 @@ def run():
         data_vort_real_d = np.vstack((dim_list, np.zeros((2, steps))))
 
         for i in range(steps):
-            # Scale mag_data, resolution and dimensions:
+            # Scale mag_data, grid spacing and dimensions:
             mag_data_disc.scale_down()
             mag_data_vort.scale_down()
             dim = mag_data_disc.dim
-            res = mag_data_disc.res
+            a = mag_data_disc.a
             center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px, index starts at 0!
             radius = dim[1]/4  # in px
             height = dim[0]/2  # in px
 
-            print '--res =', res, 'nm', 'dim =', dim
+            print '--a =', a, 'nm', 'dim =', dim
 
             print '----CALCULATE RMS/DURATION HOMOG. MAGN. DISC'
             # Create projections along z-axis:
             projection_disc = pj.simple_axis_projection(mag_data_disc)
             # Analytic solution:
-            phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height)
+            phase_ana_disc = an.phase_mag_disc(dim, a, phi, center, radius, height)
             # Fourier unpadded:
             padding = 0
             start_time = time.clock()
-            phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding)
+            phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding)
             data_disc_fourier0[2, i] = time.clock() - start_time
             print '------time (disc, fourier0) =', data_disc_fourier0[2, i]
             phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3  # in mrad -> *1000
@@ -106,7 +107,7 @@ def run():
             # Fourier padding 3:
             padding = 3
             start_time = time.clock()
-            phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding)
+            phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding)
             data_disc_fourier3[2, i] = time.clock() - start_time
             print '------time (disc, fourier3) =', data_disc_fourier3[2, i]
             phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3  # in mrad -> *1000
@@ -114,25 +115,23 @@ def run():
             # Fourier padding 10:
             padding = 10
             start_time = time.clock()
-            phase_num_disc = pm.phase_mag_fourier(res, projection_disc, padding=padding)
+            phase_num_disc = pm.phase_mag_fourier(a, projection_disc, padding=padding)
             data_disc_fourier10[2, i] = time.clock() - start_time
             print '------time (disc, fourier10) =', data_disc_fourier10[2, i]
             phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3  # in mrad -> *1000
             data_disc_fourier10[1, i] = np.sqrt(np.mean(phase_diff_disc**2))
             # Real space slab:
-            u_kern_f = pm.get_kernel_fourier('slab', 'u', np.shape(projection_disc[0]), res)
-            v_kern_f = pm.get_kernel_fourier('slab', 'v', np.shape(projection_disc[0]), res)
+            kernel = Kernel((dim[1], dim[2]), a, geometry='slab')
             start_time = time.clock()
-            phase_num_disc = pm.phase_mag_real_fast(res, projection_disc, (v_kern_f, u_kern_f))
+            phase_num_disc = pm.phase_mag(a, projection_disc, kernel=kernel)
             data_disc_real_s[2, i] = time.clock() - start_time
             print '------time (disc, real slab) =', data_disc_real_s[2, i]
             phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3  # in mrad -> *1000
             data_disc_real_s[1, i] = np.sqrt(np.mean(phase_diff_disc**2))
             # Real space disc:
-            u_kern_f = pm.get_kernel_fourier('disc', 'u', np.shape(projection_disc[0]), res)
-            v_kern_f = pm.get_kernel_fourier('disc', 'v', np.shape(projection_disc[0]), res)
+            kernel = Kernel((dim[1], dim[2]), a, geometry='slab')
             start_time = time.clock()
-            phase_num_disc = pm.phase_mag_real_fast(res, projection_disc, (v_kern_f, u_kern_f))
+            phase_num_disc = pm.phase_mag(a, projection_disc, kernel=kernel)
             data_disc_real_d[2, i] = time.clock() - start_time
             print '------time (disc, real disc) =', data_disc_real_d[2, i]
             phase_diff_disc = (phase_ana_disc-phase_num_disc) * 1E3  # in mrad -> *1000
@@ -142,11 +141,11 @@ def run():
             # Create projections along z-axis:
             projection_vort = pj.simple_axis_projection(mag_data_vort)
             # Analytic solution:
-            phase_ana_vort = an.phase_mag_vortex(dim, res, center, radius, height)
+            phase_ana_vort = an.phase_mag_vortex(dim, a, center, radius, height)
             # Fourier unpadded:
             padding = 0
             start_time = time.clock()
-            phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding)
+            phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding)
             data_vort_fourier0[2, i] = time.clock() - start_time
             print '------time (vortex, fourier0) =', data_vort_fourier0[2, i]
             phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3  # in mrad -> *1000
@@ -154,7 +153,7 @@ def run():
             # Fourier padding 3:
             padding = 3
             start_time = time.clock()
-            phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding)
+            phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding)
             data_vort_fourier3[2, i] = time.clock() - start_time
             print '------time (vortex, fourier3) =', data_vort_fourier3[2, i]
             phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3  # in mrad -> *1000
@@ -162,25 +161,23 @@ def run():
             # Fourier padding 10:
             padding = 10
             start_time = time.clock()
-            phase_num_vort = pm.phase_mag_fourier(res, projection_vort, padding=padding)
+            phase_num_vort = pm.phase_mag_fourier(a, projection_vort, padding=padding)
             data_vort_fourier10[2, i] = time.clock() - start_time
             print '------time (vortex, fourier10) =', data_vort_fourier10[2, i]
             phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3  # in mrad -> *1000
             data_vort_fourier10[1, i] = np.sqrt(np.mean(phase_diff_vort**2))
             # Real space slab:
-            u_kern_f = pm.get_kernel_fourier('slab', 'u', np.shape(projection_vort[0]), res)
-            v_kern_f = pm.get_kernel_fourier('slab', 'v', np.shape(projection_vort[0]), res)
+            kernel = Kernel((dim[1], dim[2]), a, geometry='slab')
             start_time = time.clock()
-            phase_num_vort = pm.phase_mag_real_fast(res, projection_vort, (v_kern_f, u_kern_f))
+            phase_num_vort = pm.phase_mag(a, projection_vort, kernel=kernel)
             data_vort_real_s[2, i] = time.clock() - start_time
             print '------time (vortex, real slab) =', data_vort_real_s[2, i]
             phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3  # in mrad -> *1000
             data_vort_real_s[1, i] = np.sqrt(np.mean(phase_diff_vort**2))
             # Real space disc:
-            u_kern_f = pm.get_kernel_fourier('disc', 'u', np.shape(projection_vort[0]), res)
-            v_kern_f = pm.get_kernel_fourier('disc', 'v', np.shape(projection_vort[0]), res)
+            kernel = Kernel((dim[1], dim[2]), a, geometry='disc')
             start_time = time.clock()
-            phase_num_vort = pm.phase_mag_real_fast(res, projection_vort, (v_kern_f, u_kern_f))
+            phase_num_vort = pm.phase_mag(a, projection_vort, kernel=kernel)
             data_vort_real_d[2, i] = time.clock() - start_time
             print '------time (vortex, real disc) =', data_vort_real_d[2, i]
             phase_diff_vort = (phase_ana_vort-phase_num_vort) * 1E3  # in mrad -> *1000
@@ -200,7 +197,7 @@ def run():
     fig.tight_layout(rect=(0.05, 0.05, 0.95, 0.95))
     fig.suptitle('Method Comparison', fontsize=20)
 
-    # Plot duration against res (disc) [top/left]:
+    # Plot duration against a (disc) [top/left]:
     axes[1, 0].set_xscale('log')
     axes[1, 0].set_yscale('log')
     axes[1, 0].plot(data_disc_fourier0[0], data_disc_fourier0[1], ':bs')
@@ -217,7 +214,7 @@ def run():
     axes[1, 0].xaxis.set_minor_locator(NullLocator())
     axes[1, 0].grid()
 
-    # Plot RMS against res (disc) [bottom/left]:
+    # Plot RMS against a (disc) [bottom/left]:
     plt.tick_params(axis='both', which='major', labelsize=14)
     axes[0, 0].set_xscale('log')
     axes[0, 0].set_yscale('log')
@@ -235,7 +232,7 @@ def run():
     axes[0, 0].xaxis.set_minor_locator(NullLocator())
     axes[0, 0].grid()
 
-    # Plot duration against res (vortex) [top/right]:
+    # Plot duration against a (vortex) [top/right]:
     axes[1, 1].set_xscale('log')
     axes[1, 1].set_yscale('log')
     axes[1, 1].plot(data_vort_fourier0[0], data_vort_fourier0[1], ':bs',
@@ -256,7 +253,7 @@ def run():
     axes[1, 1].xaxis.set_minor_locator(NullLocator())
     axes[1, 1].grid()
 
-    # Plot RMS against res (vortex) [bottom/right]:
+    # Plot RMS against a (vortex) [bottom/right]:
     axes[0, 1].set_xscale('log')
     axes[0, 1].set_yscale('log')
     axes[0, 1].plot(data_vort_fourier0[0], data_vort_fourier0[2], ':bs',
diff --git a/scripts/reconstruction/get_jacobi.py b/scripts/reconstruction/get_jacobi.py
index 87a9b471ec3f0bceea2fbd7f03d4edfe345d6f15..c4919005a6a50178a8926915e18b4038ec879ed9 100644
--- a/scripts/reconstruction/get_jacobi.py
+++ b/scripts/reconstruction/get_jacobi.py
@@ -6,9 +6,6 @@ Created on Wed Apr 03 11:15:38 2013
 """
 
 import time
-import pdb
-import traceback
-import sys
 import os
 
 import numpy as np
@@ -21,85 +18,65 @@ from pyramid.magdata import MagData
 from pyramid.phasemap import PhaseMap
 
 
-def get_jacobi():
-    '''Calculate and display the phase map from a given magnetization.
-    Arguments:
-        None
-    Returns:
-        None
-
-    '''
-    directory = '../../output/reconstruction'
-    if not os.path.exists(directory):
-        os.makedirs(directory)
-    filename = directory + '/jacobi.npy'
-    # TODO: Input via GUI
-    b_0 = 1.0  # in T
-    dim = (1, 3, 3)  # in px (y,x)
-    res = 10.0  # in nm
-    phi = pi/4
-
-    center = (0, int(dim[1]/2), int(dim[2]/2))  # in px (y,x) index starts with 0!
-    width = (0, 1, 1)  # in px (y,x)
-
-    mag_data = MagData(res, mc.create_mag_dist_homog(mc.Shapes.slab(dim, center, width), phi))
-    projection = pj.simple_axis_projection(mag_data)
-    print 'Projection calculated!'
-
-    '''NUMERICAL SOLUTION'''
-    # numerical solution Real Space:
-    dim_proj = np.shape(projection[0])
-    size = np.prod(dim_proj)
-    kernel = pm.Kernel(dim_proj, res, 'disc')
-
-    tic = time.clock()
-    kernel.multiply_jacobi(np.ones(2*size))  # column-wise
-    toc = time.clock()
-    print 'Time for one multiplication with the Jacobi-Matrix:      ', toc - tic
-
-    jacobi = np.zeros((size, 2*size))
-    tic = time.clock()
-    phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'disc', b_0, jacobi=jacobi))
-    toc = time.clock()
-    phase_map.display()
-    np.savetxt(filename, jacobi)
-    print 'Time for Jacobi-Matrix during phase calculation:         ', toc - tic
-    
-    tic = time.clock()
-    jacobi_test = kernel.get_jacobi()
-    toc = time.clock()
-    print 'Time for Jacobi-Matrix from the Kernel:                  ', toc - tic
-    
-    unity = np.eye(2*size)
-    jacobi_test2 = np.zeros((size, 2*size))
-    tic = time.clock()
-    for i in range(unity.shape[1]):
-        jacobi_test2[:, i] = kernel.multiply_jacobi(unity[:, i])  # column-wise
-    toc = time.clock()
-    print 'Time for getting the Jacobi-Matrix (vector-wise):        ', toc - tic
-
-    unity_transp = np.eye(size)
-    jacobi_transp = np.zeros((2*size, size))
-    tic = time.clock()
-    for i in range(unity_transp.shape[1]):
-        jacobi_transp[:, i] = kernel.multiply_jacobi_T(unity_transp[:, i])  # column-wise
-    toc = time.clock()
-    print 'Time for getting the transp. Jacobi-Matrix (vector-wise):', toc - tic
-
-    print 'Methods (during vs kernel) in accordance?                ', \
-        np.logical_not(np.all(jacobi-jacobi_test))
-    print 'Methods (during vs vector-wise) in accordance?           ', \
-        np.logical_not(np.all(jacobi-jacobi_test2))
-    print 'Methods (transponed Jacobi) in accordance?               ', \
-        np.logical_not(np.all(jacobi.T-jacobi_transp))
-    
-    return (jacobi, jacobi_test, jacobi_test2, jacobi_transp)
-
-
-if __name__ == "__main__":
-    try:
-        jacobi = get_jacobi()
-    except:
-        type, value, tb = sys.exc_info()
-        traceback.print_exc()
-        pdb.post_mortem(tb)
+directory = '../../output/reconstruction'
+if not os.path.exists(directory):
+    os.makedirs(directory)
+filename = directory + '/jacobi.npy'
+b_0 = 1.0  # in T
+dim = (1, 8, 8)  # in px (y,x)
+res = 10.0  # in nm
+phi = pi/4
+
+center = (0, int(dim[1]/2), int(dim[2]/2))  # in px (y,x) index starts with 0!
+width = (0, 1, 1)  # in px (y,x)
+
+mag_data = MagData(res, mc.create_mag_dist_homog(mc.Shapes.slab(dim, center, width), phi))
+projection = pj.simple_axis_projection(mag_data)
+print 'Projection calculated!'
+
+'''NUMERICAL SOLUTION'''
+# numerical solution Real Space:
+dim_proj = np.shape(projection[0])
+size = np.prod(dim_proj)
+kernel = pm.Kernel(dim_proj, res, 'disc')
+
+tic = time.clock()
+kernel.multiply_jacobi(np.ones(2*size))  # column-wise
+toc = time.clock()
+print 'Time for one multiplication with the Jacobi-Matrix:      ', toc - tic
+
+jacobi = np.zeros((size, 2*size))
+tic = time.clock()
+phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, b_0, 'disc', jacobi=jacobi))
+toc = time.clock()
+phase_map.display()
+np.savetxt(filename, jacobi)
+print 'Time for Jacobi-Matrix during phase calculation:         ', toc - tic
+
+tic = time.clock()
+jacobi_test = kernel.get_jacobi()
+toc = time.clock()
+print 'Time for Jacobi-Matrix from the Kernel:                  ', toc - tic
+
+unity = np.eye(2*size)
+jacobi_test2 = np.zeros((size, 2*size))
+tic = time.clock()
+for i in range(unity.shape[1]):
+    jacobi_test2[:, i] = kernel.multiply_jacobi(unity[:, i])  # column-wise
+toc = time.clock()
+print 'Time for getting the Jacobi-Matrix (vector-wise):        ', toc - tic
+
+unity_transp = np.eye(size)
+jacobi_transp = np.zeros((2*size, size))
+tic = time.clock()
+for i in range(unity_transp.shape[1]):
+    jacobi_transp[:, i] = kernel.multiply_jacobi_T(unity_transp[:, i])  # column-wise
+toc = time.clock()
+print 'Time for getting the transp. Jacobi-Matrix (vector-wise):', toc - tic
+
+print 'Methods (during vs kernel) in accordance?                ', \
+    np.logical_not(np.all(jacobi-jacobi_test))
+print 'Methods (during vs vector-wise) in accordance?           ', \
+    np.logical_not(np.all(jacobi-jacobi_test2))
+print 'Methods (transponed Jacobi) in accordance?               ', \
+    np.logical_not(np.all(jacobi.T-jacobi_transp))
diff --git a/scripts/reconstruction/reconstruct_core_shell.py b/scripts/reconstruction/reconstruct_core_shell.py
index 56d2c033dcf75c55b02766f547bc32424e5ccf09..91e09676bf4373784a1d3e13ebc042cdf8e69c5b 100644
--- a/scripts/reconstruction/reconstruct_core_shell.py
+++ b/scripts/reconstruction/reconstruct_core_shell.py
@@ -5,9 +5,6 @@ Created on Wed Nov 13 10:25:53 2013
 @author: Jan
 """
 
-import sys
-import traceback
-import pdb
 import os
 
 import numpy as np
@@ -19,13 +16,12 @@ import pyramid.phasemapper as pm
 import pyramid.projector as pj
 import pyramid.holoimage as hi
 from pyramid.magdata import MagData
+from pyramid.kernel import Kernel
 from pyramid.phasemap import PhaseMap
 
 import matplotlib.pyplot as plt
 from matplotlib.animation import ArtistAnimation
 
-from matplotlib.ticker import FixedFormatter, IndexLocator, LinearLocator
-
 
 print '\nACCESS SHELVE'
 # Create / Open databank:
@@ -41,26 +37,27 @@ else:
     mag_data = MagData.load_from_llg(directory + 
                                      '/magnetic distributions/mag_dist_core_shell_disc.txt')
     mag_data.quiver_plot()
-    res = mag_data.res
+    a = mag_data.a
     dim = mag_data.dim
     slices = 30
     angles = np.linspace(0, 2*pi, slices, endpoint=True)
     projections = []
     phase_maps = []
+    kernel = Kernel((dim[1], dim[2]), a)
     for tilt_angle in angles:
         print '{:.2f} pi'.format(tilt_angle/pi)
         # Project along tilt_angle
         projection = pj.single_tilt_projection(mag_data, tilt_angle)
         projections.append(projection)
         # Construct phase maps:
-        phase_map = PhaseMap(res, pm.phase_mag_real_conv(res, projection), unit='rad')
+        phase_map = PhaseMap(a, pm.phase_mag(a, projection, kernel=kernel), unit='rad')
         phase_maps.append(phase_map)
         # Display the combinated plots with phasemap and holography image:
         title = 'Phase at {:.2f} pi'.format(tilt_angle/pi)
-    #    phase_map.display(title, limit=None)
-    #    hi.display_combined(phase_map, 1, title=title)
-    #    plt.savefig(directory+'/reconstruction/tilt_series_comb_'+
-    #                '{:.2f}'.format(tilt_angle/pi)+'pi.png')
+        phase_map.display(title, limit=None)
+        hi.display_combined(phase_map, 1, title=title)
+        plt.savefig(directory+'/reconstruction/tilt_series_comb_'+
+                    '{:.2f}'.format(tilt_angle/pi)+'pi.png')
     # Save data
     data_shelve[key] = (projections, phase_maps, mag_data)
 
@@ -87,7 +84,7 @@ plt.show()
 # RECONSTRUCTION:
 mask = mag_data.get_mask()
 dim = mag_data.dim
-res = mag_data.res
-mag_data_reconstruct = MagData(res, (np.zeros(dim),)*3)
+a = mag_data.a
+mag_data_reconstruct = MagData(a, (np.zeros(dim),)*3)
 
 mag_vector = mag_data_reconstruct.get_vector(mask)
diff --git a/scripts/reconstruction/reconstruct_random_pixels.py b/scripts/reconstruction/reconstruct_random_pixels.py
index 710293e4da4457d88efb966e08ea1be12044f1d9..a3a1aedf8346794af8cb1f8feecbf1d159df1149 100644
--- a/scripts/reconstruction/reconstruct_random_pixels.py
+++ b/scripts/reconstruction/reconstruct_random_pixels.py
@@ -3,10 +3,6 @@
 
 
 import random as rnd
-import pdb
-import traceback
-import sys
-import numpy as np
 from numpy import pi
 
 import pyramid.magcreator as mc
@@ -18,48 +14,31 @@ from pyramid.phasemap import PhaseMap
 import pyramid.reconstructor as rc
 
 
-def reconstruct_random_distribution():
-    '''Calculate and reconstruct a random magnetic distribution.
-    Arguments:
-        None
-    Returns:
-        None
-
-    '''
-    # Input parameters:
-    n_pixel = 5
-    dim = (1, 16, 16)
-    b_0 = 1  # in T
-    res = 10.0  # in nm
-    rnd.seed(18)
-
-    # Create empty MagData object and add random pixels:
-    mag_data = MagData(res)
-    for i in range(n_pixel):
-        pixel = (rnd.randrange(dim[0]), rnd.randrange(dim[1]), rnd.randrange(dim[2]))
-        mag_shape = mc.Shapes.pixel(dim, pixel)
-        phi = 2 * pi * rnd.random()
-        magnitude = rnd.random()
-        mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape, phi, magnitude))
-    # Plot magnetic distribution, phase map and holographic contour map:
-    mag_data.quiver_plot()
-    projection = pj.simple_axis_projection(mag_data)
-    phase_map = PhaseMap(res, pm.phase_mag_real(res, projection, 'slab', b_0))
-    hi.display_combined(phase_map, 10, 'Generated Distribution')
-
-    # Reconstruct the magnetic distribution:
-    mag_data_rec = rc.reconstruct_simple_leastsq(phase_map, mag_data.get_mask(), b_0)
-
-    # Display the reconstructed phase map and holography image:
-    projection_rec = pj.simple_axis_projection(mag_data_rec)
-    phase_map_rec = PhaseMap(res, pm.phase_mag_real(res, projection_rec, 'slab', b_0))
-    hi.display_combined(phase_map_rec, 10, 'Reconstructed Distribution')
-
-
-if __name__ == "__main__":
-    try:
-        reconstruct_random_distribution()
-    except:
-        type, value, tb = sys.exc_info()
-        traceback.print_exc()
-        pdb.post_mortem(tb)
+# Input parameters:
+n_pixel = 5
+dim = (1, 16, 16)
+b_0 = 1  # in T
+a = 10.0  # in nm
+rnd.seed(18)
+
+# Create empty MagData object and add random pixels:
+mag_data = MagData(a)
+for i in range(n_pixel):
+    pixel = (rnd.randrange(dim[0]), rnd.randrange(dim[1]), rnd.randrange(dim[2]))
+    mag_shape = mc.Shapes.pixel(dim, pixel)
+    phi = 2 * pi * rnd.random()
+    magnitude = rnd.random()
+    mag_data.add_magnitude(mc.create_mag_dist_homog(mag_shape, phi, magnitude))
+# Plot magnetic distribution, phase map and holographic contour map:
+mag_data.quiver_plot()
+projection = pj.simple_axis_projection(mag_data)
+phase_map = PhaseMap(a, pm.phase_mag(a, projection, b_0))
+hi.display_combined(phase_map, 10, 'Generated Distribution')
+
+# Reconstruct the magnetic distribution:
+mag_data_rec = rc.reconstruct_simple_leastsq(phase_map, mag_data.get_mask(), b_0)
+
+# Display the reconstructed phase map and holography image:
+projection_rec = pj.simple_axis_projection(mag_data_rec)
+phase_map_rec = PhaseMap(a, pm.phase_mag(a, projection_rec, b_0))
+hi.display_combined(phase_map_rec, 10, 'Reconstructed Distribution')
diff --git a/scripts/test_arb_projection.py b/scripts/test_arb_projection.py
index fa71062af5674e0491d12f725fa110e1872c4bdd..c652331cc2d894f43f44c6a9ce95b6547050b994 100644
--- a/scripts/test_arb_projection.py
+++ b/scripts/test_arb_projection.py
@@ -5,7 +5,6 @@ Created on Tue Sep 03 12:55:40 2013
 @author: Jan
 """
 
-'''2D Case Bresenham's line algorithm'''
 
 import numpy as np
 from numpy import pi
diff --git a/scripts/test_h5py.py b/scripts/test_h5py.py
index 40271b226546467672ddde6727f53aaf23ecad0e..7132dba75c8f4fa279a98a5aa9b6fdd4ed9f4a79 100644
--- a/scripts/test_h5py.py
+++ b/scripts/test_h5py.py
@@ -5,33 +5,23 @@ Created on Thu Nov 21 17:35:37 2013
 @author: Jan
 """
 
+
 import h5py
 import numpy as np
 
-with h5py.File('testfile.hdf5', 'w') as f:
 
+with h5py.File('testfile.hdf5', 'w') as f:
     dset = f.create_dataset('testdataset', (100,), dtype='i')
-    
     print 'dset.shape:', dset.shape
-    
     print 'dset.dtype:', dset.dtype
-    
     dset[...] = np.arange(100)
-    
     print 'dset[0]:', dset[0]
-
     print 'dset[10]:', dset[10]
-    
     print 'dset[0:100:10]:', dset[0:100:10]
-    
     print 'dset.name:', dset.name
-    
     print 'f.name:', f.name
-    
     grp = f.create_group('subgroup')
-    
     dset_big = grp.create_dataset('another_set', (1000, 1000, 1000), dtype='f')
-    
     for i in range(dset_big.shape[0]):
         print 'i:', i
         dset_big[i, ...] = np.ones(dset_big.shape[1:])
diff --git a/scripts/test_methods.py b/scripts/test_methods.py
index f52fcfeeb770fc2b2bce131fcfd5828bf23a8c58..c7af2e6872061092cf1ba9e3daded5aad459916d 100644
--- a/scripts/test_methods.py
+++ b/scripts/test_methods.py
@@ -2,10 +2,6 @@
 # -*- coding: utf-8 -*-
 """Compare the different methods to create phase maps."""
 
-import pdb
-import traceback
-import sys
-
 from numpy import pi
 
 import pyramid.magcreator as mc
@@ -16,72 +12,52 @@ from pyramid.magdata import MagData
 from pyramid.phasemap import PhaseMap
 
 
-def compare_methods():
-    '''Calculate and display the phase map from a given magnetization.
-    Arguments:
-        None
-    Returns:
-        None
-
-    '''
-    # Input parameters:
-    res = 10.0  # in nm
-    phi = 0
-    theta = pi/2
-    tilt = pi/4
-    density = 0.25
-    dim = (128, 128, 128)  # in px (z, y, x)
-    # Create magnetic shape:
-    geometry = 'sphere'
-    if geometry == 'slab':
-        center = (dim[0]/2-0.5, dim[1]/2-0.5, dim[2]/2.-0.5)  # in px (z, y, x) index starts at 0!
-        width = (dim[0]/3., dim[1]/4., dim[2]/2.)  # in px (z, y, x)
-        mag_shape = mc.Shapes.slab(dim, center, width)
-    elif geometry == 'disc':
-        center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px (z, y, x) index starts at 0!
-        radius = dim[1]/4  # in px
-        height = dim[0]/2  # in px
-        mag_shape = mc.Shapes.disc(dim, center, radius, height)
-    elif geometry == 'sphere':
-        center = (dim[0]/2, dim[1]/2, dim[2]/2)  # in px (z, y, x) index starts with 0!
-        radius = dim[0]/4  # in px
-        mag_shape = mc.Shapes.sphere(dim, center, radius)
-    # Project the magnetization data:
-    mag_data = MagData(res, mc.create_mag_dist_homog(mag_shape, phi, theta))
-
-#    density = 0.3
-#    mag_data = MagData.load_from_llg('../output/magnetic distributions/mag_dist_sphere.txt')
-
-    res = mag_data.res
-    mag_data.quiver_plot(ax_slice=dim[1]/2)
+# Input parameters:
+a = 10.0  # in nm
+phi = 0
+theta = pi/2
+tilt = pi/4
+density = 0.25
+dim = (128, 128, 128)  # in px (z, y, x)
+# Create magnetic shape:
+geometry = 'sphere'
+if geometry == 'slab':
+    center = (dim[0]/2-0.5, dim[1]/2-0.5, dim[2]/2.-0.5)  # in px (z, y, x) index starts at 0!
+    width = (dim[0]/3., dim[1]/4., dim[2]/2.)  # in px (z, y, x)
+    mag_shape = mc.Shapes.slab(dim, center, width)
+elif geometry == 'disc':
+    center = (dim[0]/2-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px (z, y, x) index starts at 0!
+    radius = dim[1]/4  # in px
+    height = dim[0]/2  # in px
+    mag_shape = mc.Shapes.disc(dim, center, radius, height)
+elif geometry == 'sphere':
+    center = (dim[0]/2, dim[1]/2, dim[2]/2)  # in px (z, y, x) index starts with 0!
+    radius = dim[0]/4  # in px
+    mag_shape = mc.Shapes.sphere(dim, center, radius)
+# Project the magnetization data:
+mag_data = MagData(a, mc.create_mag_dist_homog(mag_shape, phi, theta))
+
+a = mag_data.a
+mag_data.quiver_plot(ax_slice=dim[1]/2)
 #    mag_data.quiver_plot3d()
-    import time
-    start = time.time()
-    projection = pj.single_tilt_projection(mag_data, tilt)
-    print 'Total projection time:', time.time() - start
-    # Construct phase maps:
-    phase_map_mag = PhaseMap(res, pm.phase_mag_fourier(res, projection, padding=1))
-    phase_map_elec = PhaseMap(res, pm.phase_elec(res, projection, v_0=3))
-    # Display the combinated plots with phasemap and holography image:
-    hi.display_combined(phase_map_mag, density, title='Magnetic Phase')
-    hi.display_combined(phase_map_elec, density, title='Electric Phase')
-
-    phase_map = PhaseMap(res, phase_map_mag.phase+phase_map_elec.phase)
-    hi.display_combined(phase_map, density)
-    
-    import matplotlib.pyplot as plt
-    x = range(dim[2])
-    y = phase_map_elec.phase[dim[1]/2, :]
-    fig = plt.figure()
-    axis = fig.add_subplot(1, 1, 1)
-    axis.plot(x, y, label='Real space method')
-    axis.grid()
-    
-
-if __name__ == "__main__":
-    try:
-        compare_methods()
-    except:
-        type, value, tb = sys.exc_info()
-        traceback.print_exc()
-        pdb.post_mortem(tb)
+import time
+start = time.time()
+projection = pj.single_tilt_projection(mag_data, tilt)
+print 'Total projection time:', time.time() - start
+# Construct phase maps:
+phase_map_mag = PhaseMap(a, pm.phase_mag_fourier(a, projection, padding=1))
+phase_map_elec = PhaseMap(a, pm.phase_elec(a, projection, v_0=3))
+# Display the combinated plots with phasemap and holography image:
+hi.display_combined(phase_map_mag, density, title='Magnetic Phase')
+hi.display_combined(phase_map_elec, density, title='Electric Phase')
+
+phase_map = PhaseMap(a, phase_map_mag.phase+phase_map_elec.phase)
+hi.display_combined(phase_map, density)
+
+import matplotlib.pyplot as plt
+x = range(dim[2])
+y = phase_map_elec.phase[dim[1]/2, :]
+fig = plt.figure()
+axis = fig.add_subplot(1, 1, 1)
+axis.plot(x, y, label='Real space method')
+axis.grid()
diff --git a/scripts/test_vadim.py b/scripts/test_vadim.py
index ce1f3d5d9621ff73aedd566582c11653979ced15..229313c2f88afad9979393a1a3814ec526969a5a 100644
--- a/scripts/test_vadim.py
+++ b/scripts/test_vadim.py
@@ -19,6 +19,7 @@ from pyramid.phasemap import PhaseMap
 
 import matplotlib.pyplot as plt
 
+
 Q_E = 1#1.602176565e-19
 EPSILON_0 = 1#8.8e-9
 C_E = 1
@@ -33,7 +34,7 @@ def calculate_charge_batch(phase_map):
         integral = left + top + right + bottom
         Q = -EPSILON_0/C_E * integral
         return Q
-    grad_y, grad_x = np.gradient(phase_map.phase, phase_map.res, phase_map.res)     
+    grad_y, grad_x = np.gradient(phase_map.phase, phase_map.a, phase_map.a)     
     xi, yi = np.zeros(t-b), np.zeros(t-b)
     for i, ti in enumerate(np.arange(b, t)):
         xi[i] = ti
@@ -44,10 +45,10 @@ directory = '../output/vadim/'
 if not os.path.exists(directory):
     os.makedirs(directory)
 
-res = 1.0  # in nm
+a = 1.0  # in nm
 phi = pi/4
 density = 30
-dim = (256, 256, 64)  # in px (z, y, x)
+dim = (128, 128, 128)  # in px (z, y, x)
 
 l = dim[2]/4.
 r = dim[2]/4. + dim[2]/2.
@@ -59,104 +60,104 @@ center = (dim[0]/2.-0.5, dim[1]/2.-0.5, dim[2]/2.-0.5)  # in px (z, y, x) index
 radius = dim[1]/8  # in px
 height = dim[0]/4  # in px
 width = (dim[0]/4, dim[1]/4, dim[2]/4)
-#mag_shape_sphere = mc.Shapes.sphere(dim, center, radius)
-#mag_shape_disc = mc.Shapes.disc(dim, center, radius, height)
-#mag_shape_slab = mc.Shapes.slab(dim, center, (height, radius*2, radius*2))
+mag_shape_sphere = mc.Shapes.sphere(dim, center, radius)
+mag_shape_disc = mc.Shapes.disc(dim, center, radius, height)
+mag_shape_slab = mc.Shapes.slab(dim, center, (height, radius*2, radius*2))
 mag_shape_ellipse = mc.Shapes.ellipsoid(dim, (center[0], 0*center[1], center[2]), (radius*5, radius*10, radius*2))
 # Create magnetization distributions:
-#mag_data_sphere = MagData(res, mc.create_mag_dist_homog(mag_shape_sphere, phi))
-#mag_data_disc = MagData(res, mc.create_mag_dist_homog(mag_shape_disc, phi))
-#mag_data_vortex = MagData(res, mc.create_mag_dist_vortex(mag_shape_disc))
-#mag_data_slab = MagData(res, mc.create_mag_dist_homog(mag_shape_slab, phi))
-mag_data_ellipse = MagData(res, mc.create_mag_dist_homog(mag_shape_ellipse, phi))
+mag_data_sphere = MagData(a, mc.create_mag_dist_homog(mag_shape_sphere, phi))
+mag_data_disc = MagData(a, mc.create_mag_dist_homog(mag_shape_disc, phi))
+mag_data_vortex = MagData(a, mc.create_mag_dist_vortex(mag_shape_disc))
+mag_data_slab = MagData(a, mc.create_mag_dist_homog(mag_shape_slab, phi))
+mag_data_ellipse = MagData(a, mc.create_mag_dist_homog(mag_shape_ellipse, phi))
 # Project the magnetization data:
-#projection_sphere = pj.simple_axis_projection(mag_data_sphere)
-#projection_disc = pj.simple_axis_projection(mag_data_disc)
-#projection_vortex = pj.simple_axis_projection(mag_data_vortex)
-#projection_slab = pj.simple_axis_projection(mag_data_slab)
+projection_sphere = pj.simple_axis_projection(mag_data_sphere)
+projection_disc = pj.simple_axis_projection(mag_data_disc)
+projection_vortex = pj.simple_axis_projection(mag_data_vortex)
+projection_slab = pj.simple_axis_projection(mag_data_slab)
 projection_ellipse = pj.simple_axis_projection(mag_data_ellipse)
-## Magnetic phase map of a homogeneously magnetized disc:
-#phase_map_mag_disc = PhaseMap(res, pm.phase_mag_real_conv(res, projection_disc))
-#phase_map_mag_disc.save_to_txt(directory+'phase_map_mag_disc.txt')
-#axis, _ = hi.display_combined(phase_map_mag_disc, density)
-#axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g')
-#axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g')
-#axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g')
-#axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g')
-#axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True,
-#              head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g')
-#plt.savefig(directory+'phase_map_mag_disc.png')
-#x, y = calculate_charge_batch(phase_map_mag_disc)
-#np.savetxt(directory+'charge_integral_mag_disc.txt', np.array([x, y]).T)
-#plt.figure()
-#plt.plot(x, y)
-#plt.savefig(directory+'charge_integral_mag_disc.png')
-## Magnetic phase map of a vortex state disc:
-#phase_map_mag_vortex = PhaseMap(res, pm.phase_mag_real_conv(res, projection_vortex))
-#phase_map_mag_vortex.save_to_txt(directory+'phase_map_mag_vortex.txt')
-#axis, _ = hi.display_combined(phase_map_mag_vortex, density)
-#axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g')
-#axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g')
-#axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g')
-#axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g')
-#axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True,
-#              head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g')
-#plt.savefig(directory+'phase_map_mag_vortex.png')
-#x, y = calculate_charge_batch(phase_map_mag_vortex)
-#np.savetxt(directory+'charge_integral_mag_vortex.txt', np.array([x, y]).T)
-#plt.figure()
-#plt.plot(x, y)
-#plt.savefig(directory+'charge_integral_mag_vortex.png')
-## MIP phase of a slab:
-#phase_map_mip_slab = PhaseMap(res, pm.phase_elec(res, projection_slab, v_0=1, v_acc=300000))
-#phase_map_mip_slab.save_to_txt(directory+'phase_map_mip_slab.txt')
-#axis, _ = hi.display_combined(phase_map_mip_slab, density)
-#axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g')
-#axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g')
-#axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g')
-#axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g')
-#axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True,
-#              head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g')
-#plt.savefig(directory+'phase_map_mip_slab.png')
-#x, y = calculate_charge_batch(phase_map_mip_slab)
-#np.savetxt(directory+'charge_integral_mip_slab.txt', np.array([x, y]).T)
-#plt.figure()
-#plt.plot(x, y)
-#plt.savefig(directory+'charge_integral_mip_slab.png')
-## MIP phase of a disc:
-#phase_map_mip_disc = PhaseMap(res, pm.phase_elec(res, projection_disc, v_0=1, v_acc=300000))
-#phase_map_mip_disc.save_to_txt(directory+'phase_map_mip_disc.txt')
-#axis, _ = hi.display_combined(phase_map_mip_disc, density)
-#axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g')
-#axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g')
-#axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g')
-#axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g')
-#axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True,
-#              head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g')
-#plt.savefig(directory+'phase_map_mip_disc.png')
-#x, y = calculate_charge_batch(phase_map_mip_disc)
-#np.savetxt(directory+'charge_integral_mip_disc.txt', np.array([x, y]).T)
-#plt.figure()
-#plt.plot(x, y)
-#plt.savefig(directory+'charge_integral_mip_disc.png')
-## MIP phase of a sphere:
-#phase_map_mip_sphere = PhaseMap(res, pm.phase_elec(res, projection_sphere, v_0=1, v_acc=300000))
-#phase_map_mip_sphere.save_to_txt(directory+'phase_map_mip_sphere.txt')
-#axis, _ = hi.display_combined(phase_map_mip_sphere, density)
-#axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g')
-#axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g')
-#axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g')
-#axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g')
-#axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True,
-#              head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g')
-#plt.savefig(directory+'phase_map_mip_sphere.png')
-#x, y = calculate_charge_batch(phase_map_mip_sphere)
-#np.savetxt(directory+'charge_integral_mip_sphere.txt', np.array([x, y]).T)
-#plt.figure()
-#plt.plot(x, y)
-#plt.savefig(directory+'charge_integral_mip_sphere.png')
+# Magnetic phase map of a homogeneously magnetized disc:
+phase_map_mag_disc = PhaseMap(a, pm.phase_mag(a, projection_disc))
+phase_map_mag_disc.save_to_txt(directory+'phase_map_mag_disc.txt')
+axis, _ = hi.display_combined(phase_map_mag_disc, density)
+axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g')
+axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g')
+axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g')
+axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g')
+axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True,
+              head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g')
+plt.savefig(directory+'phase_map_mag_disc.png')
+x, y = calculate_charge_batch(phase_map_mag_disc)
+np.savetxt(directory+'charge_integral_mag_disc.txt', np.array([x, y]).T)
+plt.figure()
+plt.plot(x, y)
+plt.savefig(directory+'charge_integral_mag_disc.png')
+# Magnetic phase map of a vortex state disc:
+phase_map_mag_vortex = PhaseMap(a, pm.phase_mag(a, projection_vortex))
+phase_map_mag_vortex.save_to_txt(directory+'phase_map_mag_vortex.txt')
+axis, _ = hi.display_combined(phase_map_mag_vortex, density)
+axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g')
+axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g')
+axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g')
+axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g')
+axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True,
+              head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g')
+plt.savefig(directory+'phase_map_mag_vortex.png')
+x, y = calculate_charge_batch(phase_map_mag_vortex)
+np.savetxt(directory+'charge_integral_mag_vortex.txt', np.array([x, y]).T)
+plt.figure()
+plt.plot(x, y)
+plt.savefig(directory+'charge_integral_mag_vortex.png')
+# MIP phase of a slab:
+phase_map_mip_slab = PhaseMap(a, pm.phase_elec(a, projection_slab, v_0=1, v_acc=300000))
+phase_map_mip_slab.save_to_txt(directory+'phase_map_mip_slab.txt')
+axis, _ = hi.display_combined(phase_map_mip_slab, density)
+axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g')
+axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g')
+axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g')
+axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g')
+axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True,
+              head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g')
+plt.savefig(directory+'phase_map_mip_slab.png')
+x, y = calculate_charge_batch(phase_map_mip_slab)
+np.savetxt(directory+'charge_integral_mip_slab.txt', np.array([x, y]).T)
+plt.figure()
+plt.plot(x, y)
+plt.savefig(directory+'charge_integral_mip_slab.png')
+# MIP phase of a disc:
+phase_map_mip_disc = PhaseMap(a, pm.phase_elec(a, projection_disc, v_0=1, v_acc=300000))
+phase_map_mip_disc.save_to_txt(directory+'phase_map_mip_disc.txt')
+axis, _ = hi.display_combined(phase_map_mip_disc, density)
+axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g')
+axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g')
+axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g')
+axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g')
+axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True,
+              head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g')
+plt.savefig(directory+'phase_map_mip_disc.png')
+x, y = calculate_charge_batch(phase_map_mip_disc)
+np.savetxt(directory+'charge_integral_mip_disc.txt', np.array([x, y]).T)
+plt.figure()
+plt.plot(x, y)
+plt.savefig(directory+'charge_integral_mip_disc.png')
+# MIP phase of a sphere:
+phase_map_mip_sphere = PhaseMap(a, pm.phase_elec(a, projection_sphere, v_0=1, v_acc=300000))
+phase_map_mip_sphere.save_to_txt(directory+'phase_map_mip_sphere.txt')
+axis, _ = hi.display_combined(phase_map_mip_sphere, density)
+axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g')
+axis.axvline(r, b/dim[1], t/dim[1], linewidth=2, color='g')
+axis.axhline(b, l/dim[2], r/dim[2], linewidth=2, color='g')
+axis.axhline(t, l/dim[2], r/dim[2], linewidth=2, color='g')
+axis.arrow(l+(r-l)/2, b, 0, t-b, length_includes_head=True,
+              head_width=(r-l)/10, head_length=(r-l)/10, fc='g', ec='g')
+plt.savefig(directory+'phase_map_mip_sphere.png')
+x, y = calculate_charge_batch(phase_map_mip_sphere)
+np.savetxt(directory+'charge_integral_mip_sphere.txt', np.array([x, y]).T)
+plt.figure()
+plt.plot(x, y)
+plt.savefig(directory+'charge_integral_mip_sphere.png')
 # MIP phase of an ellipsoid:
-phase_map_mip_ellipsoid = PhaseMap(res, pm.phase_elec(res, projection_ellipse, v_0=1, v_acc=300000))
+phase_map_mip_ellipsoid = PhaseMap(a, pm.phase_elec(a, projection_ellipse, v_0=1, v_acc=300000))
 phase_map_mip_ellipsoid.save_to_txt(directory+'phase_map_mip_ellipsoid.txt')
 axis, _ = hi.display_combined(phase_map_mip_ellipsoid, density)
 axis.axvline(l, b/dim[1], t/dim[1], linewidth=2, color='g')
@@ -171,35 +172,3 @@ np.savetxt(directory+'charge_integral_mip_ellipsoid.txt', np.array([x, y]).T)
 plt.figure()
 plt.plot(x, y)
 plt.savefig(directory+'charge_integral_mip_ellipsoid.png')
-
-
-
-
-
-# Display phasemap and holography image:
-
-#y, x = np.mgrid[0:dim[1], 0:dim[2]]
-
-#phase_charge = 1/((xx-center[2])**2+(yy-center[1])**2)
-#phase_map.phase = phase_charge
-
-#q_e = 1#1.602176565e-19
-#epsilon0 = 1#8.8e-9
-#C_e = 1
-#
-#dist = np.sqrt((y-center[1])**2+(x-center[2])**2)
-#V = q_e/((4*pi*epsilon0)*dist)
-#thickness = 10000
-#phase = C_e*q_e/(4*pi*epsilon0) * 1/2*np.arcsinh(thickness/dist)
-
-#phase_map = PhaseMap(res, phase)#C_e * res * V.sum(axis=0)
-
-
-## USER INPUT:
-#phase_map.display()
-#point1, point2 = plt.ginput(n=2, timeout=0)
-#plt.close()
-#l = np.round(min(point1[0], point2[0]))
-#r = np.round(max(point1[0], point2[0]))
-#b = np.round(min(point1[1], point2[1]))
-#t = np.round(max(point1[1], point2[1]))