From 622c59d868685f7364f46548329c5cfac936a09d Mon Sep 17 00:00:00 2001 From: Jan Caron <j.caron@fz-juelich.de> Date: Thu, 16 Jul 2015 15:20:35 +0200 Subject: [PATCH] Phase offset and ramp can now be fitted! Many updates and fixes to plotting! colormap: New module with colormap subclass which has special functions to calculate directional rgb-colors, now used in many plots! __init__: On star import now also has abbreviations for a few modules. fwd_model: Now has flags for fitting an offset and/or ramp. CAUTION: will be moved next update to new class! magdata: Removed colorwheel stuff (all moved to 'colormap'). Overhaul of quiver plot in 2D and 3D. Now shows mask and uses new colormap for angular color coding. phasemap: Now uses the new colormap for holo plots. Removed color wheel (moved to the new class). Added function to add ramps. phasemapper: Now handles also offsets and ramps in the phase. CAUTION: will be moved next update to new class! projector: Fixed bugs in SimpleProjector. 1) leftmost pixels are no longer moved moved to left corner of padded projection (when dim_uv is not None). 2) odd padding when using dim_uv are now handled properly (one more pixel on top and right if necessary). costfunction: n is now taken from the fwd_model instead of the data_set. dataset: Introduced the count variable which gives the number of images. magcreator: In the process of updating, more on next commit. reconstruction: Also handles ramps and offsets now, properly extracts them after reconstruction. regularisator: New argument 'add_params' is used to cut off input (for offset and ramp) which are not used in the regularisation. scripts: several small changes... --- pyramid/__init__.py | 7 +- pyramid/colormap.py | 163 ++++++++++++++++++ pyramid/costfunction.py | 4 +- pyramid/dataset.py | 4 + pyramid/forwardmodel.py | 66 +++++-- pyramid/magcreator.py | 20 ++- pyramid/magdata.py | 162 +++++++++-------- pyramid/phasemap.py | 162 ++++++++++------- pyramid/phasemapper.py | 58 +++++-- pyramid/projector.py | 16 +- pyramid/reconstruction.py | 15 +- pyramid/regularisator.py | 37 ++-- .../magdata/magcreator/create_homog_slab.py | 4 +- scripts/magdata/magdata_from_vtk.py | 73 ++++++-- scripts/phasemap/phasemap_from_dm3.py | 11 +- scripts/phasemap/phasemap_from_image.py | 10 +- .../reconstruction_2d_from_phasemap.py | 62 ++++--- .../reconstruction_3d_from_magdata.py | 60 +++++-- scripts/temp/custom_colormap.py | 2 +- scripts/temp/test_dim_uv_projection.py | 24 +++ 20 files changed, 715 insertions(+), 245 deletions(-) create mode 100644 pyramid/colormap.py create mode 100644 scripts/temp/test_dim_uv_projection.py diff --git a/pyramid/__init__.py b/pyramid/__init__.py index 1850baf..9b7f840 100644 --- a/pyramid/__init__.py +++ b/pyramid/__init__.py @@ -46,8 +46,11 @@ numcore from . import analytic +from . import analytic as an from . import magcreator +from . import magcreator as mc from . import reconstruction +from . import reconstruction as rc from . import fft from .costfunction import * # analysis:ignore from .dataset import * # analysis:ignore @@ -60,6 +63,7 @@ from .phasemapper import * # analysis:ignore from .projector import * # analysis:ignore from .regularisator import * # analysis:ignore from .quaternion import * # analysis:ignore +from .colormap import * # analysis:ignore from .config import * # analysis:ignore from .version import version as __version__ from .version import hg_revision as __hg_revision__ @@ -69,7 +73,7 @@ _log = logging.getLogger(__name__) _log.info("Starting PYRAMID V{} HG{}".format(__version__, __hg_revision__)) del logging -__all__ = ['analytic', 'magcreator', 'reconstruction', 'fft'] +__all__ = ['analytic', 'magcreator', 'reconstruction', 'fft', 'an', 'mc', 'rc'] __all__.extend(costfunction.__all__) __all__.extend(dataset.__all__) __all__.extend(diagnostics.__all__) @@ -81,3 +85,4 @@ __all__.extend(phasemapper.__all__) __all__.extend(projector.__all__) __all__.extend(regularisator.__all__) __all__.extend(quaternion.__all__) +__all__.extend(colormap.__all__) diff --git a/pyramid/colormap.py b/pyramid/colormap.py new file mode 100644 index 0000000..94f3e49 --- /dev/null +++ b/pyramid/colormap.py @@ -0,0 +1,163 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Jul 08 15:43:06 2015 + +@author: Jan +""" + +# TODO: Docstrings! + + +import numpy as np +import matplotlib as mpl +import matplotlib.pyplot as plt +from PIL import Image + +import logging + + +__all__ = ['DirectionalColormap'] + + +class DirectionalColormap(mpl.colors.LinearSegmentedColormap): + + _log = logging.getLogger(__name__+'.DirectionalColormap') + + CDICT = {'red': [(0.00, 0.0, 0.0), + (0.25, 1.0, 1.0), + (0.50, 1.0, 1.0), + (0.75, 0.0, 0.0), + (1.00, 0.0, 0.0)], + + 'green': [(0.00, 1.0, 1.0), + (0.25, 1.0, 1.0), + (0.50, 0.0, 0.0), + (0.75, 0.0, 0.0), + (1.00, 1.0, 1.0)], + + 'blue': [(0.00, 0.0, 0.0), + (0.25, 0.0, 0.0), + (0.50, 0.0, 0.0), + (0.75, 1.0, 1.0), + (1.00, 0.0, 0.0)]} + + CDICT_INV = {'red': [(0.00, 1.0, 1.0), + (0.25, 0.0, 0.0), + (0.50, 0.0, 0.0), + (0.75, 1.0, 1.0), + (1.00, 1.0, 1.0)], + + 'green': [(0.00, 0.0, 0.0), + (0.25, 0.0, 0.0), + (0.50, 1.0, 1.0), + (0.75, 1.0, 1.0), + (1.00, 0.0, 0.0)], + + 'blue': [(0.00, 1.0, 1.0), + (0.25, 1.0, 1.0), + (0.50, 1.0, 1.0), + (0.75, 0.0, 0.0), + (1.00, 1.0, 1.0)]} + + HOLO_CMAP = mpl.colors.LinearSegmentedColormap('my_colormap', CDICT, 256) + HOLO_CMAP_INV = mpl.colors.LinearSegmentedColormap('my_colormap', CDICT_INV, 256) + + + def __init__(self, inverted=False): + self._log.debug('Calling __create_directional_colormap') +# r, g, b = [], [], [] # RGB lists +# # Create saturation lists to encode up and down directions via black and white colors. +# # example for 5 levels from black (down) to color (in-plane) to white: +# # pos_sat: [ 0. 0.5 1. 1. 1. ] +# # neg_sat: [ 0. 0. 0. 0.5 1. ] +# center = levels//2 +# pos_sat = np.ones(levels) +# pos_sat[0:center] = [i/center for i in range(center)] +# neg_sat = np.zeros(levels) +# neg_sat[center+1:] = [(i+1)/center for i in range(center)] +# +# # Iterate over all levels (the center level represents in-plane moments!): +# for i in range(levels): +# inter_points = np.linspace(i/levels, (i+1)/levels, 5) # interval points, current level +# # Red: +# r.append((inter_points[0], 0, neg_sat[i])) +# r.append((inter_points[1], pos_sat[i], pos_sat[i])) +# r.append((inter_points[2], pos_sat[i], pos_sat[i])) +# r.append((inter_points[3], neg_sat[i], neg_sat[i])) +# r.append((inter_points[4], neg_sat[i], 0)) +# # Green: +# g.append((inter_points[0], 0, neg_sat[i])) +# g.append((inter_points[1], neg_sat[i], neg_sat[i])) +# g.append((inter_points[2], pos_sat[i], pos_sat[i])) +# g.append((inter_points[3], pos_sat[i], pos_sat[i])) +# g.append((inter_points[4], neg_sat[i], 0)) +# # Blue +# b.append((inter_points[0], 0, pos_sat[i])) +# b.append((inter_points[1], neg_sat[i], neg_sat[i])) +# b.append((inter_points[2], neg_sat[i], neg_sat[i])) +# b.append((inter_points[3], neg_sat[i], neg_sat[i])) +# b.append((inter_points[4], pos_sat[i], 0)) +# # Combine to color dictionary and return: +# cdict = {'red': r, 'green': g, 'blue': b} + cdict = self.CDICT_INV if inverted else self.CDICT + super(DirectionalColormap, self).__init__('directional_colormap', cdict, N=256) + self._log.debug('Created '+str(self)) + + @classmethod + def display_colorwheel(cls, mode='white_to_color'): + '''Display a color wheel to illustrate the color coding of the gradient direction. + + Parameters + ---------- + None + + Returns + ------- + None + + ''' # TODO: mode docstring! + cls._log.debug('Calling display_color_wheel') + yy, xx = np.indices((512, 512)) - 256 + r = np.hypot(xx, yy) + # Create the wheel: + colorind = (1 + np.arctan2(yy, xx)/np.pi) / 2 + saturation = r / 256 # 0 in center, 1 at borders of circle! + if mode == 'black_to_color': + pass + elif mode == 'color_to_black': + saturation = 1 - saturation + elif mode == 'white_to_color': + saturation = 2 - saturation + elif mode == 'white_to_color_to_black': + saturation = 2 - 2*saturation + else: + raise Exception('Invalid color wheel mode!') + saturation *= (r <= 256) # TODO: [r<=256] + rgb = cls.rgb_from_colorind_and_saturation(colorind, saturation) + color_wheel = Image.fromarray(rgb) + # Plot the color wheel: + fig = plt.figure(figsize=(4, 4)) + axis = fig.add_subplot(1, 1, 1, aspect='equal') + axis.imshow(color_wheel, origin='lower') + plt.tick_params(axis='both', which='both', labelleft='off', labelbottom='off', + left='off', right='off', top='off', bottom='off') + + @classmethod # TODO: Docstrings! + def rgb_from_colorind_and_saturation(cls, colorind, saturation): + c, s = colorind, saturation + rgb_norm = (np.minimum(s, np.ones_like(s)).T * cls.HOLO_CMAP(c)[..., :3].T).T + rgb_invs = (np.maximum(s-1, np.zeros_like(s)).T * cls.HOLO_CMAP_INV(c)[..., :3].T).T + return (255.999 * (rgb_norm + rgb_invs)).astype(np.uint8) + + @classmethod + def rgb_from_angles(cls, phi, theta=np.pi/2): + colorind = (1 + phi/np.pi) / 2 + saturation = 2 * (1 - theta/np.pi) # goes from 0 to 2 # TODO: explain! + return cls.rgb_from_colorind_and_saturation(colorind, saturation) + + @classmethod + def rgb_from_direction(cls, x, y, z): + phi = np.arctan2(y, x) + r = np.sqrt(x**2 + y**2 + z**2) + theta = np.arccos(z / (r+1E-30)) + return cls.rgb_from_angles(phi, theta) diff --git a/pyramid/costfunction.py b/pyramid/costfunction.py index 41fb1b5..03ddcde 100644 --- a/pyramid/costfunction.py +++ b/pyramid/costfunction.py @@ -57,8 +57,8 @@ class Costfunction(object): # Extract important information: data_set = fwd_model.data_set self.y = data_set.phase_vec - self.n = data_set.n - self.m = data_set.m + self.n = fwd_model.n + self.m = fwd_model.m if data_set.Se_inv is None: data_set.set_Se_inv_diag_with_conf() self.Se_inv = data_set.Se_inv diff --git a/pyramid/dataset.py b/pyramid/dataset.py index bf73a19..a31802c 100644 --- a/pyramid/dataset.py +++ b/pyramid/dataset.py @@ -94,6 +94,10 @@ class DataSet(object): def n(self): return 3 * np.sum(self.mask) + @property + def count(self): + return len(self.projectors) + @property def phase_vec(self): return np.concatenate([p.phase_vec for p in self.phase_maps]) diff --git a/pyramid/forwardmodel.py b/pyramid/forwardmodel.py index 41a9e6e..24be8ad 100644 --- a/pyramid/forwardmodel.py +++ b/pyramid/forwardmodel.py @@ -46,12 +46,19 @@ class ForwardModel(object): _log = logging.getLogger(__name__+'.ForwardModel') - def __init__(self, data_set): + def __init__(self, data_set, fit_ramps=False, fit_offsets=False): self._log.debug('Calling __init__') self.data_set = data_set + if fit_ramps: # The ramps are not fitted without the offsets! + # TODO: fit über String -> eine Flag! + # TODO: immer mit self! + fit_offsets = True + self.fit_ramps = fit_ramps + self.fit_offsets = fit_offsets self.phase_mappers = data_set.phase_mappers self.m = data_set.m - self.n = data_set.n + self.n = data_set.n + fit_offsets * data_set.count + fit_ramps * 2 * data_set.count + # TODO: bools nicht als integer verwenden! self.shape = (self.m, self.n) self.hook_points = data_set.hook_points self.mag_data = MagData(data_set.a, np.zeros((3,)+data_set.dim)) @@ -82,13 +89,24 @@ class ForwardModel(object): self._log.debug('Calling __str__') return 'ForwardModel(data_set=%s)' % (self.data_set) +# TODO: offset und ramp HIER handeln! + def __call__(self, x): + count = self.data_set.count + offsets = [None] * count + ramps = [None] * count + if self.fit_ramps: + x, offsets, u_ramps, v_ramps = np.split(x, [-3*count, -2*count, -count]) + ramps = zip(u_ramps, v_ramps) + elif self.fit_offsets: + x, offsets = np.split(x, [-count]) self.mag_data.magnitude[...] = 0 self.mag_data.set_vector(x, self.data_set.mask) result = np.zeros(self.m) hp = self.hook_points for i, projector in enumerate(self.data_set.projectors): - phase_map = self.phase_mappers[projector.dim_uv](projector(self.mag_data)) + mapper = self.phase_mappers[projector.dim_uv] + phase_map = mapper(projector(self.mag_data), offsets[i], ramps[i]) result[hp[i]:hp[i+1]] = phase_map.phase_vec return np.reshape(result, -1) ################################################################################################### @@ -126,19 +144,27 @@ class ForwardModel(object): `vector`. ''' + count = self.data_set.count + offsets = [None] * count + ramps = [None] * count + if self.fit_ramps: + vector, offsets, u_ramps, v_ramps = np.split(vector, [-3*count, -2*count, -count]) + ramps = zip(u_ramps, v_ramps) + elif self.fit_offsets: + vector, offsets = np.split(vector, [-count]) self.mag_data.magnitude[...] = 0 self.mag_data.set_vector(vector, self.data_set.mask) result = np.zeros(self.m) hp = self.hook_points for i, projector in enumerate(self.data_set.projectors): mag_vec = self.mag_data.mag_vec - res = self.phase_mappers[projector.dim_uv].jac_dot(projector.jac_dot(mag_vec)) + mapper = self.phase_mappers[projector.dim_uv] + res = mapper.jac_dot(projector.jac_dot(mag_vec), offsets[i], ramps[i]) result[hp[i]:hp[i+1]] = res return result def _jac_dot_element(self, mag_vec, projector, phasemapper): - return phasemapper.jac_dot(projector.jac_dot(mag_vec)) - + return phasemapper.jac_dot(projector.jac_dot(mag_vec)) # TODO: ??? def jac_T_dot(self, x, vector): ''''Calculate the product of the transposed Jacobi matrix with a given `vector`. @@ -159,10 +185,30 @@ class ForwardModel(object): the input `vector`. ''' - result = np.zeros(3*np.prod(self.data_set.dim)) + offsets = [] + u_ramps = [] + v_ramps = [] + proj_T_result = np.zeros(3*np.prod(self.data_set.dim)) hp = self.hook_points for i, projector in enumerate(self.data_set.projectors): vec = vector[hp[i]:hp[i+1]] - result += projector.jac_T_dot(self.phase_mappers[projector.dim_uv].jac_T_dot(vec)) - self.mag_data.mag_vec = result - return self.mag_data.get_vector(self.data_set.mask) + mapper = self.phase_mappers[projector.dim_uv] + map_T_result = mapper.jac_T_dot(vec, self.fit_ramps, self.fit_offsets) + if self.fit_ramps: # Extract offset and ramps (transposed): + map_T_result, add_params = np.split(map_T_result, [-3]) + offsets.append(add_params[0]) + u_ramps.append(add_params[1]) + v_ramps.append(add_params[2]) + elif self.fit_offsets: # Extract offset (transposed): + map_T_result, offset = np.split(map_T_result, [-1]) + offsets.append(offset) + proj_T_result += projector.jac_T_dot(map_T_result) + self.mag_data.mag_vec = proj_T_result + result = self.mag_data.get_vector(self.data_set.mask) + if self.fit_ramps: + return np.concatenate((result, np.reshape(offsets, -1), + np.reshape(u_ramps, -1), np.reshape(v_ramps, -1))) + elif self.fit_offsets: + return np.concatenate((result, np.reshape(offsets, -1))) + else: + return result diff --git a/pyramid/magcreator.py b/pyramid/magcreator.py index 3083d45..a777709 100644 --- a/pyramid/magcreator.py +++ b/pyramid/magcreator.py @@ -16,6 +16,9 @@ center. """ + +from __future__ import division + import numpy as np from numpy import pi @@ -65,12 +68,17 @@ class Shapes(object): assert np.shape(dim) == (3,), 'Parameter dim has to be a tuple of length 3!' assert np.shape(center) == (3,), 'Parameter center has to be a tuple of length 3!' assert np.shape(width) == (3,), 'Parameter width has to be a tuple of length 3!' - mag_shape = np.array([[[abs(x - center[2]) <= width[2] / 2 - and abs(y - center[1]) <= width[1] / 2 - and abs(z - center[0]) <= width[0] / 2 - for x in range(dim[2])] - for y in range(dim[1])] - for z in range(dim[0])]) + zz, yy, xx = np.indices(dim) + 0.5 + xx_shape = np.where(abs(xx-center[2]) <= width[2]/2, True, False) + yy_shape = np.where(abs(yy-center[1]) <= width[1]/2, True, False) + zz_shape = np.where(abs(zz-center[0]) <= width[0]/2, True, False) + mag_shape = np.logical_and.reduce((xx_shape, yy_shape, zz_shape)) +# mag_shape = np.array([[[abs(x - center[2]) <= width[2] / 2 +# and abs(y - center[1]) <= width[1] / 2 +# and abs(z - center[0]) <= width[0] / 2 +# for x in range(dim[2])] +# for y in range(dim[1])] +# for z in range(dim[0])]) return mag_shape @classmethod diff --git a/pyramid/magdata.py b/pyramid/magdata.py index af24642..04edc61 100644 --- a/pyramid/magdata.py +++ b/pyramid/magdata.py @@ -19,6 +19,7 @@ import matplotlib.cm as cmx from matplotlib.ticker import MaxNLocator from pyramid import fft +from pyramid.colormap import DirectionalColormap from numbers import Number @@ -167,44 +168,44 @@ class MagData(object): self._log.debug('Calling __imul__') return self.__mul__(other) - @classmethod - def _create_directional_colormap(cls, levels=15, N=256): - cls._log.debug('Calling __create_directional_colormap') - r, g, b = [], [], [] # RGB lists - # Create saturation lists to encode up and down directions via black and white colors. - # example for 5 levels from black (down) to color (in-plane) to white: - # pos_sat: [ 0. 0.5 1. 1. 1. ] - # neg_sat: [ 0. 0. 0. 0.5 1. ] - center = levels//2 - pos_sat = np.ones(levels) - pos_sat[0:center] = [i/center for i in range(center)] - neg_sat = np.zeros(levels) - neg_sat[center+1:] = [(i+1)/center for i in range(center)] - - # Iterate over all levels (the center level represents in-plane moments!): - for i in range(levels): - inter_points = np.linspace(i/levels, (i+1)/levels, 5) # interval points, current level - # Red: - r.append((inter_points[0], 0, neg_sat[i])) - r.append((inter_points[1], pos_sat[i], pos_sat[i])) - r.append((inter_points[2], pos_sat[i], pos_sat[i])) - r.append((inter_points[3], neg_sat[i], neg_sat[i])) - r.append((inter_points[4], neg_sat[i], 0)) - # Green: - g.append((inter_points[0], 0, neg_sat[i])) - g.append((inter_points[1], neg_sat[i], neg_sat[i])) - g.append((inter_points[2], pos_sat[i], pos_sat[i])) - g.append((inter_points[3], pos_sat[i], pos_sat[i])) - g.append((inter_points[4], neg_sat[i], 0)) - # Blue - b.append((inter_points[0], 0, pos_sat[i])) - b.append((inter_points[1], neg_sat[i], neg_sat[i])) - b.append((inter_points[2], neg_sat[i], neg_sat[i])) - b.append((inter_points[3], neg_sat[i], neg_sat[i])) - b.append((inter_points[4], pos_sat[i], 0)) - # Combine to color dictionary and return: - cdict = {'red': r, 'green': g, 'blue': b} - return mpl.colors.LinearSegmentedColormap('directional_colormap', cdict, N) +# @classmethod +# def _create_directional_colormap(cls, levels=15, N=256): +# cls._log.debug('Calling __create_directional_colormap') +# r, g, b = [], [], [] # RGB lists +# # Create saturation lists to encode up and down directions via black and white colors. +# # example for 5 levels from black (down) to color (in-plane) to white: +# # pos_sat: [ 0. 0.5 1. 1. 1. ] +# # neg_sat: [ 0. 0. 0. 0.5 1. ] +# center = levels//2 +# pos_sat = np.ones(levels) +# pos_sat[0:center] = [i/center for i in range(center)] +# neg_sat = np.zeros(levels) +# neg_sat[center+1:] = [(i+1)/center for i in range(center)] +# +# # Iterate over all levels (the center level represents in-plane moments!): +# for i in range(levels): +# inter_points = np.linspace(i/levels, (i+1)/levels, 5) # interval points, current level +# # Red: +# r.append((inter_points[0], 0, neg_sat[i])) +# r.append((inter_points[1], pos_sat[i], pos_sat[i])) +# r.append((inter_points[2], pos_sat[i], pos_sat[i])) +# r.append((inter_points[3], neg_sat[i], neg_sat[i])) +# r.append((inter_points[4], neg_sat[i], 0)) +# # Green: +# g.append((inter_points[0], 0, neg_sat[i])) +# g.append((inter_points[1], neg_sat[i], neg_sat[i])) +# g.append((inter_points[2], pos_sat[i], pos_sat[i])) +# g.append((inter_points[3], pos_sat[i], pos_sat[i])) +# g.append((inter_points[4], neg_sat[i], 0)) +# # Blue +# b.append((inter_points[0], 0, pos_sat[i])) +# b.append((inter_points[1], neg_sat[i], neg_sat[i])) +# b.append((inter_points[2], neg_sat[i], neg_sat[i])) +# b.append((inter_points[3], neg_sat[i], neg_sat[i])) +# b.append((inter_points[4], pos_sat[i], 0)) +# # Combine to color dictionary and return: +# cdict = {'red': r, 'green': g, 'blue': b} +# return mpl.colors.LinearSegmentedColormap('directional_colormap', cdict, N) def copy(self): '''Returns a copy of the :class:`~.MagData` object @@ -335,7 +336,7 @@ class MagData(object): assert np.shape(values) in [(), (2,)], 'Only one or two values per axis can be given!' cv[2*i:2*(i+1)] = values cv *= np.resize([1, -1], len(cv)) - cv = np.where(crop_values == 0, None, cv) + cv = np.where(cv == 0, None, cv) self.magnitude = self.magnitude[:, cv[0]:cv[1], cv[2]:cv[3], cv[4]:cv[5]] def get_mask(self, threshold=0): @@ -667,7 +668,8 @@ class MagData(object): tree.write(filename, pretty_print=True) def quiver_plot(self, title='Magnetization Distribution', axis=None, proj_axis='z', - coloring='angle', ar_dens=1, ax_slice=None, log=False, scaled=True, scale=1.): + coloring='angle', ar_dens=1, ax_slice=None, log=False, scaled=True, + scale=1., show_mask=True): '''Plot a slice of the magnetization as a quiver plot. Parameters @@ -700,6 +702,7 @@ class MagData(object): The axis on which the graph is plotted. ''' + # TODO: include mask if available! self._log.debug('Calling quiver_plot') assert proj_axis == 'z' or proj_axis == 'y' or proj_axis == 'x', \ 'Axis has to be x, y or z (as string).' @@ -707,50 +710,53 @@ class MagData(object): self._log.debug('proj_axis == z') if ax_slice is None: self._log.debug('ax_slice is None') - ax_slice = int(self.dim[0]/2.) + ax_slice = self.dim[0] // 2 plot_u = np.copy(self.magnitude[0][ax_slice, ...]) # x-component plot_v = np.copy(self.magnitude[1][ax_slice, ...]) # y-component u_label = 'x [px]' v_label = 'y [px]' + submask = self.get_mask()[ax_slice, ...] elif proj_axis == 'y': # Slice of the xz-plane with y = ax_slice self._log.debug('proj_axis == y') if ax_slice is None: self._log.debug('ax_slice is None') - ax_slice = int(self.dim[1]/2.) + ax_slice = self.dim[1] // 2 plot_u = np.copy(self.magnitude[0][:, ax_slice, :]) # x-component plot_v = np.copy(self.magnitude[2][:, ax_slice, :]) # z-component u_label = 'x [px]' v_label = 'z [px]' + submask = self.get_mask()[:, ax_slice, :] elif proj_axis == 'x': # Slice of the yz-plane with x = ax_slice self._log.debug('proj_axis == x') if ax_slice is None: self._log.debug('ax_slice is None') - ax_slice = int(self.dim[2]/2.) + ax_slice = self.dim[2] // 2 plot_u = np.swapaxes(np.copy(self.magnitude[2][..., ax_slice]), 0, 1) # z-component plot_v = np.swapaxes(np.copy(self.magnitude[1][..., ax_slice]), 0, 1) # y-component u_label = 'z [px]' v_label = 'y [px]' + submask = self.get_mask()[..., ax_slice] # Prepare quiver (select only used arrows if ar_dens is specified): dim_uv = plot_u.shape - yy, xx = np.indices(dim_uv) - xx = xx[::ar_dens, ::ar_dens] - yy = yy[::ar_dens, ::ar_dens] + vv, uu = np.indices(dim_uv) + 0.5 # shift to center of pixel + uu = uu[::ar_dens, ::ar_dens] + vv = vv[::ar_dens, ::ar_dens] plot_u = plot_u[::ar_dens, ::ar_dens] plot_v = plot_v[::ar_dens, ::ar_dens] amplitudes = np.hypot(plot_u, plot_v) - angles = np.angle(plot_u+1j*plot_v, deg=True) + angles = np.angle(plot_u+1j*plot_v, deg=True).tolist() # Calculate the arrow colors: if coloring == 'angle': self._log.debug('Encoding angles') - colors = (1 - np.arctan2(plot_v, plot_u)/np.pi) / 2 # in-plane angle (rescaled: 0 - 1) - cmap = self._create_directional_colormap(levels=1, N=256) + colorinds = (1 + np.arctan2(plot_v, plot_u)/np.pi) / 2 # in-plane color index (0 - 1) + cmap = DirectionalColormap() elif coloring == 'amplitude': self._log.debug('Encoding amplitude') - colors = amplitudes / amplitudes.max() + colorinds = amplitudes / amplitudes.max() cmap = 'jet' elif coloring == 'uniform': self._log.debug('No color encoding') - colors = np.zeros_like(plot_u) # use black arrows! + colorinds = np.zeros_like(plot_u) # use black arrows! cmap = 'gray' else: raise AttributeError("Invalid coloring mode! Use 'angles', 'amplitude' or 'uniform'!") @@ -772,19 +778,27 @@ class MagData(object): amplitudes = np.hypot(plot_u, plot_v) # Recalculate! # Scale the magnitude of the arrows to the highest one (if specified): if scaled: - plot_u /= amplitudes.max() - plot_v /= amplitudes.max() - axis.quiver(xx, yy, plot_u, plot_v, colors, cmap=cmap, angles=angles, + plot_u /= amplitudes.max() + 1E-30 + plot_v /= amplitudes.max() + 1E-30 + axis.quiver(uu, vv, plot_u, plot_v, colorinds, cmap=cmap, clim=(0, 1), angles=angles, pivot='middle', units='xy', scale_units='xy', scale=scale/ar_dens, minlength=0.25, headwidth=6, headlength=7) - axis.set_xlim(-1, dim_uv[1]) - axis.set_ylim(-1, dim_uv[0]) + if show_mask and not np.all(submask): # Plot mask if desired and not trivial! + vv, uu = np.indices(dim_uv) + 0.5 # shift to center of pixel + axis.contour(uu, vv, submask, levels=[0.5], colors='k', linestyles='dotted') + axis.set_xlim(0, dim_uv[1]) + axis.set_ylim(0, dim_uv[0]) axis.set_title(title, fontsize=18) axis.set_xlabel(u_label, fontsize=15) axis.set_ylabel(v_label, fontsize=15) axis.tick_params(axis='both', which='major', labelsize=14) - axis.xaxis.set_major_locator(MaxNLocator(nbins=9, integer=True)) - axis.yaxis.set_major_locator(MaxNLocator(nbins=9, integer=True)) + if dim_uv[0] >= dim_uv[1]: + u_bin, v_bin = np.max((2, np.floor(9*dim_uv[1]/dim_uv[0]))), 9 + else: + u_bin, v_bin = 9, np.max((2, np.floor(9*dim_uv[0]/dim_uv[1]))) + axis.xaxis.set_major_locator(MaxNLocator(nbins=u_bin, integer=True)) + axis.yaxis.set_major_locator(MaxNLocator(nbins=v_bin, integer=True)) + # Return plotting axis: return axis def quiver_plot3d(self, title='Magnetization Distribution', limit=None, cmap='jet', @@ -819,6 +833,7 @@ class MagData(object): ''' self._log.debug('Calling quiver_plot3D') from mayavi import mlab + import warnings a = self.a dim = self.dim if limit is None: @@ -834,21 +849,28 @@ class MagData(object): z_mag = self.magnitude[2][::ad, ::ad, ::ad].flatten() # Plot them as vectors: mlab.figure(size=(750, 700)) - plot = mlab.quiver3d(xx, yy, zz, x_mag, y_mag, z_mag, mode=mode, colormap=cmap) + with warnings.catch_warnings(record=True) as w: # Catch annoying warning + plot = mlab.quiver3d(xx, yy, zz, x_mag, y_mag, z_mag, mode=mode, colormap=cmap) + if len(w) != 0: # If a warning occurs make sure it is (only) the expected one! + assert len(w) == 1 + assert issubclass(w[0].category, FutureWarning) + assert 'comparison' in str(w[0].message) if coloring == 'angle': # Encodes the full angle via colorwheel and saturation self._log.debug('Encoding full 3D angles') from tvtk.api import tvtk - phis = (1 - np.arctan2(y_mag, x_mag)/np.pi) / 2 # in-plane angle (rescaled: 0 to 1) - thetas = np.arctan2(np.hypot(y_mag, x_mag), z_mag)/np.pi # vert. angle (also rescaled) - levels = 15 # number of shades for up/down arrows (white is up, black is down) - N = 256 # Overall number of colors for the colormap (only N/levels per level!) - cmap = self._create_directional_colormap(levels, N) - colors = [] - for i in range(len(x_mag)): - level = np.floor((1-thetas[i]) * levels) - lookup_value = (level + phis[i]) / levels - rgba = tuple((np.asarray(cmap(lookup_value)) * (N-1)).astype(np.int)) - colors.append(rgba) + colorinds = DirectionalColormap.rgb_from_direction(x_mag, y_mag, z_mag) + colors = map(tuple, colorinds) # convert to list of tuples! +# phis = (1 - np.arctan2(y_mag, x_mag)/np.pi) / 2 # in-plane angle (rescaled: 0 to 1) +# thetas = np.arctan2(np.hypot(y_mag, x_mag), z_mag)/np.pi # vert. angle (also rescaled) +# levels = 31 # number of shades for up/down arrows (white is up, black is down) +# N = 2048 # Overall number of colors for the colormap (only N/levels per level!) +# cmap = DirectionalColormap(levels, N)#self._create_directional_colormap(levels, N) +# colors = [] +# for i in range(len(x_mag)): +# level = np.floor((1-thetas[i]) * levels) +# lookup_value = (level + phis[i]) / levels +# rgba = tuple((np.asarray(cmap(lookup_value)) * 255.99999).astype(np.int)) +# colors.append(rgba) sc = tvtk.UnsignedCharArray() # Used to hold the colors sc.from_array(colors) plot.mlab_source.dataset.point_data.scalars = sc diff --git a/pyramid/phasemap.py b/pyramid/phasemap.py index 01bdec7..033cf43 100644 --- a/pyramid/phasemap.py +++ b/pyramid/phasemap.py @@ -8,13 +8,14 @@ import os import numpy as np -from numpy import pi from scipy.ndimage.interpolation import zoom +from pyramid.colormap import DirectionalColormap + import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D -from matplotlib.ticker import NullLocator, MaxNLocator, FuncFormatter +from matplotlib.ticker import MaxNLocator, FuncFormatter from PIL import Image from numbers import Number @@ -218,6 +219,7 @@ class PhaseMap(object): else: # other is a Number self._log.debug('Adding an offset') return PhaseMap(self.a, self.phase+other, self.mask, self.confidence, self.unit) + # TODO: Add fitting numpy array! (useful for ramps)! def __sub__(self, other): # self - other self._log.debug('Calling __sub__') @@ -254,6 +256,12 @@ class PhaseMap(object): self._log.debug('Calling __imul__') return self.__mul__(other) + def add_ramp(self, offset=0, ramp=(0, 0)): + # TODO: Docstring! + self._log.debug('Calling add_ramp') + vv, uu = self.a * np.indices(self.dim_uv) + self.phase += offset + ramp[0]*uu + ramp[1]*vv + def copy(self): '''Returns a copy of the :class:`~.PhaseMap` object @@ -399,7 +407,7 @@ class PhaseMap(object): assert np.shape(values) in [(), (2,)], 'Only one or two values per axis can be given!' cv[2*i:2*(i+1)] = values cv *= np.resize([1, -1], len(cv)) - cv = np.where(crop_values == 0, None, cv) + cv = np.where(cv == 0, None, cv) self.phase = self.phase[cv[0]:cv[1], cv[2]:cv[3]] self.mask = self.mask[cv[0]:cv[1], cv[2]:cv[3]] self.confidence = self.confidence[cv[0]:cv[1], cv[2]:cv[3]] @@ -583,12 +591,17 @@ class PhaseMap(object): # Plot the phasemap: im = axis.pcolormesh(phase, cmap=cmap, vmin=-limit, vmax=limit, norm=norm) if show_mask and not np.all(self.mask): # Plot mask if desired and not trivial! - axis.contour(self.mask, levels=[0.999999], colors='g') + vv, uu = np.indices(self.dim_uv) + 0.5 + axis.contour(uu, vv, self.mask, levels=[0.5], colors='k', linestyles='dotted') # Set the axes ticks and labels: axis.set_xlim(0, self.dim_uv[1]) axis.set_ylim(0, self.dim_uv[0]) - axis.xaxis.set_major_locator(MaxNLocator(nbins=9, integer=True)) - axis.yaxis.set_major_locator(MaxNLocator(nbins=9, integer=True)) + if self.dim_uv[0] >= self.dim_uv[1]: + u_bin, v_bin = np.max((2, np.floor(9*self.dim_uv[1]/self.dim_uv[0]))), 9 + else: + u_bin, v_bin = 9, np.max((2, np.floor(9*self.dim_uv[0]/self.dim_uv[1]))) + axis.xaxis.set_major_locator(MaxNLocator(nbins=u_bin, integer=True)) + axis.yaxis.set_major_locator(MaxNLocator(nbins=v_bin, integer=True)) axis.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*self.a))) axis.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*self.a))) axis.tick_params(axis='both', which='major', labelsize=14) @@ -673,38 +686,62 @@ class PhaseMap(object): self._log.debug('Calling display_holo') # Calculate gain if 'auto' is selected: if gain == 'auto': - gain = 4 * 2*pi/(np.abs(self.phase).max()+1E-30) + gain = 4 * 2*np.pi/(np.abs(self.phase).max()+1E-30) # Set title if not set: if title is None: title = 'Contour Map (gain: %.2g)' % gain # Calculate the holography image intensity: - img_holo = (1 + np.cos(gain * self.phase)) / 2 +# img_holo = (1 + np.cos(gain * self.phase)) / 2 + holo = (1 + np.cos(gain * self.phase)) / 2 # Calculate the phase gradients, expressed by magnitude and angle: - phase_grad_y, phase_grad_x = np.gradient(self.phase, self.a, self.a) - phase_angle = (1 - np.arctan2(phase_grad_y, phase_grad_x)/pi) / 2 - phase_magnitude = np.hypot(phase_grad_x, phase_grad_y) + phase_grad_x, phase_grad_y = np.gradient(self.phase, self.a, self.a) +# plt.figure() +# plt.imshow(phase_grad_x) +# plt.figure() +# plt.imshow(phase_grad_y) + angles = (1 - np.arctan2(phase_grad_y, phase_grad_x)/np.pi) / 2 + phase_grad_amp = np.hypot(phase_grad_y, phase_grad_x) +# phase_angle = (1 + np.arctan2(phase_grad_y, phase_grad_x)/np.pi) / 2 +# phase_magnitude = np.hypot(phase_grad_x, phase_grad_y) # Calculate the color saturation: - saturation = np.sin(phase_magnitude/(phase_magnitude.max()+1E-30) * pi / 2) - phase_saturation = np.dstack((saturation,)*4) - # Color code the angle and create the holography image: +# saturation = np.sin(phase_magnitude/(phase_magnitude.max()+1E-30) * np.pi / 2) +# phase_saturation = np.dstack((saturation,)*4) + saturations = np.sin(phase_grad_amp/(phase_grad_amp.max()+1E-30)*np.pi/2) # betw. 0 and 1 +# # Color code the angle and create the holography image: +# if grad_encode == 'dark': +# self._log.debug('gradient encoding: dark') +# rgba = self.HOLO_CMAP(phase_angle) +# rgb = (255.999 * img_holo.T * saturation.T * rgba[:, :, :3].T).T.astype(np.uint8) +# elif grad_encode == 'bright_old': +# self._log.debug('gradient encoding: bright') +# rgba = self.HOLO_CMAP(phase_angle)+(1-phase_saturation)*self.HOLO_CMAP_INV(phase_angle) +# rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) +# elif grad_encode == 'bright': +# self._log.debug('gradient encoding: bright') +# rgba = self.HOLO_CMAP(phase_angle)+(1-phase_saturation)*self.HOLO_CMAP_INV(phase_angle) +# rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) +# elif grad_encode == 'color': +# self._log.debug('gradient encoding: color') +# rgba = self.HOLO_CMAP(phase_angle) +# rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) +# elif grad_encode == 'none': +# self._log.debug('gradient encoding: none') +# rgba = self.HOLO_CMAP(phase_angle)+self.HOLO_CMAP_INV(phase_angle) +# rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) +# else: +# raise AssertionError('Gradient encoding not recognized!') if grad_encode == 'dark': - self._log.debug('gradient encoding: dark') - rgba = self.HOLO_CMAP(phase_angle) - rgb = (255.999 * img_holo.T * saturation.T * rgba[:, :, :3].T).T.astype(np.uint8) + pass elif grad_encode == 'bright': - self._log.debug('gradient encoding: bright') - rgba = self.HOLO_CMAP(phase_angle)+(1-phase_saturation)*self.HOLO_CMAP_INV(phase_angle) - rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) + saturations = 2 - saturations elif grad_encode == 'color': - self._log.debug('gradient encoding: color') - rgba = self.HOLO_CMAP(phase_angle) - rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) + saturations = np.ones_like(saturations) elif grad_encode == 'none': - self._log.debug('gradient encoding: none') - rgba = self.HOLO_CMAP(phase_angle)+self.HOLO_CMAP_INV(phase_angle) - rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) + saturations = 2*np.ones_like(saturations) else: raise AssertionError('Gradient encoding not recognized!') + rgb = DirectionalColormap.rgb_from_colorind_and_saturation(angles, saturations) + rgb = (holo.T * rgb.T).T.astype(np.uint8) holo_image = Image.fromarray(rgb) # If no axis is specified, a new figure is created: if axis is None: @@ -712,17 +749,20 @@ class PhaseMap(object): axis = fig.add_subplot(1, 1, 1) axis.set_aspect('equal') # Plot the image and set axes: - axis.imshow(holo_image, origin='lower', interpolation=interpolation) + axis.imshow(holo_image, origin='lower', interpolation=interpolation, + extent=(0, self.dim_uv[1], 0, self.dim_uv[0])) # Set the title and the axes labels: axis.set_title(title) axis.tick_params(axis='both', which='major', labelsize=14) axis.set_title(title, fontsize=18) axis.set_xlabel('u-axis [px]', fontsize=15) axis.set_ylabel('v-axis [px]', fontsize=15) - axis.set_xlim(0, self.dim_uv[1]) - axis.set_ylim(0, self.dim_uv[0]) - axis.xaxis.set_major_locator(MaxNLocator(nbins=9, integer=True)) - axis.yaxis.set_major_locator(MaxNLocator(nbins=9, integer=True)) + if self.dim_uv[0] >= self.dim_uv[1]: + u_bin, v_bin = np.max((2, np.floor(9*self.dim_uv[1]/self.dim_uv[0]))), 9 + else: + u_bin, v_bin = 9, np.max((2, np.floor(9*self.dim_uv[0]/self.dim_uv[1]))) + axis.xaxis.set_major_locator(MaxNLocator(nbins=u_bin, integer=True)) + axis.yaxis.set_major_locator(MaxNLocator(nbins=v_bin, integer=True)) # Return plotting axis: return axis @@ -776,33 +816,33 @@ class PhaseMap(object): # Return the plotting axes: return phase_axis, holo_axis - @classmethod - def make_color_wheel(cls): - '''Display a color wheel to illustrate the color coding of the gradient direction. - - Parameters - ---------- - None - - Returns - ------- - None - - ''' - cls._log.debug('Calling make_color_wheel') - yy, xx = np.indices((512, 512)) - 256 - r = np.sqrt(xx**2 + yy**2) - # Create the wheel: - color_wheel_magnitude = (1 - np.cos(r * pi/360)) / 2 - color_wheel_magnitude *= 0 * (r > 256) + 1 * (r <= 256) - color_wheel_angle = (1 - np.arctan2(xx, -yy)/pi) / 2 - # Color code the angle and create the holography image: - rgba = cls.HOLO_CMAP(color_wheel_angle) - rgb = (255.999 * color_wheel_magnitude.T * rgba[:, :, :3].T).T.astype(np.uint8) - color_wheel = Image.fromarray(rgb) - # Plot the color wheel: - fig = plt.figure(figsize=(4, 4)) - axis = fig.add_subplot(1, 1, 1, aspect='equal') - axis.imshow(color_wheel, origin='lower') - axis.xaxis.set_major_locator(NullLocator()) - axis.yaxis.set_major_locator(NullLocator()) +# @classmethod +# def make_color_wheel(cls): +# '''Display a color wheel to illustrate the color coding of the gradient direction. +# +# Parameters +# ---------- +# None +# +# Returns +# ------- +# None +# +# ''' +# cls._log.debug('Calling make_color_wheel') +# yy, xx = np.indices((512, 512)) - 256 +# r = np.sqrt(xx**2 + yy**2) +# # Create the wheel: +# color_wheel_magnitude = (1 - np.cos(r * pi/360)) / 2 +# color_wheel_magnitude *= 0 * (r > 256) + 1 * (r <= 256) +# color_wheel_angle = (1 - np.arctan2(xx, -yy)/pi) / 2 +# # Color code the angle and create the holography image: +# rgba = cls.HOLO_CMAP(color_wheel_angle) +# rgb = (255.999 * color_wheel_magnitude.T * rgba[:, :, :3].T).T.astype(np.uint8) +# color_wheel = Image.fromarray(rgb) +# # Plot the color wheel: +# fig = plt.figure(figsize=(4, 4)) +# axis = fig.add_subplot(1, 1, 1, aspect='equal') +# axis.imshow(color_wheel, origin='lower') +# axis.xaxis.set_major_locator(NullLocator()) +# axis.yaxis.set_major_locator(NullLocator()) diff --git a/pyramid/phasemapper.py b/pyramid/phasemapper.py index 3fe0345..81f5c54 100644 --- a/pyramid/phasemapper.py +++ b/pyramid/phasemapper.py @@ -52,15 +52,15 @@ class PhaseMapper(object): _log = logging.getLogger(__name__+'.PhaseMapper') @abc.abstractmethod - def __call__(self, mag_data): + def __call__(self, mag_data, offset=None): raise NotImplementedError() @abc.abstractmethod - def jac_dot(self, vector): + def jac_dot(self, vector, offset=None): raise NotImplementedError() @abc.abstractmethod - def jac_T_dot(self, vector): + def jac_T_dot(self, vector, offseth=None): raise NotImplementedError() @@ -113,7 +113,7 @@ class PhaseMapperRDFC(PhaseMapper): self._log.debug('Calling __str__') return 'PhaseMapperRDFC(kernel=%s)' % (self.kernel) - def __call__(self, mag_data): + def __call__(self, mag_data, offset=None, ramp=None): assert isinstance(mag_data, MagData), 'Only MagData objects can be mapped!' assert mag_data.a == self.kernel.a, 'Grid spacing has to match!' assert mag_data.dim[0] == 1, 'Magnetic distribution must be 2-dimensional!' @@ -121,7 +121,19 @@ class PhaseMapperRDFC(PhaseMapper): # Process input parameters: self.u_mag[self.kernel.slice_mag] = mag_data.magnitude[0, 0, ...] # u-component self.v_mag[self.kernel.slice_mag] = mag_data.magnitude[1, 0, ...] # v-component - return PhaseMap(mag_data.a, self._convolve()) + # Handle offset: + if offset is not None: + off_phase = offset * np.ones(self.kernel.dim_uv) + else: + off_phase = 0 + # Handle ramp: + if ramp is not None: + u_ramp, v_ramp = ramp # in rad / nm + vv, uu = np.indices(self.kernel.dim_uv) * self.kernel.a + ramp_phase = u_ramp * uu + v_ramp * vv + else: + ramp_phase = 0 + return PhaseMap(mag_data.a, self._convolve() + off_phase + ramp_phase) def _convolve(self): # Fourier transform the projected magnetisation: @@ -132,7 +144,7 @@ class PhaseMapperRDFC(PhaseMapper): # Return the result: return fft.irfftn(self.phase_fft)[self.kernel.slice_phase] - def jac_dot(self, vector): + def jac_dot(self, vector, offset=None, ramp=None): '''Calculate the product of the Jacobi matrix with a given `vector`. Parameters @@ -152,10 +164,21 @@ class PhaseMapperRDFC(PhaseMapper): 'vector size not compatible! vector: {}, size: {}'.format(len(vector), self.n) self.u_mag[self.kernel.slice_mag], self.v_mag[self.kernel.slice_mag] = \ np.reshape(vector, (2,)+self.kernel.dim_uv) - result = self._convolve().flatten() - return result + # Handle offset: + if offset is not None: + off_phase = offset * np.ones(self.kernel.dim_uv) + else: + off_phase = 0 + # Handle ramp: + if ramp is not None: + u_ramp, v_ramp = ramp # in rad / nm + vv, uu = np.indices(self.kernel.dim_uv) * self.kernel.a + ramp_phase = u_ramp * uu + v_ramp * vv + else: + ramp_phase = 0 + return np.ravel(self._convolve() + off_phase + ramp_phase) - def jac_T_dot(self, vector): + def jac_T_dot(self, vector, return_ramp=False, return_offset=False): '''Calculate the product of the transposed Jacobi matrix with a given `vector`. Parameters @@ -179,8 +202,23 @@ class PhaseMapperRDFC(PhaseMapper): v_phase_adj_fft = mag_adj_fft * -self.kernel.v_fft u_phase_adj = fft.rfftn_adj(u_phase_adj_fft)[self.kernel.slice_phase] v_phase_adj = fft.rfftn_adj(v_phase_adj_fft)[self.kernel.slice_phase] - return -np.concatenate((u_phase_adj.flatten(), v_phase_adj.flatten())) # TODO: why minus? + # TODO: offset subtract? + if return_ramp: + offset = [vector.sum()] + vv, uu = np.indices(self.kernel.dim_uv) * self.kernel.a + u_ramp = [np.sum(vector * uu.flatten())] + v_ramp = [np.sum(vector * vv.flatten())] + result = np.concatenate((-u_phase_adj.flatten(), -v_phase_adj.flatten(), + offset, u_ramp, v_ramp)) + elif return_offset: + offset = [vector.sum()] + result = np.concatenate((-u_phase_adj.flatten(), -v_phase_adj.flatten(), offset)) + else: + result = np.concatenate((-u_phase_adj.flatten(), -v_phase_adj.flatten())) + # TODO: Why minus? + return result +# TODO: ALL Docstrings with offset!!! class PhaseMapperRDRC(PhaseMapper): diff --git a/pyramid/projector.py b/pyramid/projector.py index 2e7a3ad..7438372 100644 --- a/pyramid/projector.py +++ b/pyramid/projector.py @@ -634,16 +634,16 @@ class SimpleProjector(Projector): for row in range(size_2d)]).reshape(-1) if dim_uv is not None: indptr = indptr.tolist() # convert to use insert() and append() - d_v, d_u = (dim_uv[0]-dim_v)//2, (dim_uv[1]-dim_u)//2 # padding in u and v - indptr[-1:-1] = [indptr[-1]] * d_v*dim_uv[1] # append empty rows at the end + d_v = np.floor((dim_uv[0]-dim_v)/2), np.ceil((dim_uv[0]-dim_v)/2) # padding in v + d_u = np.floor((dim_uv[1]-dim_u)/2), np.ceil((dim_uv[1]-dim_u)/2) # padding in u + indptr.extend([indptr[-1]]*d_v[1]*dim_uv[1]) # add empty lines at the end for i in np.arange(dim_v, 0, -1): # all slices in between - u, l = i*dim_u, (i-1)*dim_u+1 # upper / lower slice end - indptr[u:u] = [indptr[u]] * d_u # end of the slice - indptr[l:l] = [indptr[l]] * d_u # start of the slice - indptr[0:0] = [0] * d_v*dim_uv[1] # insert empty rows at the beginning + up, lo = i*dim_u, (i-1)*dim_u # upper / lower slice end + indptr[up:up] = [indptr[up]] * d_u[1] # end of the slice + indptr[lo:lo] = [indptr[lo]] * d_u[0] # start of the slice + indptr = [0]*d_v[0]*dim_uv[1] + indptr # insert empty rows at the beginning size_2d = np.prod(dim_uv) # increase size_2d - # Make sure dim_uv is defined (used for the assertion) - if dim_uv is None: + else: # Make sure dim_uv is defined (used for the assertion) dim_uv = dim_v, dim_u assert dim_uv[0] >= dim_v and dim_uv[1] >= dim_u, 'Projected dimensions are too small!' # Create weight-matrix: diff --git a/pyramid/reconstruction.py b/pyramid/reconstruction.py index 96664e8..3d2cf4a 100644 --- a/pyramid/reconstruction.py +++ b/pyramid/reconstruction.py @@ -48,11 +48,22 @@ def optimize_linear(costfunction, max_iter=None): _log.info('Cost before optimization: {}'.format(costfunction(np.zeros(costfunction.n)))) x_opt = jcg.conj_grad_minimize(costfunction, max_iter=max_iter).x _log.info('Cost after optimization: {}'.format(costfunction(x_opt))) - # Create and return fitting MagData object: + # Extract additional info if necessary: + add_info = [] data_set = costfunction.fwd_model.data_set + count = data_set.count + if costfunction.fwd_model.fit_ramps: + x_opt, offsets, u_ramps, v_ramps = np.split(x_opt, [-3*count, -2*count, -count]) + ramps = zip(u_ramps, v_ramps) + add_info.append(offsets) + add_info.append(ramps) + elif costfunction.fwd_model.fit_offsets: + x_opt, offsets = np.split(x_opt, [-count]) + add_info.append(offsets) + # Create and return fitting MagData object: mag_opt = MagData(data_set.a, np.zeros((3,) + data_set.dim)) mag_opt.set_vector(x_opt, data_set.mask) - return mag_opt + return mag_opt, add_info # TODO: Docstring def optimize_nonlin(costfunction, first_guess=None): diff --git a/pyramid/regularisator.py b/pyramid/regularisator.py index a6fac95..5d638ae 100644 --- a/pyramid/regularisator.py +++ b/pyramid/regularisator.py @@ -13,7 +13,6 @@ from scipy import sparse import jutil.norms as jnorm import jutil.diff as jdiff -import jutil.operator as joperator import logging @@ -37,24 +36,32 @@ class Regularisator(object): lam: float Regularisation parameter determining the weighting between measurements and regularisation. - ''' + ''' # TODO: ALL dostrings with add_params of input! __metaclass__ = abc.ABCMeta _log = logging.getLogger(__name__+'.Regularisator') @abc.abstractmethod - def __init__(self, norm, lam): + def __init__(self, norm, lam, add_params=None): + # TODO: Cut off additional parameters at the end (offset and stuff)!!! + # OR fix x in init and cut off the rest so you don't have to care what else is needed for F self._log.debug('Calling __init__') self.norm = norm self.lam = lam + if add_params is not None: + self.add_params = -add_params # Workaround! For indexing -None does NOT exist! + #TODO: define slice! + else: + self.add_params = None self._log.debug('Created '+str(self)) def __call__(self, x): self._log.debug('Calling __call__') - return self.lam * self.norm(x) + # TODO: assert len(x) - self.add_params korrekt + return self.lam * self.norm(x[:self.add_params]) def __repr__(self): - self._log.debug('Calling __repr__') + self._log.debug('Calling __repr__') # TODO: add_params return '%s(norm=%r, lam=%r)' % (self.__class__, self.norm, self.lam) def __str__(self): @@ -75,7 +82,9 @@ class Regularisator(object): Jacobi vector which represents the cost derivative of all voxels of the magnetization. ''' - return self.lam * self.norm.jac(x) + result = np.zeros_like(x) + result[:self.add_params] = self.lam * self.norm.jac(x[:self.add_params]) + return result def hess_dot(self, x, vector): '''Calculate the product of a `vector` with the Hessian matrix of the regularisation term. @@ -96,7 +105,9 @@ class Regularisator(object): Product of the input `vector` with the Hessian matrix. ''' - return self.lam * self.norm.hess_dot(x, vector) + result = np.zeros_like(x) + result[:self.add_params] = self.lam * self.norm.hess_dot(x, vector[:self.add_params]) + return result def hess_diag(self, x): ''' Return the diagonal of the Hessian. @@ -116,7 +127,9 @@ class Regularisator(object): ''' self._log.debug('Calling hess_diag') - return self.lam * self.norm.hess_diag(x) + result = np.zeros_like(x) + result[:self.add_params] = self.lam * self.norm.hess_diag(x[:self.add_params]) + return result class ComboRegularisator(Regularisator): @@ -313,14 +326,14 @@ class ZeroOrderRegularisator(Regularisator): _log = logging.getLogger(__name__+'.ZeroOrderRegularisator') - def __init__(self, _=None, lam=1E-4, p=2): + def __init__(self, _=None, lam=1E-4, p=2, add_params=None): self._log.debug('Calling __init__') self.p = p if p == 2: norm = jnorm.L2Square() else: norm = jnorm.LPPow(p, 1e-12) - super(ZeroOrderRegularisator, self).__init__(norm, lam) + super(ZeroOrderRegularisator, self).__init__(norm, lam, add_params) self._log.debug('Created '+str(self)) @@ -343,7 +356,7 @@ class FirstOrderRegularisator(Regularisator): ''' - def __init__(self, mask, lam=1E-4, p=2): + def __init__(self, mask, lam=1E-4, p=2, add_params=None): self.p = p D0 = jdiff.get_diff_operator(mask, 0, 3) D1 = jdiff.get_diff_operator(mask, 1, 3) @@ -353,5 +366,5 @@ class FirstOrderRegularisator(Regularisator): norm = jnorm.WeightedL2Square(D) else: norm = jnorm.WeightedTV(jnorm.LPPow(p, 1e-12), D, [D0.shape[0], D.shape[0]]) - super(FirstOrderRegularisator, self).__init__(norm, lam) + super(FirstOrderRegularisator, self).__init__(norm, lam, add_params) self._log.debug('Created '+str(self)) diff --git a/scripts/magdata/magcreator/create_homog_slab.py b/scripts/magdata/magcreator/create_homog_slab.py index 9fc206d..5d1394c 100644 --- a/scripts/magdata/magcreator/create_homog_slab.py +++ b/scripts/magdata/magcreator/create_homog_slab.py @@ -13,8 +13,8 @@ logging.config.fileConfig(py.LOGGING_CONFIG, disable_existing_loggers=False) # Parameters: dim = (32, 32, 32) a = 1.0 # in nm -phi = np.pi/4 # in rad -theta = 0*np.pi/2 # in rad +phi = np.pi/2 # in rad +theta = np.pi/2 # in rad magnitude = 1 filename = 'magdata_mc_homog_slab.nc' diff --git a/scripts/magdata/magdata_from_vtk.py b/scripts/magdata/magdata_from_vtk.py index 478319d..0897ee7 100644 --- a/scripts/magdata/magdata_from_vtk.py +++ b/scripts/magdata/magdata_from_vtk.py @@ -6,6 +6,7 @@ import os import imp import numpy as np from pylab import griddata +from scipy.spatial import cKDTree as KDTree import matplotlib.pyplot as plt import vtk from tqdm import tqdm @@ -16,8 +17,8 @@ import logging.config logging.config.fileConfig(py.LOGGING_CONFIG, disable_existing_loggers=False) ################################################################################################### -filename = 'tube_CoFeB_with_cap_3nm.vtk' -b_0 = 1.54 +filename = 'gyroid_homx.vtk' +b_0 = 1. ################################################################################################### filepath = os.path.join(py.DIR_FILES, 'vtk', filename) @@ -77,23 +78,71 @@ y = np.arange(y_cent-y_diff, y_cent+y_diff, a) z = np.arange(z_min, z_max, a) xx, yy = np.meshgrid(x, y) +def excluding_mesh(x, y, nx=30, ny=30): + """ + Construct a grid of points, that are some distance away from points (x, + """ + + dx = x.ptp() / nx + dy = y.ptp() / ny + + xp, yp = np.mgrid[x.min()-2*dx:x.max()+2*dx:(nx+2)*1j, + y.min()-2*dy:y.max()+2*dy:(ny+2)*1j] + xp = xp.ravel() + yp = yp.ravel() + + # Use KDTree to answer the question: "which point of set (x,y) is the + # nearest neighbors of those in (xp, yp)" + tree = KDTree(np.c_[x, y]) + dist, j = tree.query(np.c_[xp, yp], k=1) + + # Select points sufficiently far away + m = (dist > np.hypot(dx, dy)) + return xp[m], yp[m] + +## Prepare fake data points +#xp, yp = excluding_mesh(x, y, nx=35, ny=35) +#zp = np.nan + np.zeros_like(xp) +# +## Grid the data plus fake data points +#xi, yi = np.ogrid[-3:3:350j, -3:3:350j] +#zi = griddata((np.r_[x,xp], np.r_[y,yp]), np.r_[z, zp], (xi, yi), +# method='linear') +#plt.imshow(zi) +#plt.show() + + # Create empty magnitude: magnitude = np.zeros((3, len(z), len(y), len(x)), dtype=py.fft.FLOAT) print 'Mag Dimensions:', magnitude.shape[1:] + + +#import pdb; pdb.set_trace() # Fill magnitude slice per slice: for i, zi in tqdm(enumerate(z), total=len(z)): - # Take all points that lie in one voxel of the new regular grid into account (use weights!): + # Take all points that lie in one z-voxel of the new regular grid into account (use weights!): z_slice = data[np.abs(data[:, 2]-zi) <= a/2., :] weights = 1 - np.abs(z_slice[:, 2]-zi)*2/a # If z is regular everywhere, weights are always 1! + + # Prepare fake data points + x_nan, y_nan = excluding_mesh(z_slice[:, 0], z_slice[:, 1], nx=len(x)//10, ny=len(y)//10) + z_nan = np.nan + np.zeros_like(x_nan) + + + if i == 10: + axis = plt.figure().add_subplot(1, 1, 1) + axis.scatter(x_nan, y_nan) + plt.show() + + grid_x = np.r_[z_slice[:, 0], x_nan] + grid_y = np.r_[z_slice[:, 1], y_nan] for j in range(3): # For all 3 components! - if condition(zi): # use insert point if condition is True! - grid_x = np.concatenate([z_slice[:, 0], insert_x]) - grid_y = np.concatenate([z_slice[:, 1], insert_y]) - grid_z = np.concatenate([weights*z_slice[:, 3+j], np.zeros(len(insert_x))]) - else: - grid_x = z_slice[:, 0] - grid_y = z_slice[:, 1] - grid_z = weights*z_slice[:, 3+j] +# if condition(zi): # use insert point if condition is True! +# grid_x = np.concatenate([z_slice[:, 0], insert_x]) +# grid_y = np.concatenate([z_slice[:, 1], insert_y]) +# grid_z = np.concatenate([weights*z_slice[:, 3+j], np.zeros(len(insert_x))]) +# else: + grid_z = np.r_[weights*z_slice[:, 3+j], z_nan] gridded_subdata = griddata(grid_x, grid_y, grid_z, xx, yy) magnitude[j, i, :, :] = gridded_subdata.filled(fill_value=0).astype(py.fft.FLOAT) # Convert a to nm: @@ -102,3 +151,5 @@ a *= 10 print 'CREATE AND SAVE MAGDATA OBJECT!' mag_data = py.MagData(a, magnitude) mag_data.save_to_netcdf4('magdata_vtk_{}'.format(filename.replace('.vtk', '.nc'))) + +py.pm(mag_data).display_combined() \ No newline at end of file diff --git a/scripts/phasemap/phasemap_from_dm3.py b/scripts/phasemap/phasemap_from_dm3.py index 604f3d8..f76b8ac 100644 --- a/scripts/phasemap/phasemap_from_dm3.py +++ b/scripts/phasemap/phasemap_from_dm3.py @@ -12,13 +12,12 @@ import logging.config logging.config.fileConfig(py.LOGGING_CONFIG, disable_existing_loggers=False) ################################################################################################### -path_mag = 'zi_an_magnetite_2_particles_magnetic.dm3' -path_ele = 'zi_an_magnetite_2_particles_electric.dm3' -filename = 'phasemap_dm3_zi_an_magnetite_2_particles.nc' +path_mag = 'zi_an_elongated_nanorod.dm3' +path_ele = 'zi_an_elongated_nanorod_mip.dm3' +filename = 'phasemap_dm3_zi_an_elongated_nanorod.nc' a = 1. dim_uv = None -threshold = 2 -offset = 0.23280109 +threshold = 4.5 ################################################################################################### # Load images: @@ -28,7 +27,7 @@ if dim_uv is not None: im_mag = im_mag.resize(dim_uv) im_ele = im_ele.resize(dim_uv) # Calculate phase and mask: -phase = np.asarray(im_mag) - offset +phase = np.asarray(im_mag) mask = np.where(np.asarray(im_ele) >= threshold, True, False) # Create and save PhaseMap object: diff --git a/scripts/phasemap/phasemap_from_image.py b/scripts/phasemap/phasemap_from_image.py index 54c6dce..d0d1dd6 100644 --- a/scripts/phasemap/phasemap_from_image.py +++ b/scripts/phasemap/phasemap_from_image.py @@ -12,14 +12,14 @@ import logging.config logging.config.fileConfig(py.LOGGING_CONFIG, disable_existing_loggers=False) ################################################################################################### -path_mag = 'kiyou_skyrmion.tif' -path_ele = 'kiyou_skyrmion_mask.tif' -filename = 'phasemap_tif_kiyou_skyrmion.nc' -a = 1. +path_mag = 'Arnaud_M.tif' +path_ele = 'Arnaud_MIP_mask.tif' +filename = 'phasemap_tif_martial_skyrmion.nc' +a = 2 dim_uv = None max_phase = 1 threshold = 0.5 -offset = 0.182 +offset = 0 ################################################################################################### # Load images: diff --git a/scripts/reconstruction/reconstruction_2d_from_phasemap.py b/scripts/reconstruction/reconstruction_2d_from_phasemap.py index c656a7b..4e17081 100644 --- a/scripts/reconstruction/reconstruction_2d_from_phasemap.py +++ b/scripts/reconstruction/reconstruction_2d_from_phasemap.py @@ -3,51 +3,67 @@ import numpy as np -import pyramid as py +import pyramid as pr from jutil.taketime import TakeTime import logging.config -logging.config.fileConfig(py.LOGGING_CONFIG, disable_existing_loggers=False) +logging.config.fileConfig(pr.LOGGING_CONFIG, disable_existing_loggers=False) ################################################################################################### -phase_name = 'phasemap_bmp_trevor_magnetite_1' -b_0 = 1 +phase_name = 'phasemap_dm3_zi_an_elongated_nanorod' +b_0 = 0.6 # in T lam = 1E-3 max_iter = 100 -buffer_pixel = 20 +buffer_pixel = 0 +fit_ramps = True +fit_offsets = True ################################################################################################### # Load phase map: -phase_map = py.PhaseMap.load_from_netcdf4(phase_name+'.nc') -phase_map.pad(buffer_pixel, buffer_pixel) +phase_map = pr.PhaseMap.load_from_netcdf4(phase_name+'.nc') +phase_map.pad((buffer_pixel, buffer_pixel)) dim = (1,) + phase_map.dim_uv -# Construct data set and regularisator: -data = py.DataSet(phase_map.a, dim, b_0) -data.append(phase_map, py.SimpleProjector(dim)) +# Construct regularisator, forward model and costfunction: +data = pr.DataSet(phase_map.a, dim, b_0) +data.append(phase_map, pr.SimpleProjector(dim)) data.set_3d_mask() -reg = py.FirstOrderRegularisator(data.mask, lam) +if fit_ramps: + add_param_count = 3 +elif fit_offsets: + add_param_count = 1 +else: + add_param_count = None +reg = pr.FirstOrderRegularisator(data.mask, lam, add_params=add_param_count) +fwd_model = pr.ForwardModel(data, fit_offsets=fit_offsets, fit_ramps=fit_ramps) +cost = pr.Costfunction(fwd_model, reg) # Reconstruct and save: with TakeTime('reconstruction time'): - mag_data_rec, cost = py.reconstruction.optimize_linear(data, reg, max_iter=max_iter) + mag_data_rec, add_info = pr.reconstruction.optimize_linear(cost, max_iter=max_iter) +if fit_ramps: + offset, ramp = add_info[0][0], add_info[1][0] +elif fit_offsets: + offset = add_info[0][0] mag_data_buffer = mag_data_rec.copy() -mag_data_rec.crop([0]*2+[buffer_pixel]*4) +mag_data_rec.crop((0, buffer_pixel, buffer_pixel)) mag_name = '{}_lam={}'.format(phase_name.replace('phasemap', 'magdata_rec'), lam) mag_data_rec.save_to_netcdf4(mag_name+'.nc') # Plot stuff: -mag_data_rec.quiver_plot('Reconstructed Distribution', ar_dens=np.ceil(np.max(dim)/64.)) -phase_map.crop([buffer_pixel]*4) +mag_data_rec.quiver_plot('Reconstructed Distribution', ar_dens=np.ceil(np.max(dim)/128.)) +phase_map.crop((buffer_pixel, buffer_pixel)) phase_map.display_combined('Input Phase') -phase_map_rec = py.pm(mag_data_rec) +phase_map_rec = pr.pm(mag_data_rec) phase_map_rec.mask = phase_map.mask -phase_map_rec.display_combined('Reconstructed Phase') +title = 'Reconstructed Phase' +if fit_offsets: + print 'offset:', offset + title += ', fitted Offset: {:.2g} [rad]'.format(offset) +if fit_ramps: + print 'ramp:', ramp + title += ', (Fitted Ramp: (u:{:.2g}, v:{:.2g}) [rad/nm]'.format(*ramp) +phase_map_rec.display_combined(title) difference = (phase_map_rec.phase-phase_map.phase).mean() -(phase_map_rec-phase_map).display_phase('Difference (mean: {:.3g})'.format(difference)) - -bp = buffer_pixel -mag_data_buffer.magnitude[:, :, bp:-bp, bp:-bp] = 0 -mag_data_buffer.quiver_plot(ar_dens=np.ceil(np.max(dim)/64.)) -py.pm(mag_data_buffer).display_phase() +(phase_map_rec-phase_map).display_phase('Difference (mean: {:.2g})'.format(difference)) diff --git a/scripts/reconstruction/reconstruction_3d_from_magdata.py b/scripts/reconstruction/reconstruction_3d_from_magdata.py index f5cfd37..8d1a763 100644 --- a/scripts/reconstruction/reconstruction_3d_from_magdata.py +++ b/scripts/reconstruction/reconstruction_3d_from_magdata.py @@ -3,64 +3,92 @@ import numpy as np -import pyramid as py +import pyramid as pr from jutil.taketime import TakeTime import logging.config -logging.config.fileConfig(py.LOGGING_CONFIG, disable_existing_loggers=False) +logging.config.fileConfig(pr.LOGGING_CONFIG, disable_existing_loggers=False) ################################################################################################### -mag_name = 'magdata_mc_array_sphere_disc_slab' +mag_name = 'magdata_mc_vortex_disc' dim_uv = None angles = np.linspace(-90, 90, num=7) axes = {'x': True, 'y': True} b_0 = 1 -noise = 0 -lam = 1E-4 +noise = 0.1 +lam = 1E-1 max_iter = 100 -save_images = False -use_internal_mask = False +use_internal_mask = True +offset_max = 2 +ramp_max = 0.01 +fit_ramps = True +fit_offsets = True ################################################################################################### # Load magnetization distribution: -mag_data = py.MagData.load_from_netcdf4(mag_name+'.nc') +mag_data = pr.MagData.load_from_netcdf4(mag_name+'.nc') dim = mag_data.dim # Construct data set and regularisator: -data = py.DataSet(mag_data.a, mag_data.dim, b_0) +data = pr.DataSet(mag_data.a, mag_data.dim, b_0) # Construct projectors: projectors = [] for angle in angles: angle_rad = angle*np.pi/180 if axes['x']: - projectors.append(py.XTiltProjector(mag_data.dim, angle_rad, dim_uv)) + projectors.append(pr.XTiltProjector(mag_data.dim, angle_rad, dim_uv)) if axes['y']: - projectors.append(py.YTiltProjector(mag_data.dim, angle_rad, dim_uv)) + projectors.append(pr.YTiltProjector(mag_data.dim, angle_rad, dim_uv)) # Add projectors and construct according phase maps: data.projectors = projectors data.phase_maps = data.create_phase_maps(mag_data) +for i, phase_map in enumerate(data.phase_maps): + offset = np.random.uniform(-offset_max, offset_max) + ramp = np.random.uniform(-ramp_max, ramp_max), np.random.uniform(-ramp_max, ramp_max) + phase_map.add_ramp(offset, ramp) + # Add noise if necessary: if noise != 0: for i, phase_map in enumerate(data.phase_maps): - phase_map += py.PhaseMap(mag_data.a, np.random.normal(0, noise, dim_uv)) + phase_map.phase += np.random.normal(0, noise, phase_map.dim_uv) + data.phase_maps[i] = phase_map +# Plot input: +for i, phase_map in enumerate(data.phase_maps): + phase_map.display_phase() + # Construct mask: if use_internal_mask: data.mask = mag_data.get_mask() # Use perfect mask from mag_data! else: data.set_3d_mask() # Construct mask from 2D phase masks! -# Construct regularisator: -reg = py.FirstOrderRegularisator(data.mask, lam) +# Construct regularisator, forward model and costfunction: +if fit_ramps: + add_param_count = 3 * data.count +elif fit_offsets: + add_param_count = data.count +else: + add_param_count = None +reg = pr.FirstOrderRegularisator(data.mask, lam, add_params=add_param_count) +fwd_model = pr.ForwardModel(data, fit_offsets=fit_offsets, fit_ramps=fit_ramps) +cost = pr.Costfunction(fwd_model, reg) # Reconstruct and save: with TakeTime('reconstruction time'): - mag_data_rec, cost = py.reconstruction.optimize_linear(data, reg, max_iter=max_iter) + mag_data_rec, add_info = pr.reconstruction.optimize_linear(cost, max_iter=max_iter) +if fit_ramps: + offset, ramp = add_info[0], add_info[1] + print 'offsets:', offset + print 'ramps:', ramp +elif fit_offsets: + offset = add_info[0] + print 'offset:', offset mag_name_rec = mag_name.replace('magdata', 'magdata_rec') mag_data_rec.save_to_netcdf4(mag_name_rec+'.nc') @@ -68,3 +96,5 @@ mag_data_rec.save_to_netcdf4(mag_name_rec+'.nc') data.display_mask(ar_dens=np.ceil(np.max(dim)/64.)) mag_data.quiver_plot3d('Original Distribution', ar_dens=np.ceil(np.max(dim)/64.)) mag_data_rec.quiver_plot3d('Reconstructed Distribution', ar_dens=np.ceil(np.max(dim)/64.)) +mag_data_rec.quiver_plot3d('Reconstructed Distribution', ar_dens=np.ceil(np.max(dim)/64.), + coloring='amplitude') diff --git a/scripts/temp/custom_colormap.py b/scripts/temp/custom_colormap.py index 2ed480a..d3f32a7 100644 --- a/scripts/temp/custom_colormap.py +++ b/scripts/temp/custom_colormap.py @@ -170,5 +170,5 @@ Z = np.cos(X) * np.sin(Y) * 10 fig = plt.figure(figsize=(7, 7)) axis = fig.add_subplot(1, 1, 1) -im = axis.imshow(Z, cmap=create_custom_colormap(levels=3, N=3)) +im = axis.imshow(Z, cmap=create_custom_colormap(levels=3, N=156)) fig.colorbar(im) diff --git a/scripts/temp/test_dim_uv_projection.py b/scripts/temp/test_dim_uv_projection.py new file mode 100644 index 0000000..b231245 --- /dev/null +++ b/scripts/temp/test_dim_uv_projection.py @@ -0,0 +1,24 @@ +# -*- coding: utf-8 -*- +""" +Created on Tue Jul 14 19:11:33 2015 + +@author: Jan +""" + +import numpy as np +import pyramid as pr + + +dim = (1, 2, 2) +a = 5 +dim_uv = (a, a) +width = (1, 1, 1) +center = (0.5, 1, 1) +mag_shape = pr.magcreator.Shapes.slab(dim, center, width) +mag_data = pr.MagData(10, pr.magcreator.create_mag_dist_homog(mag_shape, np.pi/4)) +mag_data.quiver_plot() +projector = pr.SimpleProjector(dim, axis='z', dim_uv=dim_uv) +mag_proj = projector(mag_data) +mag_proj.quiver_plot() +pr.pm(mag_proj).display_combined() +weight = np.array(projector.weight.todense()) -- GitLab