diff --git a/.hgignore b/.hgignore index 5f7570492ed255fd62287fc2d9bf2abec379c3c8..3e01d21734b5465c83455d03b3fcce7959475063 100644 --- a/.hgignore +++ b/.hgignore @@ -10,4 +10,5 @@ syntax: glob *.c output* build* -Pyramid.egg-info* \ No newline at end of file +Pyramid.egg-info* +scripts/dyn_0090mT_dyn.h5_dat.h5 diff --git a/docs/pyramid.rst b/docs/pyramid.rst index 8bd3b4c52bfc4d67c3eb53e14e9df3d08ac51b51..9bd1af8547605b4a2a9511206374ca2ea4f50ef1 100644 --- a/docs/pyramid.rst +++ b/docs/pyramid.rst @@ -17,10 +17,10 @@ pyramid Package :show-inheritance: :special-members: -:mod:`datacollection` Module +:mod:`dataset` Module ---------------------------- -.. automodule:: pyramid.datacollection +.. automodule:: pyramid.dataset :members: :show-inheritance: :special-members: diff --git a/logfile.log b/logfile.log index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..bde3b6ace28465b1ebdc2d2648894b577b8448bb 100644 --- a/logfile.log +++ b/logfile.log @@ -0,0 +1,3 @@ +2014-04-10 16:49:29: DEBUG @ <apptools.preferences.preferences>: loading preferences from <C:\Users\Jan\AppData\Roaming\Enthought\mayavi_e3\preferences.ini> +2014-04-10 16:49:29: DEBUG @ <apptools.preferences.preferences>: loading preferences from <<open file 'C:\\Python27\\lib\\site-packages\\mayavi\\preferences\\preferences.ini', mode 'rb' at 0x04D00F98>> +2014-04-10 16:49:29: DEBUG @ <apptools.preferences.preferences>: loading preferences from <<open file 'C:\\Python27\\lib\\site-packages\\tvtk\\plugins\\scene\\preferences.ini', mode 'rb' at 0x050F85A0>> diff --git a/pyramid/__init__.py b/pyramid/__init__.py index 2316e348fbabb207bbdb7266f8659749e5ac3540..5ffe7ac97a6da715795842500a1f9b13eab31dff 100644 --- a/pyramid/__init__.py +++ b/pyramid/__init__.py @@ -17,15 +17,13 @@ phasemap Class for the storage of phase data. analytic Create phase maps for magnetic distributions with analytic solutions. -datacollection +dataset Class for collecting pairs of phase maps and corresponding projectors. forwardmodel Class which represents a phase mapping strategy. costfunction Class for the evaluation of the cost of a function. -optimizer - Provides strategies for optimizing first guess magnetic distributions. -reconstructor +reconstruction Reconstruct magnetic distributions from given phasemaps. Subpackages @@ -35,6 +33,8 @@ numcore """ +# TODO: logging setup at script level, only logging itself should be done in the package +# maybe include in startup script! import logging, logging.config import os @@ -43,4 +43,4 @@ import os LOGGING_CONF = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'logging.ini') -logging.config.fileConfig(LOGGING_CONF) +logging.config.fileConfig(LOGGING_CONF, disable_existing_loggers=False) diff --git a/pyramid/analytic.py b/pyramid/analytic.py index bf2ffccd69db5206304c463fd5da401519acecb2..5216fcdeef8750c62f899fe07617c739c10385b3 100644 --- a/pyramid/analytic.py +++ b/pyramid/analytic.py @@ -13,7 +13,10 @@ from numpy import pi from pyramid.phasemap import PhaseMap +import logging + +LOG = logging.getLogger(__name__) PHI_0 = -2067.83 # magnetic flux in T*nm² @@ -42,7 +45,7 @@ def phase_mag_slab(dim, a, phi, center, width, b_0=1): The phase as a 2-dimensional array. ''' - + LOG.debug('Calling phase_mag_slab') # Function for the phase: def phi_mag(x, y): def F_0(x, y): @@ -98,6 +101,7 @@ def phase_mag_disc(dim, a, phi, center, radius, height, b_0=1): The phase as a 2-dimensional array. ''' + LOG.debug('Calling phase_mag_disc') # Function for the phase: def phi_mag(x, y): r = np.hypot(x - x0, y - y0) @@ -145,6 +149,7 @@ def phase_mag_sphere(dim, a, phi, center, radius, b_0=1): The phase as a 2-dimensional array. ''' + LOG.debug('Calling phase_mag_sphere') # Function for the phase: def phi_mag(x, y): r = np.hypot(x - x0, y - y0) @@ -191,6 +196,7 @@ def phase_mag_vortex(dim, a, center, radius, height, b_0=1): The phase as a 2-dimensional array. ''' + LOG.debug('Calling phase_mag_vortex') # Function for the phase: def phi_mag(x, y): r = np.hypot(x - x0, y - y0) diff --git a/pyramid/costfunction.py b/pyramid/costfunction.py index 811a2a97a615b5b4de29c24ecfb7b5bb7a079eb4..71a60d49433a7e2acc4195fab05b907d51c18ae6 100644 --- a/pyramid/costfunction.py +++ b/pyramid/costfunction.py @@ -1,72 +1,156 @@ # -*- coding: utf-8 -*- -""" -Created on Fri Dec 13 10:29:11 2013 +"""This module provides the :class:`~.Costfunction` class which represents a strategy to calculate +the so called `cost` of a threedimensional magnetization distribution.""" -@author: Jan -"""# TODO: Docstring! +# TODO: better names for variables (no uppercase, more than one letter) + +# TODO: Regularisation Class? import numpy as np +from scipy.sparse.linalg import LinearOperator +from scipy.sparse import eye + +import logging class Costfunction: - # TODO: Docstring! - - def __init__(self, y, F): - '''TEST DOCSTRING FOR INIT''' - # TODO: Docstring! - self.y = y # TODO: get y from phasemaps! - self.F = F # Forward Model - self.Se_inv = np.eye(len(y)) + + '''Class for calculating the cost of a 3D magnetic distributions in relation to 2D phase maps. + + Represents a strategy for the calculation of the `cost` of a 3D magnetic distribution in + relation to two-dimensional phase maps. The `cost` is a measure for the difference of the + simulated phase maps from the magnetic distributions to the given set of phase maps. + Furthermore this class provides convenient methods for the calculation of the derivative + :func:`~.jac` or the product with the Hessian matrix :func:`~.hess_dot` of the costfunction, + which can be used by optimizers. + + Attributes + ---------- + y : :class:`~numpy.ndarray` (N=1) + Vector which lists all pixel values of all phase maps one after another. Usually gotten + via the :class:`~.DataSet` classes `phase_vec` property. + fwd_model : :class:`~.ForwardModel` + The Forward model instance which should be used for the simulation of the phase maps which + will be compared to `y`. + lam : float, optional + Regularization parameter used in the Hessian matrix multiplication. Default is 0. + + ''' + + LOG = logging.getLogger(__name__+'.Costfunction') + + def __init__(self, y, fwd_model, lam=0): + self.LOG.debug('Calling __init__') + self.y = y + self.fwd_model = fwd_model + self.lam = lam + self.Se_inv = eye(len(y)) + self.LOG.debug('Created '+str(self)) def __call__(self, x): - '''TEST DOCSTRING FOR CALL''' - # TODO: Docstring! + self.LOG.debug('Calling __call__') y = self.y F = self.F Se_inv = self.Se_inv -# print 'Costfunction - __call__ - input: ', len(x) - result = (F(x)-y).dot(Se_inv.dot(F(x)-y)) -# print 'Costfunction - __call__ - output:', result - return result + return (F(x)-y).dot(Se_inv.dot(F(x)-y)) + + def __repr__(self): + self.LOG.debug('Calling __repr__') + return '%s(fwd_model=%r, lam=%r)' % (self.__class__, self.fwd_model, self.lam) + + def __str__(self): + self.LOG.debug('Calling __str__') + return 'Costfunction(fwd_model=%s, lam=%s)' % (self.__class__, self.fwd_model, self.lam) def jac(self, x): - # TODO: Docstring! + '''Calculate the derivative of the costfunction for a given magnetization distribution. + + Parameters + ---------- + x : :class:`~numpy.ndarray` (N=1) + Vectorized magnetization distribution, for which the Jacobi vector is calculated. + + Returns + ------- + result : :class:`~numpy.ndarray` (N=1) + Jacobi vector which represents the cost derivative of all voxels of the magnetization. + + ''' + self.LOG.debug('Calling jac') y = self.y - F = self.F + F = self.fwd_model Se_inv = self.Se_inv -# print 'Costfunction - jac - input: ', len(x) - result = F.jac_T_dot(x, Se_inv.dot(F(x)-y)) -# print 'Costfunction - jac - output:', len(result) - return result + return F.jac_T_dot(x, Se_inv.dot(F(x)-y)) def hess_dot(self, x, vector): - # TODO: Docstring! - F = self.F + '''Calculate the product of a `vector` with the Hession matrix of the costfunction. + + Parameters + ---------- + x : :class:`~numpy.ndarray` (N=1) + Vectorized magnetization distribution at which the Hessian is calculated. The Hessian + is constant in this case, thus `x` can be set to None (it is not used int the + computation). It is implemented for the case that in the future nonlinear problems + have to be solved. + vector : :class:`~numpy.ndarray` (N=1) + Vectorized magnetization distribution which is multiplied by the Hessian. + + Returns + ------- + result : :class:`~numpy.ndarray` (N=1) + Product of the input `vector` with the Hessian matrix of the costfunction. + + ''' + self.LOG.debug('Calling hess_dot') + F = self.fwd_model Se_inv = self.Se_inv -# print 'Costfunction - hess_dot - input: ', len(vector) - result = F.jac_T_dot(x, Se_inv.dot(F.jac_dot(x, vector))) -# print 'Costfunction - hess_dot - output:', len(result) - return result - # TODO: Murks! + lam = self.lam + return F.jac_T_dot(x, Se_inv.dot(F.jac_dot(x, vector))) + lam*vector -class CFAdapter: - # TODO: Useless at the moment, because the interface is exactly the same. Use as template! - - def __init__(self, costfunction): - # TODO: Docstring! - self.costfunction = costfunction +class CFAdapterScipyCG(LinearOperator): - def __call__(self, x): - # TODO: Docstring! - return self.costfunction(x) + '''Adapter class making the :class:`~.Costfunction` class accessible for scipy cg methods. - def jac(self, x): - # TODO: Docstring! - return self.costfunction.jac(x) + This class provides an adapter for the :class:`~.Costfunction` to be usable with the + :func:`~.scipy.sparse.linalg.cg` function. the :func:`~.matvec` function is overwritten to + implement a multiplication with the Hessian of the adapted costfunction. This is used in the + :func:`~pyramid.reconstruction.optimice_sparse_cg` function of the + :mod:`~pyramid.reconstruction` module. - def hess_dot(self, x, vector): - # TODO: Docstring! - return self.costfunction.hess_dot(x, vector) + Attributes + ---------- + cost : :class:`~.Costfunction` + :class:`~.Costfunction` class which should be made usable in the + :func:`~.scipy.sparse.linalg.cg` function. + + ''' + + LOG = logging.getLogger(__name__+'.CFAdapterScipyCG') + + def __init__(self, cost): + self.LOG.debug('Calling __init__') + self.cost = cost + + def matvec(self, vector): + '''Matrix-vector multiplication with the Hessian of the adapted costfunction. + + Parameters + ---------- + vector : :class:`~numpy.ndarray` (N=1) + Vector which will be multiplied by the Hessian matrix provided by the adapted + costfunction. + + ''' + self.LOG.debug('Calling matvec') + return self.cost.hess_dot(None, vector) + + @property + def shape(self): + return (3*self.cost.fwd_model.size_3d, 3*self.cost.fwd_model.size_3d) + + @property + def dtype(self): + return np.dtype("d") diff --git a/pyramid/datacollection.py b/pyramid/datacollection.py deleted file mode 100644 index 496173e8a5c424e5a5b72e4eab16394fbe7e12b1..0000000000000000000000000000000000000000 --- a/pyramid/datacollection.py +++ /dev/null @@ -1,102 +0,0 @@ -# -*- coding: utf-8 -*- -"""This module provides the :class:`~.DataCollection` class for the collection of phase maps -and additional data like corresponding projectors.""" - - -import logging - -import numpy as np -from numbers import Number - -from pyramid.phasemap import PhaseMap -from pyramid.projector import Projector - - -class DataCollection(object): - - '''Class for collecting phase maps and corresponding projectors. - - Represents a collection of (e.g. experimentally derived) phase maps, stored as - :class:`~.PhaseMap` objects and corresponding projectors stored as :class:`~.Projector` - objects. At creation, the grid spacing `a` and the dimension `dim_uv` of the projected grid. - Data can be added via the :func:`~.append` method, where a :class:`~.PhaseMap` and a - :class:`~.Projector` have to be given as tuple argument. - - Attributes - ---------- - a: float - The grid spacing in nm. - dim_uv: tuple (N=2) - Dimensions of the projected grid. - phase_maps: - A list of all stored :class:`~.PhaseMap` objects. - projectors: - A list of all stored :class:`~.Projector` objects. - phase_vec: :class:`~numpy.ndarray` (N=1) - The concatenaded, vectorized phase of all ;class:`~.PhaseMap` objects. - - ''' - - @property - def a(self): - return self._a - - @property - def dim_uv(self): - return self._dim_uv - - @property - def phase_vec(self): - return np.concatenate([p.phase_vec for p in self.phase_maps]) - - @property - def phase_maps(self): - return [d[0] for d in self.data] - - @property - def projectors(self): - return [d[1] for d in self.data] - - def __init__(self, a, dim_uv, b_0): - self.log = logging.getLogger(__name__) - assert isinstance(a, Number), 'Grid spacing has to be a number!' - assert a >= 0, 'Grid spacing has to be a positive number!' - self._a = a - assert isinstance(dim_uv, tuple) and len(dim_uv)==2, \ - 'Dimension has to be a tuple of length 2!' - assert np.all([]) - self._dim_uv = dim_uv - self.b_0 = b_0 - self.data = [] - # TODO: make it work -# self.log.info('Created:', str(self)) - - def __repr__(self): - self.log.info('Calling __repr__') - return '%s(a=%r, dim_uv=%r)' % (self.__class__, self.a, self.dim_uv) - - def __str__(self): - self.log.info('Calling __str__') - return 'DataCollection(%s, a=%s, dim_uv=%s, data_count=%s)' % \ - (self.__class__, self.a, self.dim_uv, len(self.data)) - - def append(self, (phase_map, projector)): - '''Appends a data pair of phase map and projection infos to the data collection.` - - Parameters - ---------- - (phase_map, projector): tuple (N=2) - tuple which contains a :class:`~.PhaseMap` object and a :class:`~.Projector` object, - which should be added to the data collection. - - Returns - ------- - None - - ''' - self.log.info('Calling append') - assert isinstance(phase_map, PhaseMap) and isinstance(projector, Projector), \ - 'Argument has to be a tuple of a PhaseMap and a Projector object!' - assert phase_map.dim_uv == self.dim_uv, 'Added phasemap must have the same dimension!' - assert projector.dim_uv == self.dim_uv, 'Projector dimensions must match!' - self.data.append((phase_map, projector)) diff --git a/pyramid/dataset.py b/pyramid/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..4cecfe8494fcc9daee6ee5f6fdfd66a991b8bf7e --- /dev/null +++ b/pyramid/dataset.py @@ -0,0 +1,159 @@ +# -*- coding: utf-8 -*- +"""This module provides the :class:`~.DataSet` class for the collection of phase maps +and additional data like corresponding projectors.""" + + +import numpy as np +from numbers import Number + +import matplotlib.pyplot as plt + +from pyramid.phasemap import PhaseMap +from pyramid.phasemapper import PMConvolve +from pyramid.projector import Projector + +import logging + + +class DataSet(object): + + '''Class for collecting phase maps and corresponding projectors. + + Represents a collection of (e.g. experimentally derived) phase maps, stored as + :class:`~.PhaseMap` objects and corresponding projectors stored as :class:`~.Projector` + objects. At creation, the grid spacing `a` and the dimension `dim_uv` of the projected grid. + Data can be added via the :func:`~.append` method, where a :class:`~.PhaseMap` and a + :class:`~.Projector` have to be given as tuple argument. + + Attributes + ---------- + a: float + The grid spacing in nm. + dim_uv: tuple (N=2) + Dimensions of the projected grid. + phase_maps: + A list of all stored :class:`~.PhaseMap` objects. + projectors: + A list of all stored :class:`~.Projector` objects. + phase_vec: :class:`~numpy.ndarray` (N=1) + The concatenaded, vectorized phase of all ;class:`~.PhaseMap` objects. + + ''' + + LOG = logging.getLogger(__name__+'.DataSet') + + @property + def a(self): + return self._a + + @property + def dim_uv(self): + return self._dim_uv + + @property + def phase_vec(self): + return np.concatenate([p.phase_vec for p in self.phase_maps]) + + @property + def phase_maps(self): + return [d[0] for d in self.data] + + @property + def projectors(self): + return [d[1] for d in self.data] + + def __init__(self, a, dim_uv, b_0): + self.LOG.debug('Calling __init__') + assert isinstance(a, Number), 'Grid spacing has to be a number!' + assert a >= 0, 'Grid spacing has to be a positive number!' + self._a = a + assert isinstance(dim_uv, tuple) and len(dim_uv)==2, \ + 'Dimension has to be a tuple of length 2!' + self._dim_uv = dim_uv + self.b_0 = b_0 + self.data = [] + self.LOG.debug('Created:', str(self)) + + def __repr__(self): + self.LOG.debug('Calling __repr__') + return '%s(a=%r, dim_uv=%r, b_0=%r)' % (self.__class__, self.a, self.dim_uv, self.b_0) + + def __str__(self): + self.LOG.debug('Calling __str__') + return 'DataSet(a=%s, dim_uv=%s, b_0=%s)' % (self.a, self.dim_uv, self.b_0) + + def append(self, (phase_map, projector)): + '''Appends a data pair of phase map and projection infos to the data collection.` + + Parameters + ---------- + (phase_map, projector): tuple (N=2) + tuple which contains a :class:`~.PhaseMap` object and a :class:`~.Projector` object, + which should be added to the data collection. + + Returns + ------- + None + + ''' + self.LOG.debug('Calling append') + assert isinstance(phase_map, PhaseMap) and isinstance(projector, Projector), \ + 'Argument has to be a tuple of a PhaseMap and a Projector object!' + assert phase_map.dim_uv == self.dim_uv, 'Added phasemap must have the same dimension!' + assert projector.dim_uv == self.dim_uv, 'Projector dimensions must match!' + self.data.append((phase_map, projector)) + + def display(self, phase_maps=None, title='Phase Map', cmap='RdBu', limit=None, norm=None): + '''Display all phasemaps saved in the :class:`~.DataSet` as a colormesh. + + Parameters + ---------- + phase_maps : list of :class:`~.PhaseMap`, optional + List of phase_maps to display with annotations from the projectors. If none are + given, the phase_maps in the dataset are used (which is the default behaviour). + title : string, optional + The main part of the title of the plots. The default is 'Phase Map'. Additional + projector info is appended to this. + cmap : string, optional + The :class:`~matplotlib.colors.Colormap` which is used for the plots as a string. + The default is 'RdBu'. + limit : float, optional + Plotlimit for the phase in both negative and positive direction (symmetric around 0). + If not specified, the maximum amplitude of the phase is used. + norm : :class:`~matplotlib.colors.Normalize` or subclass, optional + Norm, which is used to determine the colors to encode the phase information. + If not specified, :class:`~matplotlib.colors.Normalize` is automatically used. + + Returns + ------- + None + + ''' + self.LOG.debug('Calling display') + if phase_maps is None: + phase_maps = self.phase_maps + [phase_map.display_phase('{} ({})'.format(title, self.projectors[i].get_info()), + cmap, limit, norm) + for (i, phase_map) in enumerate(self.phase_maps)] + plt.show() + + def create_phase_maps(self, mag_data): + '''Create a list of phasemaps with the projectors in the dataset for a given + :class:`~.MagData` object. + + Parameters + ---------- + mag_data : :class:`~.MagData` + Magnetic distribution to which the projectors of the dataset should be applied. + + Returns + ------- + phase_maps : list of :class:`~.phasemap.PhaseMap` + A list of the phase_maps resulting from the projections specified in the dataset. + + Notes + ----- + For the phasemapping, the :class:`~.PMConvolve` class is used. + + ''' + return [PMConvolve(self.a, proj, self.b_0)(mag_data) for proj in self.projectors] diff --git a/pyramid/forwardmodel.py b/pyramid/forwardmodel.py index 44694ccc0b43e978c98c850426ee82155f92ad2e..0dae0591ac17d781132b8d82476df81693b06b2f 100644 --- a/pyramid/forwardmodel.py +++ b/pyramid/forwardmodel.py @@ -1,9 +1,6 @@ # -*- coding: utf-8 -*- -""" -Created on Mon Jan 06 14:02:18 2014 - -@author: Jan -""" +"""This module provides the :class:`~.ForwardModel` class which represents a strategy to map a +threedimensional magnetization distribution onto a two-dimensional phase map.""" import numpy as np @@ -11,8 +8,40 @@ import numpy as np from pyramid.kernel import Kernel from pyramid.projector import Projector +import logging + + class ForwardModel: - # TODO: Docstring! + + '''Class for mapping 3D magnetic distributions to 2D phase maps. + + Represents a strategy for the mapping of a 3D magnetic distribution to two-dimensional + phase maps. Can handle a list of `projectors` of :class:`~.Projector` objects, which describe + different projection angles, so many phase_maps can be created from one magnetic distribution. + + Attributes + ---------- + projectors : list of :class:`~.Projector` + A list of all :class:`~.Projector` objects representing the projection directions. + kernel : :class:`~.Kernel` + A kernel which describes the phasemapping of the 2D projected magnetization distribution. + a : float + The grid spacing in nm. Will be extracted from the `kernel`. + dim : tuple (N=3) + Dimensions of the 3D magnetic distribution. Is extracted from the first projector of the + `projectors` list. + dim_uv: tuple (N=2) + Dimensions of the projected grid. Is extracted from the `kernel`. + size_3d : int + Number of voxels of the 3-dimensional grid. Is extracted from the first projector of the + `projectors` list. Is extracted from the first projector of the `projectors` list. + size_2d : int + Number of pixels of the 2-dimensional projected grid. Is extracted from the first projector + of the `projectors` list. Is extracted from the first projector of the `projectors` list. + + ''' + + LOG = logging.getLogger(__name__+'.ForwardModel') @property def projectors(self): @@ -34,40 +63,80 @@ class ForwardModel: self._kernel = kernel def __init__(self, projectors, kernel): - # TODO: Docstring! + self.LOG.debug('Calling __init__') self.kernel = kernel self.a = kernel.a - self.dim_uv = kernel.dim_uv self.projectors = projectors + self.dim = self.projectors[0].dim + self.dim_uv = kernel.dim_uv + self.size_2d = self.projectors[0].size_2d + self.size_3d = self.projectors[0].size_3d + self.LOG.debug('Creating '+str(self)) def __call__(self, x): - # TODO: Docstring! -# print 'FWD Model - __call__ - input: ', len(x) + self.LOG.debug('Calling __call__') + result = [self.kernel(projector(x)) for projector in self.projectors] + return np.reshape(result, -1) + + def jac_dot(self, x, vector): + '''Calculate the product of the Jacobi matrix with a given `vector`. + + Parameters + ---------- + x : :class:`~numpy.ndarray` (N=1) + Evaluation point of the jacobi-matrix. The Jacobi matrix is constant for a linear + problem, thus `x` can be set to None (it is not used int the computation). It is + implemented for the case that in the future nonlinear problems have to be solved. + vector : :class:`~numpy.ndarray` (N=1) + Vectorized form of the 3D magnetization distribution. First the `x`, then the `y` and + lastly the `z` components are listed. + + Returns + ------- + result_vector : :class:`~numpy.ndarray` (N=1) + Product of the Jacobi matrix (which is not explicitely calculated) with the input + `vector`. + + ''' + self.LOG.debug('Calling jac_dot') result = [self.kernel.jac_dot(projector.jac_dot(x)) for projector in self.projectors] result = np.reshape(result, -1) -# print 'FWD Model - __call__ - output:', len(result) return result - - # TODO: jac_dot ausschreiben!!! - - def jac_dot(self, x, vector): - # TODO: Docstring! multiplication with the jacobi-matrix (may depend on x) -# print 'FWD Model - jac_dot - input: ', len(vector) result = self(vector) -# print 'FWD Model - jac_dot - output:', len(result) - return result # The jacobi-matrix does not depend on x in a linear problem - + return result + def jac_T_dot(self, x, vector): - # TODO: Docstring! multiplication with the jacobi-matrix (may depend on x) - # The jacobi-matrix does not depend on x in a linear problem -# print 'FWD Model - jac_T_dot - input: ', len(vector) + ''''Calculate the product of the transposed Jacobi matrix with a given `vector`. + + Parameters + ---------- + x : :class:`~numpy.ndarray` (N=1) + Evaluation point of the jacobi-matrix. The jacobi matrix is constant for a linear + problem, thus `x` can be set to None (it is not used int the computation). Is used + for the case that in the future nonlinear problems have to be solved. + vector : :class:`~numpy.ndarray` (N=1) + Vectorized form of all 2D phase maps one after another in one vector. + + Returns + ------- + result_vector : :class:`~numpy.ndarray` (N=1) + Product of the transposed Jacobi matrix (which is not explicitely calculated) with + the input `vector`. + + ''' + self.LOG.debug('Calling jac_T_dot') size_3d = self.projectors[0].size_3d size_2d = np.prod(self.dim_uv) result = np.zeros(3*size_3d) for (i, projector) in enumerate(self.projectors): result += projector.jac_T_dot(self.kernel.jac_T_dot(vector[i*size_2d:(i+1)*size_2d])) -# result = [projector.jac_T_dot(self.kernel.jac_T_dot(vector[i*size_2d:(i+1)*size_2d])) -# for (i, projector) in enumerate(self.projectors)] - result = np.reshape(result, -1) -# print 'FWD Model - jac_T_dot - output:', len(result) - return result + return np.reshape(result, -1) + + def __repr__(self): + self.LOG.debug('Calling __repr__') + return '%s(projectors=%r, kernel=%r)' % (self.__class__, self.projectors, self.kernel) + + def __str__(self): + self.LOG.debug('Calling __str__') + return 'ForwardModel(%s -> %s, %s projections, kernel=%s)' % \ + (self.dim, self.dim_uv, len(self.projectors), self.kernel) diff --git a/pyramid/kernel.py b/pyramid/kernel.py index 00752a9f5cf98fe212f50204d0d325e89febe6ef..8c0859c1266ed4251eab78079ad644e956f9b308 100644 --- a/pyramid/kernel.py +++ b/pyramid/kernel.py @@ -3,58 +3,40 @@ single magnetized pixel.""" -import logging - import numpy as np import pyramid.numcore.kernel_core as core +import logging + PHI_0 = -2067.83 # magnetic flux in T*nm² -# TODO: sign? class Kernel(object): '''Class for calculating kernel matrices for the phase calculation. - - - - This module provides the :class:`~.Kernel` class whose instances can be used to calculate and - store the kernel matrix representing the phase of a single pixel for the convolution used in the - phase calculation. The phasemap of a single pixel for two orthogonal directions (`u` and `v`) are - stored seperately as 2-dimensional matrices. The Jacobi matrix of the phasemapping just depends - on the kernel and can be calculated via the :func:`~.get_jacobi` function. Storing the Jacobi - matrix uses much memory, thus it is also possible to directly get the multiplication of a given - vector with the (transposed) Jacobi matrix without explicit calculation of the latter. - It is possible to load data from and save them to NetCDF4 files. See :class:`~.Kernel` for further - information. - Represents the phase of a single magnetized pixel for two orthogonal directions (`u` and `v`), which can be accessed via the corresponding attributes. The default elementary geometry is `disc`, but can also be specified as the phase of a `slab` representation of a single magnetized pixel. During the construction, a few attributes are calculated that are used in - the convolution during phase calculation. - - - An instance `kernel` of the :class:`~.Kernel` class is callable via: - - .. :function:: kernel(vector) - - do stuff - - :param str sender: do other stuff - :return: nix - - with `vector` being a :class:`~numpy.ndarray` (N=1). + the convolution during phase calculation in the different :class:`~Phasemapper` classes. + An instance of the :class:`~.Kernel` class can be called as a function with a `vector`, + which represents the projected magnetization onto a 2-dimensional grid. Attributes ---------- - dim_uv : tuple (N=2) - Dimensions of the projected magnetization grid. a : float The grid spacing in nm. + dim_uv : tuple of int (N=2) + Dimensions of the 2-dimensional projected magnetization grid from which the phase should + be calculated. + b_0 : float, optional + Saturation magnetization in Tesla, which is used for the phase calculation. Default is 1. + numcore : boolean, optional + Boolean choosing if Cython enhanced routines from the :module:`~.pyramid.numcore` module + should be used. Default is True. geometry : {'disc', 'slab'}, optional The elementary geometry of the single magnetized pixel. u : :class:`~numpy.ndarray` (N=3) @@ -65,7 +47,7 @@ class Kernel(object): The real FFT of the phase contribution of one pixel magnetized in u-direction. v_fft : :class:`~numpy.ndarray` (N=3) The real FFT of the phase contribution of one pixel magnetized in v-direction. - dim_fft : tuple (N=2) + dim_fft : tuple of int (N=2) Dimensions of the grid, which is used for the FFT. Calculated by adding the dimensions `dim_uv` of the magnetization grid and the dimensions of the kernel (given by ``2*dim_uv-1``) @@ -74,23 +56,12 @@ class Kernel(object): A tuple of :class:`slice` objects to extract the original field of view from the increased size (`size_fft`) of the grid for the FFT-convolution. - '''# TODO: Can be used for several PhaseMappers via the fft arguments or via calling! - - def __init__(self, a, dim_uv, b_0=1., numcore=True, geometry='disc'): - '''Constructor for a :class:`~.Kernel` object for representing a kernel matrix. + ''' - Parameters - ---------- - a : float - The grid spacing in nm. - dim_uv : tuple (N=2) - Dimensions of the projected magnetization grid. - geometry : {'disc', 'slab'}, optional - The elementary geometry of the single magnetized pixel. - - ''' # TODO: Docstring - self.log = logging.getLogger(__name__) - self.log.info('Calling __init__') + LOG = logging.getLogger(__name__+'.Kernel') + + def __init__(self, a, dim_uv, b_0=1., numcore=True, geometry='disc'): + self.LOG.debug('Calling __init__') # Function for the phase of an elementary geometry: def get_elementary_phase(geometry, n, m, a): if geometry == 'disc': @@ -104,7 +75,7 @@ class Kernel(object): return 0.5 * (F_a(n-0.5, m-0.5) - F_a(n+0.5, m-0.5) - F_a(n-0.5, m+0.5) + F_a(n+0.5, m+0.5)) # Set basic properties: - self.dim_uv = dim_uv # !!! size of the FOV, not the kernel (kernel is bigger)! + self.dim_uv = dim_uv # Size of the FOV, not the kernel (kernel is bigger)! self.a = a self.numcore = numcore self.geometry = geometry @@ -122,39 +93,30 @@ class Kernel(object): self.slice_fft = (slice(dim_uv[0]-1, 2*dim_uv[0]-1), slice(dim_uv[1]-1, 2*dim_uv[1]-1)) self.u_fft = np.fft.rfftn(self.u, self.dim_fft) self.v_fft = np.fft.rfftn(self.v, self.dim_fft) - self.log.info('Created '+str(self)) - - def __call__(self, x): - '''Test''' - self.log.info('Calling __call__') -# print 'Kernel - __call__:', len(x) - if self.numcore: - return self._multiply_jacobi_core(x) + if numcore: + self.LOG.debug('numcore activated') + self._multiply_jacobi_method = self._multiply_jacobi_core else: - return self._multiply_jacobi(x) - # TODO: Bei __init__ variable auf die entsprechende Funktion setzen. + self._multiply_jacobi_method = self._multiply_jacobi + self.LOG.debug('Created '+str(self)) + def __repr__(self): - self.log.info('Calling __repr__') + self.LOG.debug('Calling __repr__') return '%s(a=%r, dim_uv=%r, numcore=%r, geometry=%r)' % \ (self.__class__, self.a, self.dim_uv, self.numcore, self.geometry) - def jac_dot(self, vector): - '''TEST'''# TODO: Docstring - self.log.info('Calling jac_dot') -# print 'Kernel - jac_dot:', len(vector) - if self.numcore: - return self._multiply_jacobi_core(vector) - else: - return self._multiply_jacobi(vector) + def __str__(self): + self.LOG.debug('Calling __str__') + return 'Kernel(a=%s, dim_uv=%s, numcore=%s, geometry=%s)' % \ + (self.a, self.dim_uv, self.numcore, self.geometry) - def jac_T_dot(self, vector): - # TODO: Docstring - self.log.info('Calling jac_dot_T') -# print 'Kernel - jac_T_dot:', len(vector) - return self._multiply_jacobi_T(vector) + def __call__(self, x): + '''Test''' + self.LOG.debug('Calling __call__') + return self._multiply_jacobi_method(x) - def _multiply_jacobi(self, vector): + def jac_dot(self, vector): '''Calculate the product of the Jacobi matrix with a given `vector`. Parameters @@ -163,14 +125,38 @@ class Kernel(object): Vectorized form of the magnetization in `u`- and `v`-direction of every pixel (row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next ``N**2`` elements to the `v`-component of the magnetization. - + Returns ------- result : :class:`~numpy.ndarray` (N=1) Product of the Jacobi matrix (which is not explicitely calculated) with the vector. - '''# TODO: move! - self.log.info('Calling _multiply_jacobi') + ''' + self.LOG.debug('Calling jac_dot') + return self._multiply_jacobi_method(vector) + + def jac_T_dot(self, vector): + '''Calculate the product of the transposed Jacobi matrix with a given `vector`. + + Parameters + ---------- + vector : :class:`~numpy.ndarray` (N=1) + Vectorized form of the magnetization in `u`- and `v`-direction of every pixel + (row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next + ``N**2`` elements to the `v`-component of the magnetization. + + Returns + ------- + result : :class:`~numpy.ndarray` (N=1) + Product of the transposed Jacobi matrix (which is not explicitely calculated) with + the vector. + + ''' + self.LOG.debug('Calling jac_dot_T') + return self._multiply_jacobi_T(vector) + + def _multiply_jacobi(self, vector): + self.LOG.debug('Calling _multiply_jacobi') v_dim, u_dim = self.dim_uv size = np.prod(self.dim_uv) assert len(vector) == 2*size, 'vector size not compatible!' @@ -187,26 +173,11 @@ class Kernel(object): return result def _multiply_jacobi_T(self, vector): - '''Calculate the product of the transposed Jacobi matrix with a given `vector`. - - Parameters - ---------- - vector : :class:`~numpy.ndarray` (N=1) - Vectorized form of the magnetization in `u`- and `v`-direction of every pixel - (row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next - ``N**2`` elements to the `v`-component of the magnetization. - - Returns - ------- - result : :class:`~numpy.ndarray` (N=1) - Product of the transposed Jacobi matrix (which is not explicitely calculated) with - the vector. - - '''# TODO: move! - self.log.info('Calling _multiply_jacobi_T') + self.LOG.debug('Calling _multiply_jacobi_T') v_dim, u_dim = self.dim_uv size = np.prod(self.dim_uv) - assert len(vector) == size, 'vector size not compatible! vector: {}, size: {}'.format(len(vector),size) + assert len(vector) == size, \ + 'vector size not compatible! vector: {}, size: {}'.format(len(vector),size) result = np.zeros(2*size) for s in range(size): # row-wise (two rows at a time, u- and v-component) i = s % u_dim @@ -220,7 +191,7 @@ class Kernel(object): return result def _multiply_jacobi_core(self, vector): - self.log.info('Calling _multiply_jacobi_core') + self.LOG.debug('Calling _multiply_jacobi_core') result = np.zeros(np.prod(self.dim_uv)) core.multiply_jacobi_core(self.dim_uv[0], self.dim_uv[1], self.u, self.v, vector, result) return result diff --git a/pyramid/logfile.log b/pyramid/logfile.log deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/pyramid/logging.ini b/pyramid/logging.ini index 266c37587b5288c8d796dfc92c4025f405264fba..d206f57ccc7f98b5126ac8c0a0de078be16a8a49 100644 --- a/pyramid/logging.ini +++ b/pyramid/logging.ini @@ -23,7 +23,7 @@ args=tuple() [handler_file] class=logging.FileHandler -level=INFO +level=DEBUG formatter=file args=('logfile.log', 'w') diff --git a/pyramid/magcreator.py b/pyramid/magcreator.py index 82623a1888ecce67d9b1b551502e9777f1187311..5608b72eab95a047a3104fbc2648c47d8ffb186a 100644 --- a/pyramid/magcreator.py +++ b/pyramid/magcreator.py @@ -13,14 +13,20 @@ center. """ - import numpy as np from numpy import pi +import abc + +import logging + + +LOG = logging.getLogger(__name__) + class Shapes(object): - '''Class containing functions for generating magnetic shapes. + '''Abstract class containing functions for generating magnetic shapes. The :class:`~.Shapes` class is a collection of some methods that return a 3-dimensional matrix that represents the magnetized volume and consists of values between 0 and 1. @@ -28,7 +34,9 @@ class Shapes(object): :class:`~pyramid.magdata.MagData` objects which store the magnetic informations. ''' - #TODO: Abstract class (test if this works!) + + __metaclass__ = abc.ABCMeta + LOG = logging.getLogger(__name__+'.Shapes') @classmethod def slab(cls, dim, center, width): @@ -49,6 +57,7 @@ class Shapes(object): The magnetic shape as a 3D-array with values between 1 and 0. ''' + cls.LOG.debug('Calling slab') assert np.shape(dim) == (3,), 'Parameter dim has to be a tuple of length 3!' assert np.shape(center) == (3,), 'Parameter center has to be a tuple of length 3!' assert np.shape(width) == (3,), 'Parameter width has to be a tuple of length 3!' @@ -83,11 +92,12 @@ class Shapes(object): The magnetic shape as a 3D-array with values between 1 and 0. ''' + cls.LOG.debug('Calling disc') assert np.shape(dim) == (3,), 'Parameter dim has to be a a tuple of length 3!' assert np.shape(center) == (3,), 'Parameter center has to be a a tuple of length 3!' assert radius > 0 and np.shape(radius) == (), 'Radius has to be a positive scalar value!' assert height > 0 and np.shape(height) == (), 'Height has to be a positive scalar value!' - assert axis == 'z' or axis == 'y' or axis == 'x', 'Axis has to be x, y or z (as a string)!' + assert axis in {'z', 'y', 'x'}, 'Axis has to be x, y or z (as a string)!' if axis == 'z': mag_shape = np.array([[[np.hypot(x - center[2], y - center[1]) <= radius and abs(z - center[0]) <= height / 2 @@ -108,6 +118,58 @@ class Shapes(object): for z in range(dim[0])]) return mag_shape + @classmethod + def ellipse(cls, dim, center, width, height, axis='z'): + '''Create the shape of an elliptical cylinder in x-, y-, or z-direction. + + Parameters + ---------- + dim : tuple (N=3) + The dimensions of the grid `(z, y, x)`. + center : tuple (N=3) + The center of the ellipse in pixel coordinates `(z, y, x)`. + width : tuple (N=2) + Length of the two axes of the ellipse. + height : float + The height of the ellipse in pixel coordinates. + axis : {'z', 'y', 'x'}, optional + The orientation of the ellipse axis. The default is 'z'. + + Returns + ------- + mag_shape : :class:`~numpy.ndarray` (N=3) + The magnetic shape as a 3D-array with values between 1 and 0. + + ''' + cls.LOG.debug('Calling ellipse') + assert np.shape(dim) == (3,), 'Parameter dim has to be a a tuple of length 3!' + assert np.shape(center) == (3,), 'Parameter center has to be a a tuple of length 3!' + assert np.shape(width) == (2,), 'Parameter width has to be a a tuple of length 2!' + assert height > 0 and np.shape(height) == (), 'Height has to be a positive scalar value!' + assert axis in {'z', 'y', 'x'}, 'Axis has to be x, y or z (as a string)!' + if axis == 'z': + mag_shape = np.array([[[np.hypot((x-center[2])/(width[1]/2.), + (y-center[1])/(width[0]/2.))<=1 + and abs(z - center[0]) <= height / 2 + for x in range(dim[2])] + for y in range(dim[1])] + for z in range(dim[0])]) + elif axis == 'y': + mag_shape = np.array([[[np.hypot((x-center[2])/(width[1]/2.), + (z-center[0])/(width[0]/2.))<=1 + and abs(y-center[1]) <= height / 2 + for x in range(dim[2])] + for y in range(dim[1])] + for z in range(dim[0])]) + elif axis == 'x': + mag_shape = np.array([[[np.hypot((y-center[1])/(width[1]/2.), + (z-center[0])/(width[0]/2.))<=1 + and abs(z - center[0]) <= height / 2 + for x in range(dim[2])] + for y in range(dim[1])] + for z in range(dim[0])]) + return mag_shape + @classmethod def sphere(cls, dim, center, radius): '''Create the shape of a sphere. @@ -127,6 +189,7 @@ class Shapes(object): The magnetic shape as a 3D-array with values between 1 and 0. ''' + cls.LOG.debug('Calling sphere') assert np.shape(dim) == (3,), 'Parameter dim has to be a a tuple of length 3!' assert np.shape(center) == (3,), 'Parameter center has to be a a tuple of length 3!' assert radius > 0 and np.shape(radius) == (), 'Radius has to be a positive scalar value!' @@ -147,7 +210,7 @@ class Shapes(object): dim : tuple (N=3) The dimensions of the grid `(z, y, x)`. center : tuple (N=3) - The center of the sphere in pixel coordinates `(z, y, x)`. + The center of the ellipsoid in pixel coordinates `(z, y, x)`. width : tuple (N=3) The width of the ellipsoid `(z, y, x)`. @@ -157,6 +220,7 @@ class Shapes(object): The magnetic shape as a 3D-array with values between 1 and 0. ''' + cls.LOG.debug('Calling ellipsoid') assert np.shape(dim) == (3,), 'Parameter dim has to be a a tuple of length 3!' assert np.shape(center) == (3,), 'Parameter center has to be a a tuple of length 3!' assert np.shape(width) == (3,), 'Parameter width has to be a a tuple of length 3!' @@ -189,9 +253,10 @@ class Shapes(object): The magnetic shape as a 3D-array with values between 1 and 0. ''' + cls.LOG.debug('Calling filament') assert np.shape(dim) == (3,), 'Parameter dim has to be a tuple of length 3!' assert np.shape(pos) == (2,), 'Parameter pos has to be a tuple of length 2!' - assert axis == 'z' or axis == 'y' or axis == 'x', 'Axis has to be x, y or z (as a string)!' + assert axis in {'z', 'y', 'x'}, 'Axis has to be x, y or z (as a string)!' mag_shape = np.zeros(dim) if axis == 'z': mag_shape[:, pos[0], pos[1]] = 1 @@ -218,6 +283,7 @@ class Shapes(object): The magnetic shape as a 3D-array with values between 1 and 0. ''' + cls.LOG.debug('Calling pixel') assert np.shape(dim) == (3,), 'Parameter dim has to be a tuple of length 3!' assert np.shape(pixel) == (3,), 'Parameter pixel has to be a tuple of length 3!' mag_shape = np.zeros(dim) @@ -226,7 +292,7 @@ class Shapes(object): def create_mag_dist_homog(mag_shape, phi, theta=pi/2, magnitude=1): - '''Create a 3-dimensional magnetic distribution of a homogeneous magnetized object. + '''Create a 3-dimensional magnetic distribution of a homogeneously magnetized object. Parameters ---------- @@ -247,15 +313,16 @@ def create_mag_dist_homog(mag_shape, phi, theta=pi/2, magnitude=1): `x`-, `y`- and `z`-direction on the 3-dimensional grid. ''' + LOG.debug('Calling create_mag_dist_homog') dim = np.shape(mag_shape) assert len(dim) == 3, 'Magnetic shapes must describe 3-dimensional distributions!' z_mag = np.ones(dim) * np.cos(theta) * mag_shape * magnitude y_mag = np.ones(dim) * np.sin(theta) * np.sin(phi) * mag_shape * magnitude x_mag = np.ones(dim) * np.sin(theta) * np.cos(phi) * mag_shape * magnitude - return np.array([x_mag, y_mag, z_mag]) # TODO: Better implementation! + return np.array([x_mag, y_mag, z_mag]) -def create_mag_dist_vortex(mag_shape, center=None, magnitude=1): +def create_mag_dist_vortex(mag_shape, center=None, axis='z', magnitude=1): '''Create a 3-dimensional magnetic distribution of a homogeneous magnetized object. Parameters @@ -263,12 +330,14 @@ def create_mag_dist_vortex(mag_shape, center=None, magnitude=1): mag_shape : :class:`~numpy.ndarray` (N=3) The magnetic shapes (see :class:`.~Shapes` for examples). center : tuple (N=2 or N=3), optional - The vortex center, given in 2D `(x, y)` or 3D `(x, y, z)`, where `z` is discarded. - Is set to the center of the field of view if not specified. - Vortex center has to be between two pixels. + The vortex center, given in 2D `(v, u)` or 3D `(z, y, x)`, where the perpendicular axis + is is discarded. Is set to the center of the field of view if not specified. The vortex + center has to be between two pixels. magnitude : float, optional - The relative magnitude for the magnetic shape. The default is 1. - + The relative magnitude for the magnetic shape. The default is 1. Negative signs reverse + the vortex direction (left-handed instead of right-handed). + axis : {'z', 'y', 'x'}, optional + The orientation of the vortex axis. The default is 'z'. Returns ------- magnitude : tuple (N=3) of :class:`~numpy.ndarray` (N=3) @@ -276,18 +345,45 @@ def create_mag_dist_vortex(mag_shape, center=None, magnitude=1): `x`-, `y`- and `z`-direction on the 3-dimensional grid. ''' + LOG.debug('Calling create_mag_dist_vortex') dim = np.shape(mag_shape) assert len(dim) == 3, 'Magnetic shapes must describe 3-dimensional distributions!' + assert axis in {'z', 'y', 'x'}, 'Axis has to be x, y or z (as a string)!' + assert center is None or len(center) in {2, 3}, \ + 'Vortex center has to be defined in 3D or 2D or not at all!' if center is None: center = (int(dim[1]/2)-0.5, int(dim[2]/2)-0.5) # center has to be between (!) two pixels - if len(center) == 3: # if a 3D-center is given, just take the x and y components - center = (center[1], center[2]) - assert len(center) == 2, 'Vortex center has to be defined in 3D or 2D or not at all!' - x = np.linspace(-center[1], dim[2]-1-center[1], dim[2]) - y = np.linspace(-center[0], dim[1]-1-center[0], dim[1]) - xx, yy = np.meshgrid(x, y) - phi = np.arctan2(yy, xx) - pi/2 - z_mag = np.zeros(dim) - y_mag = -np.ones(dim) * np.sin(phi) * mag_shape * magnitude - x_mag = -np.ones(dim) * np.cos(phi) * mag_shape * magnitude - return np.array([x_mag, y_mag, z_mag]) # TODO: Better implementation! + if axis == 'z': + if len(center) == 3: # if a 3D-center is given, just take the x and y components + center = (center[1], center[2]) + u = np.linspace(-center[1], dim[2]-1-center[1], dim[2]) + v = np.linspace(-center[0], dim[1]-1-center[0], dim[1]) + uu, vv = np.meshgrid(u, v) + phi = np.expand_dims(np.arctan2(vv, uu)-pi/2, axis=0) + phi = np.tile(phi, (dim[0], 1, 1)) + z_mag = np.zeros(dim) + y_mag = -np.ones(dim) * np.sin(phi) * mag_shape * magnitude + x_mag = -np.ones(dim) * np.cos(phi) * mag_shape * magnitude + elif axis == 'y': + if len(center) == 3: # if a 3D-center is given, just take the x and z components + center = (center[0], center[2]) + u = np.linspace(-center[1], dim[2]-1-center[1], dim[2]) + v = np.linspace(-center[0], dim[0]-1-center[0], dim[0]) + uu, vv = np.meshgrid(u, v) + phi = np.expand_dims(np.arctan2(vv, uu)-pi/2, axis=1) + phi = np.tile(phi, (1, dim[1], 1)) + z_mag = np.ones(dim) * np.sin(phi) * mag_shape * magnitude + y_mag = np.zeros(dim) + x_mag = np.ones(dim) * np.cos(phi) * mag_shape * magnitude + elif axis == 'x': + if len(center) == 3: # if a 3D-center is given, just take the z and y components + center = (center[0], center[1]) + u = np.linspace(-center[1], dim[1]-1-center[1], dim[1]) + v = np.linspace(-center[0], dim[0]-1-center[0], dim[0]) + uu, vv = np.meshgrid(u, v) + phi = np.expand_dims(np.arctan2(vv, uu)-pi/2, axis=2) + phi = np.tile(phi, (1, 1, dim[2])) + z_mag = -np.ones(dim) * np.sin(phi) * mag_shape * magnitude + y_mag = -np.ones(dim) * np.cos(phi) * mag_shape * magnitude + x_mag = np.zeros(dim) + return np.array([x_mag, y_mag, z_mag]) diff --git a/pyramid/magdata.py b/pyramid/magdata.py index 0dc7044b92183182a680aeb5c9d6ce32852c8163..d51ed6e894d1a31f27285843287d2c1c82bf0b37 100644 --- a/pyramid/magdata.py +++ b/pyramid/magdata.py @@ -2,7 +2,6 @@ """This module provides the :class:`~.MagData` class for storing of magnetization data.""" -import logging import numpy as np from scipy.ndimage.interpolation import zoom @@ -14,6 +13,8 @@ from numbers import Number import netCDF4 +import logging + class MagData(object): @@ -21,7 +22,7 @@ class MagData(object): Represents 3-dimensional magnetic distributions with 3 components which are stored as a 2-dimensional numpy array in `magnitude`, but which can also be accessed as a vector via - `mag_vec`. :class:`~.MagData` objects support negation, arithmetic operators + `mag_vec`. :class:`~.MagData` objects support negation, arithmetic operators (``+``, ``-``, ``*``) and their augmented counterparts (``+=``, ``-=``, ``*=``), with numbers and other :class:`~.MagData` objects, if their dimensions and grid spacings match. It is possible to load data from NetCDF4 or LLG (.txt) files or to save the data in these formats. @@ -40,9 +41,9 @@ class MagData(object): Vector containing the magnetic distribution. ''' - - log = logging.getLogger() - + + LOG = logging.getLogger(__name__+'.MagData') + @property def a(self): return self._a @@ -51,8 +52,8 @@ class MagData(object): def a(self, a): assert isinstance(a, Number), 'Grid spacing has to be a number!' assert a >= 0, 'Grid spacing has to be a positive number!' - self._a = a - + self._a = float(a) + @property def dim(self): return self._dim @@ -68,7 +69,7 @@ class MagData(object): assert magnitude.shape[0] == 3, 'First dimension of the magnitude has to be 3!' self._magnitude = magnitude self._dim = magnitude.shape[1:] - + @property def mag_vec(self): return np.reshape(self.magnitude, -1) @@ -80,80 +81,70 @@ class MagData(object): self.magnitude = mag_vec.reshape((3,)+self.dim) def __init__(self, a, magnitude): - self.log = logging.getLogger(__name__) - self.log.info('Calling __init__') + self.LOG.debug('Calling __init__') self.a = a - self.magnitude = magnitude - self.log.info('Created '+str(self)) - - def __getstate__(self): - d = dict(self.__dict__) - del d['log'] - return d - - def __setstate__(self, d): - self.__dict__.update(d) - self.log = logging.getLogger(__name__) + self.magnitude = magnitude + self.LOG.debug('Created '+str(self)) def __repr__(self): - self.log.info('Calling __repr__') + self.LOG.debug('Calling __repr__') return '%s(a=%r, magnitude=%r)' % (self.__class__, self.a, self.magnitude) def __str__(self): - self.log.info('Calling __str__') + self.LOG.debug('Calling __str__') return 'MagData(a=%s, dim=%s)' % (self.a, self.dim) def __neg__(self): # -self - self.log.info('Calling __neg__') + self.LOG.debug('Calling __neg__') return MagData(self.a, -self.magnitude) - + def __add__(self, other): # self + other - self.log.info('Calling __add__') + self.LOG.debug('Calling __add__') assert isinstance(other, (MagData, Number)), \ 'Only MagData objects and scalar numbers (as offsets) can be added/subtracted!' if isinstance(other, MagData): - self.log.info('Adding two MagData objects') + self.LOG.debug('Adding two MagData objects') assert other.a == self.a, 'Added phase has to have the same grid spacing!' assert other.magnitude.shape == (3,)+self.dim, \ 'Added magnitude has to have the same dimensions!' return MagData(self.a, self.magnitude+other.magnitude) else: # other is a Number - self.log.info('Adding an offset') + self.LOG.debug('Adding an offset') return MagData(self.a, self.magnitude+other) def __sub__(self, other): # self - other - self.log.info('Calling __sub__') + self.LOG.debug('Calling __sub__') return self.__add__(-other) def __mul__(self, other): # self * other - self.log.info('Calling __mul__') + self.LOG.debug('Calling __mul__') assert isinstance(other, Number), 'MagData objects can only be multiplied by numbers!' return MagData(self.a, other*self.magnitude) def __radd__(self, other): # other + self - self.log.info('Calling __radd__') + self.LOG.debug('Calling __radd__') return self.__add__(other) def __rsub__(self, other): # other - self - self.log.info('Calling __rsub__') + self.LOG.debug('Calling __rsub__') return -self.__sub__(other) def __rmul__(self, other): # other * self - self.log.info('Calling __rmul__') + self.LOG.debug('Calling __rmul__') return self.__mul__(other) - + def __iadd__(self, other): # self += other - self.log.info('Calling __iadd__') + self.LOG.debug('Calling __iadd__') return self.__add__(other) def __isub__(self, other): # self -= other - self.log.info('Calling __isub__') + self.LOG.debug('Calling __isub__') return self.__sub__(other) def __imul__(self, other): # self *= other - self.log.info('Calling __imul__') + self.LOG.debug('Calling __imul__') return self.__mul__(other) - + def copy(self): '''Returns a copy of the :class:`~.MagData` object @@ -167,7 +158,7 @@ class MagData(object): A copy of the :class:`~.MagData`. ''' - self.log.info('Calling copy7') + self.LOG.debug('Calling copy') return MagData(self.a, self.magnitude.copy()) def scale_down(self, n=1): @@ -188,7 +179,7 @@ class MagData(object): Only possible, if each axis length is a power of 2! ''' - self.log.info('Calling scale_down') + self.LOG.debug('Calling scale_down') assert n > 0 and isinstance(n, (int, long)), 'n must be a positive integer!' assert np.all([d % 2**n == 0 for d in self.dim]), 'Dimensions must a multiples of 2!' self.a = self.a * 2**n @@ -196,11 +187,29 @@ class MagData(object): # Create coarser grid for the magnetization: self.magnitude = self.magnitude.reshape( 3, self.dim[0]/2, 2, self.dim[1]/2, 2, self.dim[2]/2, 2).mean(axis=(6, 4, 2)) - + def scale_up(self, n=1, order=0): - # TODO: Docstring! - self.log.info('Calling scale_up') + '''Scale up the magnetic distribution using spline interpolation of the requested order. + + Parameters + ---------- + n : int, optional + Power of 2 with which the grid is scaled. Default is 1, which means every axis is + increased by a factor of ``2**1 = 2``. + order : int, optional + The order of the spline interpolation, which has to be in the range between 0 and 5 + and defaults to 0. + + Returns + ------- + None + + Notes + ----- + Acts in place and changes dimensions and grid spacing accordingly. + ''' + self.LOG.debug('Calling scale_up') assert n > 0 and isinstance(n, (int, long)), 'n must be a positive integer!' assert 5 > order >= 0 and isinstance(order, (int, long)), \ 'order must be a positive integer between 0 and 5!' @@ -210,7 +219,28 @@ class MagData(object): zoom(self.magnitude[2], zoom=2**n, order=order))) def pad(self, x_pad, y_pad, z_pad): - # TODO: Docstring! + '''Pad the current magnetic distribution with zeros for each individual axis. + + Parameters + ---------- + x_pad : int + Number of zeros which should be padded on both sides of the x-axis. + y_pad : int + Number of zeros which should be padded on both sides of the y-axis. + z_pad : int + Number of zeros which should be padded on both sides of the z-axis. + + Returns + ------- + None + + Notes + ----- + Acts in place and changes dimensions accordingly. + ''' + assert x_pad >= 0 and isinstance(x_pad, (int, long)), 'x_pad must be a positive integer!' + assert y_pad >= 0 and isinstance(y_pad, (int, long)), 'y_pad must be a positive integer!' + assert z_pad >= 0 and isinstance(z_pad, (int, long)), 'z_pad must be a positive integer!' self.magnitude = np.pad(self.magnitude, ((0, 0), (z_pad, z_pad), (y_pad, y_pad), (x_pad, x_pad)), mode='constant', constant_values=0) @@ -229,7 +259,7 @@ class MagData(object): None ''' - self.log.info('Calling save_to_llg') + self.LOG.debug('Calling save_to_llg') a = self.a * 1.0E-9 / 1.0E-2 # from nm to cm # Create 3D meshgrid and reshape it and the magnetization into a list where x varies first: zz, yy, xx = np.mgrid[a/2:(self.dim[0]*a-a/2):self.dim[0]*1j, @@ -259,7 +289,7 @@ class MagData(object): A :class:`~.MagData` object containing the loaded data. ''' - cls.log.info('Calling load_from_llg') + cls.LOG.debug('Calling load_from_llg') SCALE = 1.0E-9 / 1.0E-2 # From cm to nm data = np.genfromtxt(filename, skip_header=2) dim = tuple(np.genfromtxt(filename, dtype=int, skip_header=1, skip_footer=len(data[:, 0]))) @@ -281,7 +311,7 @@ class MagData(object): None ''' - self.log.info('Calling save_to_netcdf4') + self.LOG.debug('Calling save_to_netcdf4') mag_file = netCDF4.Dataset(filename, 'w', format='NETCDF4') mag_file.a = self.a mag_file.createDimension('comp', 3) # Number of components @@ -307,7 +337,7 @@ class MagData(object): A :class:`~.MagData` object containing the loaded data. ''' - cls.log.info('Calling copy') + cls.LOG.debug('Calling copy') mag_file = netCDF4.Dataset(filename, 'r', format='NETCDF4') a = mag_file.a magnitude = mag_file.variables['magnitude'][...] @@ -339,31 +369,31 @@ class MagData(object): The axis on which the graph is plotted. ''' - self.log.info('Calling quiver_plot') + self.LOG.debug('Calling quiver_plot') assert proj_axis == 'z' or proj_axis == 'y' or proj_axis == 'x', \ 'Axis has to be x, y or z (as string).' if proj_axis == 'z': # Slice of the xy-plane with z = ax_slice - self.log.info('proj_axis == z') + self.LOG.debug('proj_axis == z') if ax_slice is None: - self.log.info('ax_slice is None') + self.LOG.debug('ax_slice is None') ax_slice = int(self.dim[0]/2) mag_slice_u = self.magnitude[0][ax_slice, ...] # x-component mag_slice_v = self.magnitude[1][ax_slice, ...] # y-component u_label = 'x [px]' v_label = 'y [px]' elif proj_axis == 'y': # Slice of the xz-plane with y = ax_slice - self.log.info('proj_axis == y') + self.LOG.debug('proj_axis == y') if ax_slice is None: - self.log.info('ax_slice is None') + self.LOG.debug('ax_slice is None') ax_slice = int(self.dim[1]/2) mag_slice_u = self.magnitude[0][:, ax_slice, :] # x-component mag_slice_v = self.magnitude[2][:, ax_slice, :] # z-component u_label = 'x [px]' v_label = 'z [px]' elif proj_axis == 'x': # Slice of the yz-plane with x = ax_slice - self.log.info('proj_axis == x') + self.LOG.debug('proj_axis == x') if ax_slice is None: - self.log.info('ax_slice is None') + self.LOG.debug('ax_slice is None') ax_slice = int(self.dim[2]/2) mag_slice_u = self.magnitude[1][..., ax_slice] # y-component mag_slice_v = self.magnitude[2][..., ax_slice] # z-component @@ -371,7 +401,7 @@ class MagData(object): v_label = 'z [px]' # If no axis is specified, a new figure is created: if axis is None: - self.log.info('axis is None') + self.LOG.debug('axis is None') fig = plt.figure(figsize=(8.5, 7)) axis = fig.add_subplot(1, 1, 1, aspect='equal') axis.quiver(mag_slice_u, mag_slice_v, pivot='middle', angles='xy', scale_units='xy', @@ -399,7 +429,7 @@ class MagData(object): None ''' - self.log.info('Calling quiver_plot3D') + self.LOG.debug('Calling quiver_plot3D') a = self.a dim = self.dim # Create points and vector components as lists: @@ -417,4 +447,5 @@ class MagData(object): plot = mlab.quiver3d(xx, yy, zz, x_mag, y_mag, z_mag, mode='arrow') mlab.outline(plot) mlab.axes(plot) - mlab.colorbar() + mlab.title('TEST', height=0.95, size=0.25) + mlab.colorbar(plot, orientation='vertical') diff --git a/pyramid/numcore/__init__.py b/pyramid/numcore/__init__.py index fd8ed341b1fb38e8aa62c63d1398301b0745be86..c462822e236e6d8541dec7cb326735de37f715d3 100644 --- a/pyramid/numcore/__init__.py +++ b/pyramid/numcore/__init__.py @@ -1,3 +1,4 @@ +# -*- coding: utf-8 -*- """Package for numerical core routines which enable fast computations. Modules @@ -10,4 +11,4 @@ Notes ----- Packages are written in `pyx`-format for the use with :mod:`~cython`. -""" +""" \ No newline at end of file diff --git a/pyramid/numcore/kernel_core.pyx b/pyramid/numcore/kernel_core.pyx index 7ed2d6ebee216daf5ca8606194dd2293d096c9cc..f0a7412f8ac73cdd78c0e0fb7820915dbf9c01eb 100644 --- a/pyramid/numcore/kernel_core.pyx +++ b/pyramid/numcore/kernel_core.pyx @@ -1,11 +1,10 @@ # -*- coding: utf-8 -*- -"""Numerical core routines for the phase calculation using the real space approach. +"""Numerical core routines for the :mod:`~.pyramid.kernel` module. -Provides a helper function to speed up :func:`~pyramid.phasemapper.phase_mag_real` of module -:mod:`~pyramid.phasemapper`, by using C-speed for the for-loops and by omitting boundary and -wraparound checks. +Provides helper functions to speed up kernel calculations in the :class:`~pyramid.kernel.Kernel` +class, by using C-speed for the for-loops and by omitting boundary and wraparound checks. -""" # TODO: Docstring! +""" import numpy as np @@ -17,12 +16,12 @@ cimport numpy as np @cython.boundscheck(False) @cython.wraparound(False) -def phase_mag_real_core( +def multiply_jacobi_core( unsigned int v_dim, unsigned int u_dim, - double[:, :] v_phi, double[:, :] u_phi, - double[:, :] v_mag, double[:, :] u_mag, - double[:, :] phase, float threshold): - '''Numerical core routine for the phase calculation using the real space approach. + double[:, :] u_phi, double[:, :] v_phi, + double[:] vector, + double[:] result): + '''Numerical core routine for the Jacobi matrix multiplication in the :class:`~.Kernel` class. Parameters ---------- @@ -30,106 +29,21 @@ def phase_mag_real_core( Dimensions of the projection along the two major axes. v_phi, u_phi : :class:`~numpy.ndarray` (N=2) Lookup tables for the pixel fields oriented in `u`- and `v`-direction. - v_mag, u_mag : :class:`~numpy.ndarray` (N=2) - Magnetization components in `u`- and `v`-direction. - phase : :class:`~numpy.ndarray` (N=2) - Matrix in which the resulting magnetic phase map should be stored. - threshold : float - The `threshold` determines which pixels contribute to the magnetic phase. + vector : :class:`~numpy.ndarray` (N=1) + Input vector which should be multiplied by the Jacobi-matrix. + result : :class:`~numpy.ndarray` (N=1) + Vector in which the result of the multiplication should be stored. Returns ------- None - ''' - cdef unsigned int i, j, p, q, p_c, q_c - cdef double u_m, v_m - for j in range(v_dim): - for i in range(u_dim): - u_m = u_mag[j, i] - v_m = v_mag[j, i] - p_c = u_dim - 1 - i - q_c = v_dim - 1 - j - if abs(u_m) > threshold: - for q in range(v_dim): - for p in range(u_dim): - phase[q, p] += u_m * u_phi[q_c + q, p_c + p] - if abs(v_m) > threshold: - for q in range(v_dim): - for p in range(u_dim): - phase[q, p] -= v_m * v_phi[q_c + q, p_c + p] - - -@cython.boundscheck(False) -@cython.wraparound(False) -def get_jacobi_core( - unsigned int v_dim, unsigned int u_dim, - double[:, :] v_phi, double[:, :] u_phi, - double[:, :] jacobi): - '''Numerical core routine for the jacobi matrix calculation. - - Parameters - ---------- - v_dim, u_dim : int - Dimensions of the projection along the two major axes. - v_phi, u_phi : :class:`~numpy.ndarray` (N=2) - Lookup tables for the pixel fields oriented in `u`- and `v`-direction. - jacobi : :class:`~numpy.ndarray` (N=2) - Jacobi matrix which is filled by this routine. - - Returns - ------- - None + Notes + ----- + The strategy involves iterating over the magnetization first and over the kernel in an inner + iteration loop. ''' - cdef unsigned int i, j, p, q, p_min, p_max, q_min, q_max, u_column, v_column, row - for j in range(v_dim): - for i in range(u_dim): - q_min = (v_dim-1) - j - q_max = (2*v_dim-1) - j - p_min = (u_dim-1) - i - p_max = (2*u_dim-1) - i - v_column = i + u_dim*j + u_dim*v_dim - u_column = i + u_dim*j - for q in range(q_min, q_max): - for p in range(p_min, p_max): - q_c = q - (v_dim-1-j) # start at zero for jacobi column - p_c = p - (u_dim-1-i) # start at zero for jacobi column - row = p_c + u_dim*q_c - # u-component: - jacobi[row, u_column] = u_phi[q, p] - # v-component (note the minus!): - jacobi[row, v_column] = -v_phi[q, p] - - -@cython.boundscheck(False) -@cython.wraparound(False) -def get_jacobi_core2( - unsigned int v_dim, unsigned int u_dim, - double[:, :] v_phi, double[:, :] u_phi, - double[:, :] jacobi): - '''DOCSTRING!''' - # TODO: Docstring!!! - cdef unsigned int i, j, p, q, p_min, p_max, q_min, q_max, u_column, v_column, row - for j in range(v_dim): - for i in range(u_dim): - # v_dim*u_dim columns for the u-component: - jacobi[:, i+u_dim*j] = \ - np.reshape(u_phi[v_dim-1-j:(2*v_dim-1)-j, u_dim-1-i:(2*u_dim-1)-i], -1) - # v_dim*u_dim columns for the v-component (note the minus!): - jacobi[:, u_dim*v_dim+i+u_dim*j] = \ - -np.reshape(v_phi[v_dim-1-j:(2*v_dim-1)-j, u_dim-1-i:(2*u_dim-1)-i], -1) - - -@cython.boundscheck(False) -@cython.wraparound(False) -def multiply_jacobi_core( - unsigned int v_dim, unsigned int u_dim, - double[:, :] u_phi, double[:, :] v_phi, - double[:] vector, - double[:] result): - '''DOCSTRING!''' - # TODO: Docstring!!! Iterate over magnetization and then kernel cdef unsigned int s, i, j, u_min, u_max, v_min, v_max, ri, u, v, size size = u_dim * v_dim # Number of pixels s = 0 # Current pixel (numbered consecutively) @@ -142,38 +56,7 @@ def multiply_jacobi_core( # Go over the current kernel cutout [v_min:v_max, u_min:u_max]: for v in range(v_min, v_min + v_dim): for u in range(u_min, u_min + u_dim): - result[ri] += vector[s] * u_phi[v, u] + result[ri] += vector[s] * u_phi[v, u] result[ri] -= vector[s+size] * v_phi[v, u] ri += 1 s += 1 - - -#@cython.boundscheck(False) -#@cython.wraparound(False) -def multiply_jacobi_core2( - int v_dim, int u_dim, - double[:, :] u_phi, double[:, :] v_phi, - double[:] vector, - double[:] result): - '''DOCSTRING!''' - # TODO: Docstring!!! Iterate over kernel and then magnetization - cdef int s1, s2, i, j, u_min, u_max, v_min, v_max, ri, u, v, size, j_min, j_max, i_min, i_max - size = u_dim * v_dim # Number of pixels - # Go over complete kernel: - for v in range(2 * v_dim - 1): - for u in range(2 * u_dim - 1): - i_min = max(0, (u_dim - 1) - u) - i_max = min(u_dim, ((2 * u_dim) - 1) - u) - j_min = max(0, (v_dim - 1) - v) - j_max = min(v_dim, ((2 * v_dim) - 1) - v) - # Iterate over - for i in range(i_min, i_max): - s1 = i * u_dim # u-column - s2 = s1 + size # v-column - u_min = (u_dim - 1) - i - v_min = (v_dim - 1) - j_min - ri = (v - ((v_dim - 1) - j_min)) * u_dim + (u - u_min) - for j in range(j_min, j_max): - result[ri] += vector[s1 + j] * u_phi[v, u] - result[ri] -= vector[s2 + j] * v_phi[v, u] - ri += u_dim diff --git a/pyramid/optimizer.py b/pyramid/optimizer.py deleted file mode 100644 index f45546e505ed0abd0d0ea5694ba6ab95c4abeb18..0000000000000000000000000000000000000000 --- a/pyramid/optimizer.py +++ /dev/null @@ -1,143 +0,0 @@ -# -*- coding: utf-8 -*- -"""Reconstruct magnetic distributions from given phasemaps. - -This module reconstructs 3-dimensional magnetic distributions (as :class:`~pyramid.magdata.MagData` -objects) from a given set of phase maps (represented by :class:`~pyramid.phasemap.PhaseMap` -objects) by using several model based reconstruction algorithms which use the forward model -provided by :mod:`~pyramid.projector` and :mod:`~pyramid.phasemapper` and a priori knowledge of -the distribution. -So far, only a simple least square algorithm for known pixel locations for 2-dimensional problems -is implemented (:func:`~.reconstruct_simple_leastsq`), but more complex solutions are planned. - -"""# TODO: Docstrings! - - -# TODO: Delete -''' FRAGEN FÜR JÖRN: -1) Property und Python "Magic" ist wann sinnvoll? -2) Aktuelle Designstruktur, welche Designpatterns kommen vor und sind sinnvoll? -3) Macht logging Sinn? -4) Ist scipy.optimize.minimize(...) eine gute Wahl? -5) Wo besser Module, wo Klassen? -6) Arbitrary grid to cartesian grid -''' - - -import numpy as np - -from scipy.optimize import minimize - -from pyramid.kernel import Kernel -from pyramid.forwardmodel import ForwardModel -from pyramid.costfunction import Costfunction -from pyramid.magdata import MagData - - - -def optimize_cg(data_collection, first_guess): - # TODO: where should data_collection and first_guess go? here or __init__? - data = data_collection # TODO: name the parameter 'data' directly... - mag_0 = first_guess - x_0 = first_guess.mag_vec - y = data.phase_vec - kern = Kernel(data.a, data.dim_uv) - F = ForwardModel(data.projectors, kern, data.b_0) - C = Costfunction(y, F) - - result = minimize(C, x_0, method='Newton-CG', jac=C.jac, hessp=C.hess_dot, - options={'maxiter':200, 'disp':True}) - - x_opt = result.x - - mag_opt = MagData(mag_0.a, np.zeros((3,)+mag_0.dim)) - - mag_opt.mag_vec = x_opt - - return mag_opt - - - -# TODO: Implement the following: - -## -*- coding: utf-8 -*- -#"""Reconstruct magnetic distributions from given phasemaps. -# -#This module reconstructs 3-dimensional magnetic distributions (as :class:`~pyramid.magdata.MagData` -#objects) from a given set of phase maps (represented by :class:`~pyramid.phasemap.PhaseMap` -#objects) by using several model based reconstruction algorithms which use the forward model -#provided by :mod:`~pyramid.projector` and :mod:`~pyramid.phasemapper` and a priori knowledge of -#the distribution. -#So far, only a simple least square algorithm for known pixel locations for 2-dimensional problems -#is implemented (:func:`~.reconstruct_simple_leastsq`), but more complex solutions are planned. -# -#""" -# -# -# -#import numpy as np -# -#from scipy.optimize import leastsq -# -#import pyramid.projector as pj -#import pyramid.phasemapper as pm -#from pyramid.magdata import MagData -#from pyramid.projector import Projection -#from pyramid.kernel import Kernel -# -# -#def reconstruct_simple_leastsq(phase_map, mask, b_0=1): -# '''Reconstruct a magnetic distribution for a 2-D problem with known pixel locations. -# -# Parameters -# ---------- -# phase_map : :class:`~pyramid.phasemap.PhaseMap` -# A :class:`~pyramid.phasemap.PhaseMap` object, representing the phase from which to -# reconstruct the magnetic distribution. -# mask : :class:`~numpy.ndarray` (N=3) -# A boolean matrix (or a matrix consisting of ones and zeros), representing the -# positions of the magnetized voxels in 3 dimensions. -# b_0 : float, optional -# The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T. -# The default is 1. -# Returns -# ------- -# mag_data : :class:`~pyramid.magdata.MagData` -# The reconstructed magnetic distribution as a -# :class:`~pyramid.magdata.MagData` object. -# -# Notes -# ----- -# Only works for a single phase_map, if the positions of the magnetized voxels are known and -# for slice thickness of 1 (constraint for the `z`-dimension). -# -# ''' -# # Read in parameters: -# y_m = phase_map.phase.reshape(-1) # Measured phase map as a vector -# a = phase_map.a # Grid spacing -# dim = mask.shape # Dimensions of the mag. distr. -# count = mask.sum() # Number of pixels with magnetization -# lam = 1e-6 # Regularisation parameter -# # Create empty MagData object for the reconstruction: -# mag_data_rec = MagData(a, (np.zeros(dim), np.zeros(dim), np.zeros(dim))) -# -# # Function that returns the phase map for a magnetic configuration x: -# def F(x): -# mag_data_rec.set_vector(mask, x) -# phase = pm.phase_mag_real(a, pj.simple_axis_projection(mag_data_rec), b_0) -# return phase.reshape(-1) -# -# # Cost function which should be minimized: -# def J(x_i): -# y_i = F(x_i) -# term1 = (y_i - y_m) -# term2 = lam * x_i -# return np.concatenate([term1, term2]) -# -# # Reconstruct the magnetization components: -# x_rec, _ = leastsq(J, np.zeros(3*count)) -# mag_data_rec.set_vector(mask, x_rec) -# return mag_data_rec -# -#def reconstruct_test(): -# product = (kernel.multiply_jacobi_T(projection.multiply_jacobi_T(x)) -# * kernel.multiply_jacobi(projection.multiply_jacobi(x))) \ No newline at end of file diff --git a/pyramid/phasemap.py b/pyramid/phasemap.py index be2b2944e8f287a462e068379b22598019ce5bc3..08f2b010deb8ab44d1fb460f0b93d1c1170ed0d6 100644 --- a/pyramid/phasemap.py +++ b/pyramid/phasemap.py @@ -2,8 +2,6 @@ """This module provides the :class:`~.PhaseMap` class for storing phase map data.""" -import logging - import numpy as np from numpy import pi @@ -17,6 +15,8 @@ from numbers import Number import netCDF4 +import logging + class PhaseMap(object): @@ -24,7 +24,7 @@ class PhaseMap(object): Represents 2-dimensional phase maps. The phase information itself is stored as a 2-dimensional matrix in `phase`, but can also be accessed as a vector via `phase_vec`. :class:`~.PhaseMap` - objects support negation, arithmetic operators (``+``, ``-``, ``*``) and their augmented + objects support negation, arithmetic operators (``+``, ``-``, ``*``) and their augmented counterparts (``+=``, ``-=``, ``*=``), with numbers and other :class:`~.PhaseMap` objects, if their dimensions and grid spacings match. It is possible to load data from NetCDF4 or textfiles or to save the data in these formats. Methods for plotting the phase or a @@ -51,7 +51,7 @@ class PhaseMap(object): ''' - log = logging.getLogger(__name__) + LOG = logging.getLogger(__name__) UNITDICT = {u'rad': 1E0, u'mrad': 1E3, @@ -92,10 +92,10 @@ class PhaseMap(object): (0.50, 1.0, 1.0), (0.75, 1.0, 1.0), (1.00, 0.0, 0.0)]} - + HOLO_CMAP = mpl.colors.LinearSegmentedColormap('my_colormap', CDICT, 256) HOLO_CMAP_INV = mpl.colors.LinearSegmentedColormap('my_colormap', CDICT_INV, 256) - + @property def a(self): return self._a @@ -104,8 +104,8 @@ class PhaseMap(object): def a(self, a): assert isinstance(a, Number), 'Grid spacing has to be a number!' assert a >= 0, 'Grid spacing has to be a positive number!' - self._a = a - + self._a = float(a) + @property def dim_uv(self): return self._dim_uv @@ -141,70 +141,70 @@ class PhaseMap(object): self._unit = unit def __init__(self, a, phase, unit='rad'): + self.LOG.debug('Calling __init__') self.a = a self.phase = phase self.unit = unit - self.log = logging.getLogger(__name__) - self.log.info('Created '+str(self)) + self.LOG.debug('Created '+str(self)) def __repr__(self): - self.log.info('Calling __repr__') + self.LOG.debug('Calling __repr__') return '%s(a=%r, phase=%r, unit=&r)' % \ (self.__class__, self.a, self.phase, self.unit) def __str__(self): - self.log.info('Calling __str__') + self.LOG.debug('Calling __str__') return 'PhaseMap(a=%s, dim_uv=%s)' % (self.a, self.dim_uv) def __neg__(self): # -self - self.log.info('Calling __neg__') + self.LOG.debug('Calling __neg__') return PhaseMap(self.a, -self.phase, self.unit) - + def __add__(self, other): # self + other - self.log.info('Calling __add__') + self.LOG.debug('Calling __add__') assert isinstance(other, (PhaseMap, Number)), \ 'Only PhaseMap objects and scalar numbers (as offsets) can be added/subtracted!' if isinstance(other, PhaseMap): - self.log.info('Adding two PhaseMap objects') + self.LOG.debug('Adding two PhaseMap objects') assert other.a == self.a, 'Added phase has to have the same grid spacing!' assert other.phase.shape == self.dim_uv, \ 'Added magnitude has to have the same dimensions!' return PhaseMap(self.a, self.phase+other.phase, self.unit) else: # other is a Number - self.log.info('Adding an offset') + self.LOG.debug('Adding an offset') return PhaseMap(self.a, self.phase+other, self.unit) def __sub__(self, other): # self - other - self.log.info('Calling __sub__') + self.LOG.debug('Calling __sub__') return self.__add__(-other) def __mul__(self, other): # self * other - self.log.info('Calling __mul__') + self.LOG.debug('Calling __mul__') assert isinstance(other, Number), 'PhaseMap objects can only be multiplied by numbers!' return PhaseMap(self.a, other*self.phase, self.unit) def __radd__(self, other): # other + self - self.log.info('Calling __radd__') + self.LOG.debug('Calling __radd__') return self.__add__(other) def __rsub__(self, other): # other - self - self.log.info('Calling __rsub__') + self.LOG.debug('Calling __rsub__') return -self.__sub__(other) def __rmul__(self, other): # other * self - self.log.info('Calling __rmul__') + self.LOG.debug('Calling __rmul__') return self.__mul__(other) - + def __iadd__(self, other): # self += other - self.log.info('Calling __iadd__') + self.LOG.debug('Calling __iadd__') return self.__add__(other) def __isub__(self, other): # self -= other - self.log.info('Calling __isub__') + self.LOG.debug('Calling __isub__') return self.__sub__(other) def __imul__(self, other): # self *= other - self.log.info('Calling __imul__') + self.LOG.debug('Calling __imul__') return self.__mul__(other) def save_to_txt(self, filename='..\output\phasemap_output.txt'): @@ -221,7 +221,7 @@ class PhaseMap(object): None ''' - self.log.info('Calling save_to_txt') + self.LOG.debug('Calling save_to_txt') with open(filename, 'w') as phase_file: phase_file.write('{}\n'.format(filename.replace('.txt', ''))) phase_file.write('grid spacing = {} nm\n'.format(self.a)) @@ -242,7 +242,7 @@ class PhaseMap(object): A :class:`~.PhaseMap` object containing the loaded data. ''' - cls.log.info('Calling load_from_txt') + cls.LOG.debug('Calling load_from_txt') with open(filename, 'r') as phase_file: phase_file.readline() # Headerline is not used a = float(phase_file.readline()[15:-4]) @@ -263,7 +263,7 @@ class PhaseMap(object): None ''' - self.log.info('Calling save_to_netcdf4') + self.LOG.debug('Calling save_to_netcdf4') phase_file = netCDF4.Dataset(filename, 'w', format='NETCDF4') phase_file.a = self.a phase_file.createDimension('v_dim', self.dim_uv[0]) @@ -287,7 +287,7 @@ class PhaseMap(object): A :class:`~.PhaseMap` object containing the loaded data. ''' - cls.log.info('Calling load_from_netcdf4') + cls.LOG.debug('Calling load_from_netcdf4') phase_file = netCDF4.Dataset(filename, 'r', format='NETCDF4') a = phase_file.a phase = phase_file.variables['phase'][:] @@ -307,7 +307,7 @@ class PhaseMap(object): The default is 'RdBu'. limit : float, optional Plotlimit for the phase in both negative and positive direction (symmetric around 0). - If not specified, the maximum amplitude the phase is used. + If not specified, the maximum amplitude of the phase is used. norm : :class:`~matplotlib.colors.Normalize` or subclass, optional Norm, which is used to determine the colors to encode the phase information. If not specified, :class:`~matplotlib.colors.Normalize` is automatically used. @@ -322,7 +322,7 @@ class PhaseMap(object): The axis on which the graph is plotted. ''' - self.log.info('Calling display_phase') + self.LOG.debug('Calling display_phase') # Take units into consideration: phase = self.phase * self.UNITDICT[self.unit] if limit is None: @@ -374,7 +374,7 @@ class PhaseMap(object): The axis on which the graph is plotted. ''' - self.log.info('Calling display_phase3d') + self.LOG.debug('Calling display_phase3d') # Take units into consideration: phase = self.phase * self.UNITDICT[self.unit] # Create figure and axis: @@ -395,11 +395,11 @@ class PhaseMap(object): plt.show() # Return plotting axis: return axis - + def display_holo(self, density=1, title='Holographic Contour Map', - axis=None, grad_encode='dark', interpolation='none', show=True): + axis=None, grad_encode='bright', interpolation='none', show=True): '''Display the color coded holography image. - + Parameters ---------- density : float, optional @@ -408,42 +408,51 @@ class PhaseMap(object): The title of the plot. The default is 'Holographic Contour Map'. axis : :class:`~matplotlib.axes.AxesSubplot`, optional Axis on which the graph is plotted. Creates a new figure if none is specified. + grad_encode: {'bright', 'dark', 'color', 'none'}, optional + Encoding mode of the phase gradient. 'none' produces a black-white image, 'color' just + encodes the direction (without gradient strength), 'dark' modulates the gradient + strength with a factor between 0 and 1 and 'bright' (which is the default) encodes + the gradient strength with color saturation. interpolation : {'none, 'bilinear', 'cubic', 'nearest'}, optional Defines the interpolation method. No interpolation is used in the default case. show: bool, optional A switch which determines if the plot is shown at the end of plotting. - + Returns ------- axis: :class:`~matplotlib.axes.AxesSubplot` The axis on which the graph is plotted. - - '''# TODO: Docstring saturation! - self.log.info('Calling display_holo') + + ''' + self.LOG.debug('Calling display_holo') # Calculate the holography image intensity: img_holo = (1 + np.cos(density * self.phase)) / 2 # Calculate the phase gradients, expressed by magnitude and angle: phase_grad_y, phase_grad_x = np.gradient(self.phase, self.a, self.a) phase_angle = (1 - np.arctan2(phase_grad_y, phase_grad_x)/pi) / 2 phase_magnitude = np.hypot(phase_grad_x, phase_grad_y) - if phase_magnitude.max() != 0: + if phase_magnitude.max() != 0: # Take care of phase maps with only zeros saturation = np.sin(phase_magnitude/phase_magnitude.max() * pi / 2) phase_saturation = np.dstack((saturation,)*4) # Color code the angle and create the holography image: if grad_encode == 'dark': + self.LOG.debug('gradient encoding: dark') rgba = self.HOLO_CMAP(phase_angle) rgb = (255.999 * img_holo.T * saturation.T * rgba[:, :, :3].T).T.astype(np.uint8) elif grad_encode == 'bright': + self.LOG.debug('gradient encoding: bright') rgba = self.HOLO_CMAP(phase_angle)+(1-phase_saturation)*self.HOLO_CMAP_INV(phase_angle) rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) elif grad_encode == 'color': + self.LOG.debug('gradient encoding: color') rgba = self.HOLO_CMAP(phase_angle) rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) elif grad_encode == 'none': + self.LOG.debug('gradient encoding: none') rgba = self.HOLO_CMAP(phase_angle)+self.HOLO_CMAP_INV(phase_angle) rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) else: - raise AssertionError('Gradient encoding not recognized!') + raise AssertionError('Gradient encoding not recognized!') holo_image = Image.fromarray(rgb) # If no axis is specified, a new figure is created: if axis is None: @@ -469,26 +478,41 @@ class PhaseMap(object): return axis def display_combined(self, title='Combined Plot', cmap='RdBu', limit=None, norm=None, - density=1, interpolation='none', grad_encode='dark'): + density=1, interpolation='none', grad_encode='bright'): '''Display the phase map and the resulting color coded holography image in one plot. - + Parameters ---------- - density : float, optional - The gain factor for determining the number of contour lines. The default is 1. title : string, optional The title of the plot. The default is 'Combined Plot'. + cmap : string, optional + The :class:`~matplotlib.colors.Colormap` which is used for the plot as a string. + The default is 'RdBu'. + limit : float, optional + Plotlimit for the phase in both negative and positive direction (symmetric around 0). + If not specified, the maximum amplitude of the phase is used. + norm : :class:`~matplotlib.colors.Normalize` or subclass, optional + Norm, which is used to determine the colors to encode the phase information. + If not specified, :class:`~matplotlib.colors.Normalize` is automatically used. + density : float, optional + The gain factor for determining the number of contour lines in the holographic + contour map. The default is 1. interpolation : {'none, 'bilinear', 'cubic', 'nearest'}, optional Defines the interpolation method for the holographic contour map. No interpolation is used in the default case. - + grad_encode: {'bright', 'dark', 'color', 'none'}, optional + Encoding mode of the phase gradient. 'none' produces a black-white image, 'color' just + encodes the direction (without gradient strength), 'dark' modulates the gradient + strength with a factor between 0 and 1 and 'bright' (which is the default) encodes + the gradient strength with color saturation. + Returns ------- phase_axis, holo_axis: :class:`~matplotlib.axes.AxesSubplot` The axes on which the graphs are plotted. - - '''# TODO: Docstring grad_encode! - self.log.info('Calling display_combined') + + ''' + self.LOG.debug('Calling display_combined') # Create combined plot and set title: fig = plt.figure(figsize=(16, 7)) fig.suptitle(title, fontsize=20) @@ -507,17 +531,17 @@ class PhaseMap(object): @classmethod def make_color_wheel(cls): '''Display a color wheel to illustrate the color coding of the gradient direction. - + Parameters ---------- None - + Returns ------- None - + ''' - cls.log.info('Calling make_color_wheel') + cls.LOG.debug('Calling make_color_wheel') x = np.linspace(-256, 256, num=512) y = np.linspace(-256, 256, num=512) xx, yy = np.meshgrid(x, y) diff --git a/pyramid/phasemapper.py b/pyramid/phasemapper.py index 7dd5de87785b357019f28e0b6c22445d9a5fb11d..70c76e427e8fa9b7a2f80afea3542a01d90966df 100644 --- a/pyramid/phasemapper.py +++ b/pyramid/phasemapper.py @@ -1,7 +1,5 @@ # -*- coding: utf-8 -*- -"""Create magnetic and electric phase maps from magnetization data. - -This module executes several forward models to calculate the magnetic or electric phase map from +"""This module executes several forward models to calculate the magnetic or electric phase map from a given projection of a 3-dimensional magnetic distribution (see :mod:`~pyramid.projector`). For the magnetic phase map, an approach using real space and one using Fourier space is provided. The electrostatic contribution is calculated by using the assumption of a mean inner potential. @@ -21,92 +19,145 @@ from pyramid.magdata import MagData from pyramid.phasemap import PhaseMap from pyramid.forwardmodel import ForwardModel +import logging +class PhaseMapper(object): + '''Abstract base class for the phase calculation from a 2-dimensional distribution. -class PhaseMapper(object): + The :class:`~.PhaseeMapper-` class represents a strategy for the phasemapping of a + 2-dimensional magnetic distribution with two components onto a scalar phase map. + :class:`~.Kernel` is an abstract base class and provides a unified interface which should be + subclassed with custom :func:`__init__` and :func:`__call__` functions. Concrete subclasses + can be called as a function and take a :class:`~.MagData` object as input and return a + :class:`~.PhaseMap` object. - '''DOCSTRING''' # TODO: Docstring! + ''' __metaclass__ = abc.ABCMeta + LOG = logging.getLogger(__name__+'.PhaseMapper') @abc.abstractmethod def __init__(self, projector): - '''Docstring: has to be implemented!''' # TODO: Docstring! - + self.LOG.debug('Calling __init__') + raise NotImplementedError() + @abc.abstractmethod def __call__(self, mag_data): - '''Docstring: has to be implemented!''' # TODO: Docstring! + self.LOG.debug('Calling __call__') + raise NotImplementedError() class PMAdapterFM(PhaseMapper): + '''Class representing a phase mapping strategy adapting the :class:`~.ForwardModel` class. + + The :class:`~.PMAdapterFM` class is an adapter class to incorporate the forward model from the + :module:`~.ForwardModel` module without the need of vector input and output. It directly takes + :class:`~.MagData` objects and returns :class:`~.PhaseMap` objects. + + Attributes + ---------- + a : float + The grid spacing in nm. + projector : :class:`~.Projector` + Projector which should be used for the projection of the 3-dimensional magnetization + distribution. + b_0 : float, optional + The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T. + The default is 1. + geometry : {'disc', 'slab'}, optional + Elementary geometry which is used for the phase contribution of one pixel. + Default is 'disc'. + fwd_model : :class:`~.ForwardModel` + The forward model that is constructed from the given information. It is created internally + and does not have to be provided by the user. + + ''' + + LOG = logging.getLogger(__name__+'.PMAdapterFM') + def __init__(self, a, projector, b_0=1, geometry='disc'): + self.LOG.debug('Calling __init__') assert isinstance(projector, Projector), 'Argument has to be a Projector object!' self.a = a self.projector = projector self.fwd_model = ForwardModel([projector], Kernel(a, projector.dim_uv, b_0, geometry)) + self.LOG.debug('Created '+str(self)) def __call__(self, mag_data): + self.LOG.debug('Calling __call__') assert isinstance(mag_data, MagData), 'Only MagData objects can be mapped!' - assert mag_data.a == self.a, 'Grid spacing has to match!' - # TODO: test if mag_data fits in all aspects + assert mag_data.a == self.a, 'Grid spacing has to match!' + assert mag_data.dim == self.projector.dim, 'Dimensions do not match!' phase_map = PhaseMap(self.a, np.zeros(self.projector.dim_uv)) phase_map.phase_vec = self.fwd_model(mag_data.mag_vec) return phase_map + def __repr__(self): + self.LOG.debug('Calling __repr__') + return '%s(a=%r, projector=%r, b_0=%r, geometry=%r)' % \ + (self.__class__, self.a, self.projector, self.b_0, self.geometry) + + def __str__(self): + self.LOG.debug('Calling __str__') + return 'PMAdapterFM(a=%s, projector=%s, b_0=%s, geometry=%s)' % \ + (self.a, self.projector, self.b_0, self.geometry) + class PMFourier(PhaseMapper): - + + '''Class representing a phase mapping strategy using a discretization in Fourier space. + + The :class:`~.PMFourier` class represents a phase mapping strategy involving discretization in + Fourier space. It utilizes the Fourier transforms, which are inherently calculated in the + :class:`~.Kernel` class and directly takes :class:`~.MagData` objects and returns + :class:`~.PhaseMap` objects. + + Attributes + ---------- + a : float + The grid spacing in nm. + projector : :class:`~.Projector` + Projector which should be used for the projection of the 3-dimensional magnetization + distribution. + b_0 : float, optional + The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T. + The default is 1. + padding : int, optional + Factor for the zero padding. The default is 0 (no padding). For a factor of n the number + of pixels is increase by ``(1+n)**2``. Padded zeros are cropped at the end. + + ''' + + LOG = logging.getLogger(__name__+'.PMFourier') PHI_0 = -2067.83 # magnetic flux in T*nm² def __init__(self, a, projector, b_0=1, padding=0): + self.LOG.debug('Calling __init__') assert isinstance(projector, Projector), 'Argument has to be a Projector object!' self.a = a self.projector = projector self.b_0 = b_0 - self.padding = padding + self.padding = padding + self.LOG.debug('Created '+str(self)) def __call__(self, mag_data): - '''Calculate the magnetic phase from magnetization data (Fourier space approach). - - Parameters - ---------- - a : float - The grid spacing in nm. - projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) - The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component - of the magnetization and the thickness projection for the resulting 2D-grid. - padding : int, optional - Factor for the zero padding. The default is 0 (no padding). For a factor of n the number - of pixels is increase by ``(1+n)**2``. Padded zeros are cropped at the end. - b_0 : float, optional - The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T. - The default is 1. - - Returns - ------- - phase : :class:`~numpy.ndarray` (N=2) - The phase as a 2-dimensional array. - - ''' # TODO: Docstring + self.LOG.debug('Calling __call__') assert isinstance(mag_data, MagData), 'Only MagData objects can be mapped!' - assert mag_data.a == self.a, 'Grid spacing has to match!' - # TODO: test if mag_data fits in all aspects (especially with projector) + assert mag_data.a == self.a, 'Grid spacing has to match!' + assert mag_data.dim == self.projector.dim, 'Dimensions do not match!' v_dim, u_dim = self.projector.dim_uv u_mag, v_mag = self.projector(mag_data.mag_vec).reshape((2,)+self.projector.dim_uv) # Create zero padded matrices: - u_pad = u_dim/2 * self.padding - v_pad = v_dim/2 * self.padding - # TODO: use mag_data.padding or np.pad(...) - u_mag_big = np.zeros(((1 + self.padding) * v_dim, (1 + self.padding) * u_dim)) - v_mag_big = np.zeros(((1 + self.padding) * v_dim, (1 + self.padding) * u_dim)) - u_mag_big[v_pad:v_pad+v_dim, u_pad:u_pad+u_dim] = u_mag - v_mag_big[v_pad:v_pad+v_dim, u_pad:u_pad+u_dim] = v_mag + u_pad = int(u_dim/2 * self.padding) + v_pad = int(v_dim/2 * self.padding) + u_mag_pad = np.pad(u_mag, ((v_pad, v_pad), (u_pad, u_pad)), 'constant', constant_values=0) + v_mag_pad = np.pad(v_mag, ((v_pad, v_pad), (u_pad, u_pad)), 'constant', constant_values=0) # Fourier transform of the two components: - u_mag_fft = np.fft.fftshift(np.fft.rfft2(u_mag_big), axes=0) - v_mag_fft = np.fft.fftshift(np.fft.rfft2(v_mag_big), axes=0) + u_mag_fft = np.fft.fftshift(np.fft.rfft2(u_mag_pad), axes=0) + v_mag_fft = np.fft.fftshift(np.fft.rfft2(v_mag_pad), axes=0) # Calculate the Fourier transform of the phase: f_nyq = 0.5 / self.a # nyquist frequency f_u = np.linspace(0, f_nyq, u_mag_fft.shape[1]) @@ -115,66 +166,67 @@ class PMFourier(PhaseMapper): coeff = (1j*self.b_0) / (2*self.PHI_0) phase_fft = coeff*self.a * (u_mag_fft*f_vv - v_mag_fft*f_uu) / (f_uu**2 + f_vv**2 + 1e-30) # Transform to real space and revert padding: - phase_big = np.fft.irfft2(np.fft.ifftshift(phase_fft, axes=0)) - phase = phase_big[v_pad:v_pad+v_dim, u_pad:u_pad+u_dim] + phase_pad = np.fft.irfft2(np.fft.ifftshift(phase_fft, axes=0)) + phase = phase_pad[v_pad:v_pad+v_dim, u_pad:u_pad+u_dim] return PhaseMap(self.a, phase) + def __repr__(self): + self.LOG.debug('Calling __repr__') + return '%s(a=%r, projector=%r, b_0=%r, padding=%r)' % \ + (self.__class__, self.a, self.projector, self.b_0, self.padding) + + def __str__(self): + self.LOG.debug('Calling __str__') + return 'PMFourier(a=%s, projector=%s, b_0=%s, padding=%s)' % \ + (self.a, self.projector, self.b_0, self.padding) class PMElectric(PhaseMapper): - + + '''Class representing a phase mapping strategy for the electrostatic contribution. + + The :class:`~.PMElectric` class represents a phase mapping strategy for the electrostatic + contribution to the electron phase shift which results e.g. from the mean inner potential in + certain samples and which is sensitive to properties of the electron microscope. It directly + takes :class:`~.MagData` objects and returns :class:`~.PhaseMap` objects. + + Attributes + ---------- + a : float + The grid spacing in nm. + projector : :class:`~.Projector` + Projector which should be used for the projection of the 3-dimensional magnetization + distribution. + v_0 : float, optional + The mean inner potential of the specimen in V. The default is 1. + v_acc : float, optional + The acceleration voltage of the electron microscope in V. The default is 30000. + threshold : float, optional + Threshold for the recognition of the specimen location. The default is 0, which means that + all voxels with non-zero magnetization will contribute. Should be above noise level. + + ''' + + LOG = logging.getLogger(__name__+'.PMElectric') H_BAR = 6.626E-34 # Planck constant in J*s M_E = 9.109E-31 # electron mass in kg Q_E = 1.602E-19 # electron charge in C C = 2.998E8 # speed of light in m/s - + def __init__(self, a, projector, v_0=1, v_acc=30000, threshold=0): - '''Calculate the electric phase from magnetization distributions. - - Parameters - ---------- - a : float - The grid spacing in nm. - projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) - The in-plane projection of the magnetization as a tuple, storing the u- and v-component - of the magnetization and the thickness projection for the resulting 2D-grid. - v_0 : float, optional - The mean inner potential of the specimen in V. The default is 1. - v_acc : float, optional - The acceleration voltage of the electron microscope in V. The default is 30000. - - Returns - ------- - phase : :class:`~numpy.ndarray` (N=2) - The phase as a 2-dimensional array. - - ''' # Docstring! + self.LOG.debug('Calling __init__') + assert isinstance(projector, Projector), 'Argument has to be a Projector object!' self.a = a self.projector = projector self.v_0 = v_0 self.v_acc = v_acc self.threshold = threshold + self.LOG.debug('Created '+str(self)) def __call__(self, mag_data): - '''Calculate the electric phase from magnetization distributions. - - Parameters - ---------- - a : float - The grid spacing in nm. - projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) - The in-plane projection of the magnetization as a tuple, storing the u- and v-component - of the magnetization and the thickness projection for the resulting 2D-grid. - v_0 : float, optional - The mean inner potential of the specimen in V. The default is 1. - v_acc : float, optional - The acceleration voltage of the electron microscope in V. The default is 30000. - - Returns - ------- - phase : :class:`~numpy.ndarray` (N=2) - The phase as a 2-dimensional array. - - ''' # Docstring! + self.LOG.debug('Calling __call__') + assert isinstance(mag_data, MagData), 'Only MagData objects can be mapped!' + assert mag_data.a == self.a, 'Grid spacing has to match!' + assert mag_data.dim == self.projector.dim, 'Dimensions do not match!' # Coefficient calculation: H_BAR, M_E, Q_E, C = self.H_BAR, self.M_E, self.Q_E, self.C v_0, v_acc = self.v_0, self.v_acc @@ -187,46 +239,59 @@ class PMElectric(PhaseMapper): phase = v_0 * Ce * projection * self.a*1E-9 return PhaseMap(self.a, phase) + def __repr__(self): + self.LOG.debug('Calling __repr__') + return '%s(a=%r, projector=%r, v_0=%r, v_acc=%r, threshold=%r)' % \ + (self.__class__, self.a, self.projector, self.v_0, self.v_acc, self.threshold) + + def __str__(self): + self.LOG.debug('Calling __str__') + return 'PMElectric(a=%s, projector=%s, v_0=%s, v_acc=%s, threshold=%s)' % \ + (self.a, self.projector, self.v_0, self.v_acc, self.threshold) class PMConvolve(PhaseMapper): - # TODO: Docstring! - - def __init__(self, a, projector, b_0=1, threshold=0, geometry='disc'): - '''Calculate the magnetic phase from magnetization data. - - Parameters - ---------- - a : float - The grid spacing in nm. - projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) - The in-plane projection of the magnetization as a tuple, storing the `u`- and - `v`-component of the magnetization and the thickness projection for the resulting - 2D-grid. - b_0 : float, optional - The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T. - The default is 1. - kernel : :class:`~pyramid.kernel.Kernel`, optional - Specifies the kernel for the convolution with the magnetization data. If none is - specified, one will be created with `disc` as the default geometry. - - Returns - ------- - phase : :class:`~numpy.ndarray` (N=2) - The phase as a 2-dimensional array. - - '''# Docstring! + '''Class representing a phase mapping strategy using real space discretization and Fourier + space convolution. + + The :class:`~.PMConvolve` class represents a phase mapping strategy involving discretization in + real space. It utilizes the convolution in Fourier space, directly takes :class:`~.MagData` + objects and returns :class:`~.PhaseMap` objects. + + Attributes + ---------- + a : float + The grid spacing in nm. + projector : :class:`~.Projector` + Projector which should be used for the projection of the 3-dimensional magnetization + distribution. + b_0 : float, optional + The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T. + The default is 1. + geometry : {'disc', 'slab'}, optional + Elementary geometry which is used for the phase contribution of one pixel. + Default is 'disc'. + + ''' + + LOG = logging.getLogger(__name__+'.PMConvolve') + + def __init__(self, a, projector, b_0=1, geometry='disc'): + self.LOG.debug('Calling __init__') assert isinstance(projector, Projector), 'Argument has to be a Projector object!' self.a = a self.projector = projector self.b_0 = b_0 - self.threshold = threshold self.kernel = Kernel(a, projector.dim_uv, b_0, geometry) + self.LOG.debug('Created '+str(self)) def __call__(self, mag_data): - # Docstring! + self.LOG.debug('Calling __call__') + assert isinstance(mag_data, MagData), 'Only MagData objects can be mapped!' + assert mag_data.a == self.a, 'Grid spacing has to match!' + assert mag_data.dim == self.projector.dim, 'Dimensions do not match!' # Process input parameters: - u_mag, v_mag = self.projector(mag_data.mag_vec).reshape((2,)+self.projector.dim_uv) + u_mag, v_mag = self.projector(mag_data.mag_vec).reshape((2,)+self.projector.dim_uv) # Fourier transform the projected magnetisation: kernel = self.kernel u_mag_fft = np.fft.rfftn(u_mag, kernel.dim_fft) @@ -237,35 +302,52 @@ class PMConvolve(PhaseMapper): # Return the result: return PhaseMap(self.a, u_phase-v_phase) + def __repr__(self): + self.LOG.debug('Calling __repr__') + return '%s(a=%r, projector=%r, b_0=%r, geometry=%r)' % \ + (self.__class__, self.a, self.projector, self.b_0, self.geometry) + + def __str__(self): + self.LOG.debug('Calling __str__') + return 'PMConvolve(a=%s, projector=%s, b_0=%s, geometry=%s)' % \ + (self.a, self.projector, self.b_0, self.geometry) + class PMReal(PhaseMapper): + '''Class representing a phase mapping strategy using real space discretization. + + The :class:`~.PMReal` class represents a phase mapping strategy involving discretization in + real space. It directly takes :class:`~.MagData` objects and returns :class:`~.PhaseMap` + objects. + + Attributes + ---------- + a : float + The grid spacing in nm. + projector : :class:`~.Projector` + Projector which should be used for the projection of the 3-dimensional magnetization + distribution. + b_0 : float, optional + The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T. + The default is 1. + threshold : float, optional + Threshold determining for which voxels the phase contribution will be calculated. The + default is 0, which means that all voxels with non-zero magnetization will contribute. + Should be above noise level. + geometry : {'disc', 'slab'}, optional + Elementary geometry which is used for the phase contribution of one pixel. + Default is 'disc'. + numcore : boolean, optional + Boolean choosing if Cython enhanced routines from the :module:`~.pyramid.numcore` module + should be used. Default is True. + + ''' + + LOG = logging.getLogger(__name__+'.PMReal') + def __init__(self, a, projector, b_0=1, threshold=0, geometry='disc', numcore=True): - '''Calculate the magnetic phase from magnetization data (pure real space, no FFT-convolution). - - Parameters - ---------- - a : float - The grid spacing in nm. - projection : tuple (N=3) of :class:`~numpy.ndarray` (N=2) - The in-plane projection of the magnetization as a tuple, storing the `u`- and `v`-component - of the magnetization and the thickness projection for the resulting 2D-grid. - geometry : {'disc', 'slab'}, optional - Specifies the elemental geometry to use for the pixel field. - The default is 'disc', because of the smaller computational overhead. - b_0 : float, optional - The magnetic induction corresponding to a magnetization `M`\ :sub:`0` in T. - The default is 1. - jacobi : :class:`~numpy.ndarray` (N=2), optional - Specifies the matrix in which to save the jacobi matrix. The jacobi matrix will not be - calculated, if no matrix is specified (default), resulting in a faster computation. - - Returns - ------- - phase : :class:`~numpy.ndarray` (N=2) - The phase as a 2-dimensional array. - - ''' # Docstring! + self.LOG.debug('Calling __init__') assert isinstance(projector, Projector), 'Argument has to be a Projector object!' self.a = a self.projector = projector @@ -273,10 +355,14 @@ class PMReal(PhaseMapper): self.threshold = threshold self.kernel = Kernel(a, projector.dim_uv, b_0, geometry) self.numcore = numcore + self.LOG.debug('Created '+str(self)) def __call__(self, mag_data): - # TODO: Docstring - # Process input parameters: + self.LOG.debug('Calling __call__') + assert isinstance(mag_data, MagData), 'Only MagData objects can be mapped!' + assert mag_data.a == self.a, 'Grid spacing has to match!' + assert mag_data.dim == self.projector.dim, 'Dimensions do not match!' + # Process input parameters: dim_uv = self.projector.dim_uv threshold = self.threshold u_mag, v_mag = self.projector(mag_data.mag_vec).reshape((2,)+dim_uv) @@ -301,3 +387,14 @@ class PMReal(PhaseMapper): phase -= v_mag[j, i] * v_phase # Return the phase: return PhaseMap(self.a, phase) + + def __repr__(self): + self.LOG.debug('Calling __repr__') + return '%s(a=%r, projector=%r, b_0=%r, threshold=%r, geometry=%r, numcore=%r)' % \ + (self.__class__, self.a, self.projector, self.b_0, + self.threshold, self.geometry, self.numcore) + + def __str__(self): + self.LOG.debug('Calling __str__') + return 'PMReal(a=%s, projector=%s, b_0=%s, threshold=%s, geometry=%s, numcore=%s)' % \ + (self.a, self.projector, self.b_0, self.threshold, self.geometry, self.numcore) diff --git a/pyramid/projector.py b/pyramid/projector.py index fd57f77416f4cb9c58101520d3d6d822e455ef1d..452bd873f51a3cd00c3673a29854796bc1624785 100644 --- a/pyramid/projector.py +++ b/pyramid/projector.py @@ -3,8 +3,6 @@ projections of vector and scalar fields.""" -import logging - import numpy as np from numpy import pi @@ -14,11 +12,13 @@ import itertools from scipy.sparse import coo_matrix, csr_matrix +import logging + class Projector(object): '''Abstract base class representing a projection function. - + The :class:`~.Projector` class represents a projection function for a 3-dimensional vector- or scalar field onto a 2-dimensional grid. :class:`~.Projector` is an abstract base class and provides a unified interface which should be subclassed with a custom @@ -30,6 +30,8 @@ class Projector(object): Attributes ---------- + dim : tuple (N=3) + Dimensions (z, y, x) of the magnetization distribution. dim_uv : tuple (N=2) Dimensions (v, u) of the projected grid. size_3d : int @@ -46,24 +48,50 @@ class Projector(object): ''' __metaclass__ = abc.ABCMeta + LOG = logging.getLogger(__name__+'.Projector') @abc.abstractmethod - def __init__(self, dim_uv, weight, coeff): - self.log = logging.getLogger(__name__) - self.log.info('Calling __init__') + def __init__(self, dim, dim_uv, weight, coeff): + self.LOG.debug('Calling __init__') + self.dim = dim self.dim_uv = dim_uv self.weight = weight self.coeff = coeff self.size_2d, self.size_3d = weight.shape - self.log.info('Created '+str(self)) + self.LOG.debug('Created '+str(self)) + + def __repr__(self): + self.LOG.debug('Calling __repr__') + return '%s(dim=%r, dim_uv=%r, weight=%r, coeff=%r)' % \ + (self.__class__, self.dim, self.dim_uv, self.weight, self.coeff) + + def __str__(self): + self.LOG.debug('Calling __str__') + return 'Projector(dim=%s, dim_uv=%s, coeff=%s)' % (self.dim, self.dim_uv, self.coeff) def __call__(self, vector): - self.log.info('Calling as function') -# print 'Projector - __call__:', len(vector) + self.LOG.debug('Calling as function') return self.jac_dot(vector) + @abc.abstractmethod + def get_info(self): + '''Get specific information about the projector as a string. + + Paramters + --------- + None + + Returns + ------- + info : string + Information about the projector as a string, e.g. for the use in plot titles. + + ''' + raise NotImplementedError() + + def _vector_field_projection(self, vector): - self.log.info('Calling _vector_field_projection') + self.LOG.debug('Calling _vector_field_projection') size_2d, size_3d = self.size_2d, self.size_3d result = np.zeros(2*size_2d) # Go over all possible component projections (z, y, x) to (u, v): @@ -82,7 +110,7 @@ class Projector(object): return result def _vector_field_projection_T(self, vector): - self.log.info('Calling _vector_field_projection_T') + self.LOG.debug('Calling _vector_field_projection_T') size_2d, size_3d = self.size_2d, self.size_3d result = np.zeros(3*size_3d) # Go over all possible component projections (u, v) to (z, y, x): @@ -101,11 +129,11 @@ class Projector(object): return result def _scalar_field_projection(self, vector): - self.log.info('Calling _scalar_field_projection') + self.LOG.debug('Calling _scalar_field_projection') return np.array(self.weight.dot(vector)) def _scalar_field_projection_T(self, vector): - self.log.info('Calling _scalar_field_projection_T') + self.LOG.debug('Calling _scalar_field_projection_T') return np.array(self.weight.T.dot(vector)) def jac_dot(self, vector): @@ -124,91 +152,180 @@ class Projector(object): always`size_2d`. ''' - self.log.info('Calling jac_dot') -# print 'Projector - jac_dot:', len(vector) + self.LOG.debug('Calling jac_dot') if len(vector) == 3*self.size_3d: # mode == 'vector' - self.log.info('mode == vector') + self.LOG.debug('mode == vector') return self._vector_field_projection(vector) elif len(vector) == self.size_3d: # mode == 'scalar' - self.log.info('mode == scalar') + self.LOG.debug('mode == scalar') return self._scalar_field_projection(vector) else: raise AssertionError('Vector size has to be suited either for ' \ 'vector- or scalar-field-projection!') def jac_T_dot(self, vector): - # TODO: Docstring! - self.log.info('Calling jac_T_dot') -# print 'Projector - jac_T_dot:', len(vector) + '''Multiply a `vector` with the transp. jacobi matrix of this :class:`~.Projector` object. + + Parameters + ---------- + vector : :class:`~numpy.ndarray` (N=1) + Vector containing the field which should be projected. Must have the same or 2 times + the size of `size_2d` of the projector for scalar and vector projection, respectively. + + Returns + ------- + proj_vector : :class:`~numpy.ndarray` (N=1) + Vector containing the multiplication of the input with the transposed jacobi matrix + of the :class:`~.Projector` object. + + ''' + self.LOG.debug('Calling jac_T_dot') if len(vector) == 2*self.size_2d: # mode == 'vector' - self.log.info('mode == vector') + self.LOG.debug('mode == vector') return self._vector_field_projection_T(vector) elif len(vector) == self.size_2d: # mode == 'scalar' - self.log.info('mode == scalar') + self.LOG.debug('mode == scalar') return self._scalar_field_projection_T(vector) else: raise AssertionError('Vector size has to be suited either for ' \ 'vector- or scalar-field-projection!') +class XTiltProjector(Projector): + + '''Class representing a projection function with a tilt around the x-axis. + + The :class:`~.XTiltProjector` class represents a projection function for a 3-dimensional + vector- or scalar field onto a 2-dimensional grid, which is a concrete subclass of + :class:`~.Projector`. + + Attributes + ---------- + dim : tuple (N=3) + Dimensions (z, y, x) of the magnetization distribution. + tilt : float + Angle in `rad` describing the tilt of the beam direction relative to the x-axis. + + ''' + + LOG = logging.getLogger(__name__+'.XTiltProjector') + + def __init__(self, dim, tilt): + + def get_position(p, m, b, size): + self.LOG.debug('Calling get_position') + y, x = np.array(p)[:, 0]+0.5, np.array(p)[:, 1]+0.5 + return (y-m*x-b)/np.sqrt(m**2+1) + size/2. + + def get_impact(pos, r, size): + self.LOG.debug('Calling get_impact') + return [x for x in np.arange(np.floor(pos-r), np.floor(pos+r)+1, dtype=int) + if 0 <= x < size] + + def get_weight(delta, rho): # use circles to represent the voxels + self.LOG.debug('Calling get_weight') + lo, up = delta-rho, delta+rho + # Upper boundary: + if up >= 1: + w_up = 0.5 + else: + w_up = (up*np.sqrt(1-up**2) + np.arctan(up/np.sqrt(1-up**2))) / pi + # Lower boundary: + if lo <= -1: + w_lo = -0.5 + else: + w_lo = (lo*np.sqrt(1-lo**2) + np.arctan(lo/np.sqrt(1-lo**2))) / pi + return w_up - w_lo + + self.LOG.debug('Calling __init__') + self.tilt = tilt + # Set starting variables: + # length along projection (proj, z), perpendicular (perp, y) and rotation (rot, x) axis: + dim_proj, dim_perp, dim_rot = dim + size_2d = dim[1] * dim[2] # x-y-plane + size_3d = np.prod(dim) + # Creating coordinate list of all voxels: + voxels = list(itertools.product(range(dim_proj), range(dim_perp))) # z-y-plane + # Calculate positions along the projected pixel coordinate system: + center = (dim_proj/2., dim_perp/2.) + m = np.where(tilt<=pi, -1/np.tan(tilt+1E-30), 1/np.tan(tilt+1E-30)) + b = center[0] - m * center[1] + positions = get_position(voxels, m, b, dim_perp) + # Calculate weight-matrix: + r = 1/np.sqrt(np.pi) # radius of the voxel circle + rho = 0.5 / r + row = [] + col = [] + data = [] + # one slice: + for i, voxel in enumerate(voxels): + impacts = get_impact(positions[i], r, dim_perp) # impact along y axis + for impact in impacts: + distance = np.abs(impact+0.5 - positions[i]) + delta = distance / r + col.append(voxel[0]*size_2d + voxel[1]*dim_rot) # 0: z, 1: y + row.append(impact*dim_rot) + data.append(get_weight(delta, rho)) + # All other slices (along x): + columns = col + rows = row + for i in np.arange(1, dim_rot): + columns = np.hstack((np.array(columns), np.array(col)+i)) + rows = np.hstack((np.array(rows), np.array(row)+i)) + # Calculate weight matrix and coefficients for jacobi matrix: + weight = csr_matrix(coo_matrix((np.tile(data, dim_rot), (rows, columns)), + shape = (size_2d, size_3d))) + dim_v, dim_u = dim_perp, dim_rot + coeff = [[1, 0, 0], [0, np.cos(tilt), np.sin(tilt)]] + super(XTiltProjector, self).__init__(dim, (dim_v, dim_u), weight, coeff) + self.LOG.debug('Created '+str(self)) + + def get_info(self): + '''Get specific information about the projector as a string. + + Paramters + --------- + None + + Returns + ------- + info : string + Information about the projector as a string, e.g. for the use in plot titles. + + ''' + return 'x-tilt: $(\phi = {:2.1f} \pi)$'.format(self.tilt) + class YTiltProjector(Projector): -# '''Class representing a projection where the projection axis is tilted around the y-axis. -# -# The :class:`~.YTiltProjector` class is a concrete subclass of the :class:`~.Projector` class -# and overwrites the :func:`__init__` constructor which accepts `dim` and `tilt` as arguments. -# The dimensions of the 3-dimensional grid are given by `dim`, the tilting angle of the ample -# around the y-axis is given by `tilt`. -# -# Attributes -# ---------- -# dim_uv : tuple (N=2) -# Dimensions (v, u) of the projected grid. -# size_3d : int -# Number of voxels of the 3-dimensional grid. -# size_2d : int -# Number of pixels of the 2-dimensional projected grid. -# weight : :class:`~scipy.sparse.csr_matrix` (N=2) -# The weight matrix containing the weighting coefficients describing the influence of all -# 3-dimensional voxels on the 2-dimensional pixels of the projection. -# coeff : list (N=2) -# List containing the six weighting coefficients describing the influence of the 3 components -# of a 3-dimensional vector field on the 2 projected components. -# ''' -# -# ''' -# weight : :class:`~scipy.sparse.csr_matrix` (N=2) -# The weight matrix containing the weighting coefficients which determine the influence of -# all 3-dimensional voxels to the 2-dimensional pixels of the projection. -# coeff : `list`t (N=2) -# List containing the six weighting coefficients describing the influence of the 3 components -# of a 3-dimensional vector fields on the 2 components of the projected field. Only used for -# vector field projection. -# -# Notes -# ----- -# An instance `projector` of the :class:`~.YSimpleProjector` class is callable via: -# -# :func:`projector(vector)` -# -# with `vector` being a :class:`~numpy.ndarray` (N=1). -# ''' + '''Class representing a projection function with a tilt around the y-axis. + + The :class:`~.YTiltProjector` class represents a projection function for a 3-dimensional + vector- or scalar field onto a 2-dimensional grid, which is a concrete subclass of + :class:`~.Projector`. + + Attributes + ---------- + dim : tuple (N=3) + Dimensions (z, y, x) of the magnetization distribution. + tilt : float + Angle in `rad` describing the tilt of the beam direction relative to the y-axis. + + ''' + + LOG = logging.getLogger(__name__+'.YTiltProjector') def __init__(self, dim, tilt): def get_position(p, m, b, size): - self.log.info('Calling get_position') y, x = np.array(p)[:, 0]+0.5, np.array(p)[:, 1]+0.5 return (y-m*x-b)/np.sqrt(m**2+1) + size/2. - + def get_impact(pos, r, size): - self.log.info('Calling get_impact') return [x for x in np.arange(np.floor(pos-r), np.floor(pos+r)+1, dtype=int) if 0 <= x < size] - + def get_weight(delta, rho): # use circles to represent the voxels - self.log.info('Calling get_weight') lo, up = delta-rho, delta+rho # Upper boundary: if up >= 1: @@ -222,16 +339,15 @@ class YTiltProjector(Projector): w_lo = (lo*np.sqrt(1-lo**2) + np.arctan(lo/np.sqrt(1-lo**2))) / pi return w_up - w_lo - self.log = logging.getLogger(__name__) - self.log.info('Calling __init__') + self.LOG.debug('Calling __init__') self.tilt = tilt # Set starting variables: # length along projection (proj, z), rotation (rot, y) and perpendicular (perp, x) axis: dim_proj, dim_rot, dim_perp = dim - size_2d = dim_rot * dim_perp - size_3d = dim_proj * dim_rot * dim_perp + size_2d = dim[1] * dim[2] # x-y-plane + size_3d = np.prod(dim) # Creating coordinate list of all voxels: - voxels = list(itertools.product(range(dim_proj), range(dim_perp))) + voxels = list(itertools.product(range(dim_proj), range(dim_perp))) # z-x-plane # Calculate positions along the projected pixel coordinate system: center = (dim_proj/2., dim_perp/2.) m = np.where(tilt<=pi, -1/np.tan(tilt+1E-30), 1/np.tan(tilt+1E-30)) @@ -245,17 +361,17 @@ class YTiltProjector(Projector): data = [] # one slice: for i, voxel in enumerate(voxels): - impacts = get_impact(positions[i], r, dim_perp) + impacts = get_impact(positions[i], r, dim_perp) # impact along x axis for impact in impacts: distance = np.abs(impact+0.5 - positions[i]) delta = distance / r - col.append(voxel[0]*size_2d + voxel[1]) + col.append(voxel[0]*size_2d + voxel[1]) # 0: z, 1: x row.append(impact) data.append(get_weight(delta, rho)) - # All other slices: + # All other slices (along y): columns = col rows = row - for i in np.arange(1, dim_rot): # TODO: more efficient, please! + for i in np.arange(1, dim_rot): columns = np.hstack((np.array(columns), np.array(col)+i*dim_perp)) rows = np.hstack((np.array(rows), np.array(row)+i*dim_perp)) # Calculate weight matrix and coefficients for jacobi matrix: @@ -263,50 +379,49 @@ class YTiltProjector(Projector): shape = (size_2d, size_3d))) dim_v, dim_u = dim_rot, dim_perp coeff = [[np.cos(tilt), 0, np.sin(tilt)], [0, 1, 0]] - super(YTiltProjector, self).__init__((dim_v, dim_u), weight, coeff) - self.log.info('Created '+str(self)) + super(YTiltProjector, self).__init__(dim, (dim_v, dim_u), weight, coeff) + self.LOG.debug('Created '+str(self)) + + def get_info(self): + '''Get specific information about the projector as a string. + + Paramters + --------- + None + + Returns + ------- + info : string + Information about the projector as a string, e.g. for the use in plot titles. + + ''' + return 'y-tilt: $(\phi = {:2.1f} \pi)$'.format(self.tilt) class SimpleProjector(Projector): -# '''Class representing a projection along one of the major axes (x, y, z). -# -# The :class:`~.SimpleProjector` class is a concrete subclass of the :class:`~.Projector` class -# and overwrites the :func:`__init__` constructor which accepts `dim` and `axis` as arguments. -# The dimensions of the 3-dimensional grid are given by `dim`, the major axis along which to -# project is given by `axis` and can be `'x'`, `'y'` or `'z'` (default). -# -# Attributes -# ---------- -# dim_uv : tuple (N=2) -# Dimensions (v, u) of the projected grid. -# weight : :class:`~scipy.sparse.csr_matrix` (N=2) -# The weight matrix containing the weighting coefficients which determine the influence of -# all 3-dimensional voxels to the 2-dimensional pixels of the projection. -# coeff : list (N=2) -# List containing the six weighting coefficients describing the influence of the 3 components -# of a 3-dimensional vector fields on the 2 components of the projected field. Only used for -# vector field projection. -# size_3d : int -# Number of voxels of the 3-dimensional grid. -# size_2d : int -# Number of pixels of the 2-dimensional projected grid. -# -# Notes -# ----- -# An instance `projector` of the :class:`~.SimpleProjector` class is callable via: -# -# :func:`projector(vector)` -# -# with `vector` being a :class:`~numpy.ndarray` (N=1). -# -# ''' + '''Class representing a projection function along one of the major axes. + + The :class:`~.SimpleProjector` class represents a projection function for a 3-dimensional + vector- or scalar field onto a 2-dimensional grid, which is a concrete subclass of + :class:`~.Projector`. + + Attributes + ---------- + dim : tuple (N=3) + Dimensions (z, y, x) of the magnetization distribution. + axis : {'z', 'y', 'x'}, optional + Main axis along which the magnetic distribution is projected (given as a string). Defaults + to the z-axis. + + ''' + LOG = logging.getLogger(__name__+'.SimpleProjector') AXIS_DICT = {'z': (0, 1, 2), 'y': (1, 0, 2), 'x': (1, 2, 0)} def __init__(self, dim, axis='z'): - self.log = logging.getLogger(__name__) - self.log.info('Calling __init__') + self.LOG.debug('Calling __init__') + assert axis in {'z', 'y', 'x'}, 'Projection axis has to be x, y or z (given as a string)!' proj, v, u = self.AXIS_DICT[axis] dim_proj, dim_v, dim_u = dim[proj], dim[v], dim[u] dim_z, dim_y, dim_x = dim @@ -315,17 +430,35 @@ class SimpleProjector(Projector): data = np.repeat(1, size_3d) indptr = np.arange(0, size_3d+1, dim_proj) if axis == 'z': + self.LOG.debug('Projecting along the z-axis') coeff = [[1, 0, 0], [0, 1, 0]] - indices = np.array([np.arange(row, size_3d, size_2d) + indices = np.array([np.arange(row, size_3d, size_2d) for row in range(size_2d)]).reshape(-1) elif axis == 'y': + self.LOG.debug('Projection along the y-axis') coeff = [[1, 0, 0], [0, 0, 1]] indices = np.array([np.arange(row%dim_x, dim_x*dim_y, dim_x)+int(row/dim_x)*dim_x*dim_y for row in range(size_2d)]).reshape(-1) elif axis == 'x': + self.LOG.debug('Projection along the x-axis') coeff = [[0, 1, 0], [0, 0, 1]] indices = np.array([np.arange(dim_proj) + row*dim_proj for row in range(size_2d)]).reshape(-1) weight = csr_matrix((data, indices, indptr), shape = (size_2d, size_3d)) - super(SimpleProjector, self).__init__((dim_v, dim_u), weight, coeff) - self.log.info('Created '+str(self)) + super(SimpleProjector, self).__init__(dim, (dim_v, dim_u), weight, coeff) + self.LOG.debug('Created '+str(self)) + + def get_info(self): + '''Get specific information about the projector as a string. + + Paramters + --------- + None + + Returns + ------- + info : string + Information about the projector as a string, e.g. for the use in plot titles. + + ''' + return 'projected along {}-axis'.format(self.tilt) diff --git a/pyramid/reconstruction.py b/pyramid/reconstruction.py new file mode 100644 index 0000000000000000000000000000000000000000..fb8a20f8c9d2911f06ea928a865d9cf50cad9661 --- /dev/null +++ b/pyramid/reconstruction.py @@ -0,0 +1,117 @@ +# -*- coding: utf-8 -*- +"""Reconstruct magnetic distributions from given phasemaps. + +This module reconstructs 3-dimensional magnetic distributions (as :class:`~pyramid.magdata.MagData` +objects) from a given set of phase maps (represented by :class:`~pyramid.phasemap.PhaseMap` +objects) by using several model based reconstruction algorithms which use the forward model +provided by :mod:`~pyramid.projector` and :mod:`~pyramid.phasemapper` and a priori knowledge of +the distribution. + +""" + + +import numpy as np + +from scipy.sparse.linalg import cg + +from pyramid.kernel import Kernel +from pyramid.forwardmodel import ForwardModel +from pyramid.costfunction import Costfunction, CFAdapterScipyCG +from pyramid.magdata import MagData + +import logging + + +LOG = logging.getLogger(__name__) + + +class PrintIterator(object): + + '''Iterator class which is responsible to give feedback during reconstruction iterations. + + Parameters + ---------- + cost : :class:`~.Costfunction` + :class:`~.Costfunction` class for outputting the `cost` of the current magnetization + distribution. This should decrease per iteration if the algorithm converges and is only + printed for a `verbosity` of 2. + verbosity : {2, 1, 0}, optional + Parameter defining the verposity of the output. `2` is the default and will show the + current number of the iteration and the cost of the current distribution. `2` will just + show the iteration number and `0` will prevent output all together. + + Notes + ----- + Normally this class should not be used by the user and is instantiated whithin the + :mod:`~.reconstruction` module itself. + + ''' + + LOG = logging.getLogger(__name__+'.PrintIterator') + + def __init__(self, cost, verbosity=2): + self.LOG.debug('Calling __init__') + self.cost = cost + self.verbosity = verbosity + assert verbosity in {0, 1, 2}, 'verbosity has to be set to 0, 1 or 2!' + self.iteration = 0 + self.LOG.debug('Created '+str(self)) + + def __call__(self, xk): + self.LOG.debug('Calling __call__') + if self.verbosity == 0: + return + print 'iteration #', self.next(), + if self.verbosity > 1: + print 'cost =', self.cost(xk) + else: + print '' + + def __repr__(self): + self.LOG.debug('Calling __repr__') + return '%s(cost=%r, verbosity=%r)' % (self.__class__, self.cost, self.verbosity) + + def __str__(self): + self.LOG.debug('Calling __str__') + return 'PrintIterator(cost=%s, verbosity=%s)' % (self.cost, self.verbosity) + + def next(self): + self.iteration += 1 + return self.iteration + + +def optimize_sparse_cg(data, verbosity=2): + '''Reconstruct a three-dimensional magnetic distribution from given phase maps via the + conjugate gradient optimizaion method :func:`~.scipy.sparse.linalg.cg`. + + Parameters + ---------- + data : :class:`~.DataSet` + :class:`~.DataSet` object containing all phase maps in :class:`~.PhaseMap` objects and all + projection directions in :class:`~.Projector` objects. These provide the essential + information for the reconstruction. + verbosity : {2, 1, 0}, optional + Parameter defining the verposity of the output. `2` is the default and will show the + current number of the iteration and the cost of the current distribution. `2` will just + show the iteration number and `0` will prevent output all together. + + Returns + ------- + mag_data : :class:`~pyramid.magdata.MagData` + The reconstructed magnetic distribution as a :class:`~.MagData` object. + + ''' + LOG.debug('Calling optimize_sparse_cg') + # Set up necessary objects: + y = data.phase_vec + kernel = Kernel(data.a, data.dim_uv, data.b_0) + fwd_model = ForwardModel(data.projectors, kernel) + cost = Costfunction(y, fwd_model, lam=10**-10) + # Optimize: + A = CFAdapterScipyCG(cost) + b = fwd_model.jac_T_dot(None, y) + x_opt, info = cg(A, b, callback=PrintIterator(cost, verbosity)) + # Create and return fitting MagData object: + mag_opt = MagData(fwd_model.a, np.zeros((3,)+fwd_model.dim)) + mag_opt.mag_vec = x_opt + return mag_opt diff --git a/scripts/abstract_pictures.py b/scripts/abstract_pictures.py new file mode 100644 index 0000000000000000000000000000000000000000..cb20acdbc1e3e3d52ea26d1277887443d2dec8d7 --- /dev/null +++ b/scripts/abstract_pictures.py @@ -0,0 +1,115 @@ +# -*- coding: utf-8 -*- +""" +Created on Mon Mar 17 14:28:10 2014 + +@author: Jan +""" + + +from numpy import pi +import numpy as np +import matplotlib.pyplot as plt +from matplotlib.ticker import FuncFormatter + +import pyramid.magcreator as mc +from pyramid.magdata import MagData +from pyramid.projector import SimpleProjector, YTiltProjector +from pyramid.phasemapper import PMConvolve + + +################################################################################################### +print('Jan') + +dim = (128, 128, 128) +center = (int(dim[0]/2), int(dim[1]/2), int(dim[2]/2)) +radius = dim[0]/4. +a = 1. + +magnitude = mc.create_mag_dist_homog(mc.Shapes.sphere(dim, center, radius), pi/4) + +mag_data = MagData(a, magnitude) + +projector = SimpleProjector(dim) + +phase_map = PMConvolve(a, projector)(mag_data) + +axis = phase_map.display_phase() +axis.tick_params(axis='both', which='major', labelsize=18) +axis.set_title('Phase map', fontsize=24) +axis.set_xlabel('x [nm]', fontsize=18) +axis.set_ylabel('y [nm]', fontsize=18) + +axis = phase_map.display_holo(density=20, interpolation='bilinear') +axis.tick_params(axis='both', which='major', labelsize=18) +axis.set_title('Magnetic induction map', fontsize=24) +axis.set_xlabel('x [nm]', fontsize=18) +axis.set_ylabel('y [nm]', fontsize=18) + +mag_data.scale_down(2) + +mag_data.quiver_plot() +axis = plt.gca() +axis.tick_params(axis='both', which='major', labelsize=18) +axis.set_title('Magnetization distribution', fontsize=24) +axis.set_xlabel('x [nm]', fontsize=18) +axis.set_ylabel('y [nm]', fontsize=18) + +phase_map.make_color_wheel() + +shape_vort = mc.Shapes.disc((64, 64, 64), (31.5, 31.5, 31.5), 24, 10) + +magnitude_vort = mc.create_mag_dist_vortex(shape_vort) + +mag_vort = MagData(a, magnitude_vort) + +mag_vort.scale_down(2) + +mag_vort.quiver_plot() + + +################################################################################################### +print('Patrick') + +a = 10.0 # nm +b_0 = 3 # T + +dim = (128, 128, 128) +center = (int(dim[0]/2), int(dim[1]/2), int(dim[2]/2)) # in px (z, y, x), index starts with 0! + +mag_data = MagData(a, mc.create_mag_dist_homog(mc.Shapes.ellipse(dim, center, (20., 60.), 5.), 0)) + +tilts = np.array([0., 60.])/180.*pi + +projectors = [YTiltProjector(mag_data.dim, tilt) for tilt in tilts] +phasemappers = [PMConvolve(mag_data.a, proj, b_0) for proj in projectors] + +phase_maps = [pm(mag_data) for pm in phasemappers] + +axis = phase_maps[0].display_holo(density=1, interpolation='bilinear') +axis.tick_params(axis='both', which='major', labelsize=18) +axis.set_title('Magnetic induction map', fontsize=24) +axis.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*a))) +axis.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*a))) +axis.set_xlabel('x [nm]', fontsize=18) +axis.set_ylabel('y [nm]', fontsize=18) + +axis = phase_maps[0].display_phase(limit=17) +axis.tick_params(axis='both', which='major', labelsize=18) +axis.set_title('Phase map', fontsize=24) +axis.set_xlabel('x [nm]', fontsize=18) +axis.set_ylabel('y [nm]', fontsize=18) + +axis = phase_maps[1].display_holo(density=1, interpolation='bilinear') +axis.tick_params(axis='both', which='major', labelsize=18) +axis.set_title('Magnetic induction map', fontsize=24) +axis.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*a))) +axis.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{:g}'.format(x*a))) +axis.set_xlabel('x [nm]', fontsize=18) +axis.set_ylabel('y [nm]', fontsize=18) + +axis = phase_maps[1].display_phase(limit=17) +axis.tick_params(axis='both', which='major', labelsize=18) +axis.set_title('Phase map', fontsize=24) +axis.set_xlabel('x [nm]', fontsize=18) +axis.set_ylabel('y [nm]', fontsize=18) + diff --git a/scripts/compare methods/logfile.log b/scripts/compare methods/logfile.log deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/scripts/create distributions/logfile.log b/scripts/create distributions/logfile.log deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/scripts/edinburgh_test.py b/scripts/edinburgh_test.py index 27bf0ccb94e3bd79a3db93a72a97726544988ed8..42fcf2755576e5f0812b118db84777a462739354 100644 --- a/scripts/edinburgh_test.py +++ b/scripts/edinburgh_test.py @@ -9,7 +9,7 @@ Created on Tue Jan 28 15:15:08 2014 import numpy as np from pyramid.magdata import MagData from pyramid.projector import SimpleProjector -from pyramid.phasemapper import PMAdapterFM +from pyramid.phasemapper import PMAdapterFM, PMFourier from matplotlib.ticker import FuncFormatter data = np.loadtxt('../output/data from Edinburgh/long_grain_remapped_0p0035.txt', delimiter=',') @@ -28,17 +28,18 @@ magnitude = np.array((x_mag, y_mag, z_mag)) mag_data = MagData(a, magnitude) -mag_data.pad(30, 20, 0) - -mag_data.scale_up() - -mag_data.quiver_plot() +#mag_data.pad(30, 20, 0) +# +#mag_data.scale_up() +# +#mag_data.quiver_plot() #mag_data.quiver_plot3d() projector = SimpleProjector(mag_data.dim) phasemapper = PMAdapterFM(mag_data.a, projector) +phasemapper = PMFourier(mag_data.a, projector, padding = 1) phase_map = phasemapper(mag_data) diff --git a/scripts/interactive_setup.py b/scripts/interactive_setup.py index 888286d3fdf621f8d13ad81eb30102dd8aaa77bf..804a13f0eb68a62b278ba1eccc1ea46b4c906c91 100644 --- a/scripts/interactive_setup.py +++ b/scripts/interactive_setup.py @@ -1,14 +1,21 @@ # -*- coding: utf-8 -*- """Imports pyramid package and sets working directory to output directory""" -import pyramid.analytic as an -import pyramid.holoimage as hi + import pyramid.magcreator as mc -import pyramid.phasemapper as pm -import pyramid.projector as pj -import pyramid.reconstructor as rc -from pyramid.magdata import MagData -from pyramid.phasemap import PhaseMap +import pyramid.analytic as an +import pyramid.reconstruction as rc + +from pyramid.magdata import * +from pyramid.projector import * +from pyramid.kernel import * +from pyramid.phasemapper import * +from pyramid.phasemap import * +from pyramid.dataset import * +from pyramid.forwardmodel import * +from pyramid.costfunction import * import os -os.chdir('C:\\Users\\Jan\\Home\\PhD Thesis\\Pyramid\\tests') + + +os.chdir('C:\\Users\\Jan\\Home\\PhD Thesis\\Pyramid\\output') diff --git a/scripts/logfile.log b/scripts/logfile.log deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/scripts/paper 1/logfile.log b/scripts/paper 1/logfile.log deleted file mode 100644 index 3bc36a622a0509babe71d2f0c852fbaa75e3b78a..0000000000000000000000000000000000000000 --- a/scripts/paper 1/logfile.log +++ /dev/null @@ -1,84 +0,0 @@ -2014-02-18 09:30:30: INFO @ <pyramid.projector>: Calling __init__ -2014-02-18 09:30:30: INFO @ <pyramid.projector>: Calling __init__ -2014-02-18 09:30:30: INFO @ <pyramid.projector>: Created <pyramid.projector.SimpleProjector object at 0x0DC7ECD0> -2014-02-18 09:30:30: INFO @ <pyramid.projector>: Created <pyramid.projector.SimpleProjector object at 0x0DC7ECD0> -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:30: INFO @ <pyramid.projector>: Calling as function -2014-02-18 09:30:30: INFO @ <pyramid.projector>: mode == vector -2014-02-18 09:30:30: INFO @ <pyramid.projector>: Calling _vector_field_projection -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __sub__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __neg__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __add__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Adding two PhaseMap objects -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling display_phase -2014-02-18 09:30:30: INFO @ <pyramid.projector>: Calling as function -2014-02-18 09:30:30: INFO @ <pyramid.projector>: mode == vector -2014-02-18 09:30:30: INFO @ <pyramid.projector>: Calling _vector_field_projection -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __sub__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __neg__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __add__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Adding two PhaseMap objects -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __isub__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __sub__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __add__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Adding an offset -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:30: INFO @ <pyramid.phasemap>: Calling display_phase -2014-02-18 09:30:31: INFO @ <pyramid.projector>: Calling as function -2014-02-18 09:30:31: INFO @ <pyramid.projector>: mode == vector -2014-02-18 09:30:31: INFO @ <pyramid.projector>: Calling _vector_field_projection -2014-02-18 09:30:31: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:31: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:31: INFO @ <pyramid.phasemap>: Calling __sub__ -2014-02-18 09:30:31: INFO @ <pyramid.phasemap>: Calling __neg__ -2014-02-18 09:30:31: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:31: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:31: INFO @ <pyramid.phasemap>: Calling __add__ -2014-02-18 09:30:31: INFO @ <pyramid.phasemap>: Adding two PhaseMap objects -2014-02-18 09:30:31: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:31: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:31: INFO @ <pyramid.phasemap>: Calling display_phase -2014-02-18 09:30:31: INFO @ <pyramid.projector>: Calling as function -2014-02-18 09:30:31: INFO @ <pyramid.projector>: mode == vector -2014-02-18 09:30:31: INFO @ <pyramid.projector>: Calling _vector_field_projection -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Calling __sub__ -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Calling __neg__ -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Calling __add__ -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Adding two PhaseMap objects -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Calling __isub__ -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Calling __sub__ -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Calling __add__ -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Adding an offset -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:32: INFO @ <pyramid.phasemap>: Calling display_phase -2014-02-18 09:30:33: INFO @ <pyramid.projector>: Calling __init__ -2014-02-18 09:30:33: INFO @ <pyramid.projector>: Calling __init__ -2014-02-18 09:30:33: INFO @ <pyramid.projector>: Created <pyramid.projector.SimpleProjector object at 0x0DC7EB70> -2014-02-18 09:30:33: INFO @ <pyramid.projector>: Created <pyramid.projector.SimpleProjector object at 0x0DC7EB70> -2014-02-18 09:30:33: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:33: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) -2014-02-18 09:30:33: INFO @ <pyramid.phasemap>: Calling __str__ -2014-02-18 09:30:33: INFO @ <pyramid.phasemap>: Created PhaseMap(a=1.0, dim_uv=(128, 128)) diff --git a/scripts/simple_reconstruction.py b/scripts/simple_reconstruction.py index f4872723c755f40612dbb937a564e9063fe0093f..45385f9abcb421ea380a589913269ef84df93d2a 100644 --- a/scripts/simple_reconstruction.py +++ b/scripts/simple_reconstruction.py @@ -10,15 +10,17 @@ import numpy as np from numpy import pi from pyramid.magdata import MagData -from pyramid.projector import YTiltProjector +from pyramid.projector import YTiltProjector, XTiltProjector from pyramid.phasemapper import PMConvolve -from pyramid.datacollection import DataCollection +from pyramid.dataset import DataSet +import pyramid.magcreator as mc from pyramid.kernel import Kernel from pyramid.forwardmodel import ForwardModel from pyramid.costfunction import Costfunction +import pyramid.reconstruction as rc -from scipy.sparse.linalg import cg +from scipy.sparse.linalg import cg, LinearOperator ################################################################################################### @@ -41,7 +43,7 @@ phase_maps = [pm(mag_data) for pm in phasemappers] dim_uv = dim[1:3] -data_collection = DataCollection(a, dim_uv, b_0) +data_collection = DataSet(a, dim_uv, b_0) [data_collection.append((phase_maps[i], projectors[i])) for i in range(count)] @@ -100,7 +102,7 @@ phase_maps = [pm(mag_data) for pm in phasemappers] dim_uv = dim[1:3] -data_collection = DataCollection(a, dim_uv, b_0) +data_collection = DataSet(a, dim_uv, b_0) [data_collection.append((phase_maps[i], projectors[i])) for i in range(count)] @@ -166,35 +168,40 @@ print('--STARTING RECONSTRUCTION') ################################################################################################### print('--Generating input phase_maps') -a = 1. +a = 10. b_0 = 1000. -dim = (9, 9, 9) -count = 8 +dim = (8, 8, 8) +count = 32 magnitude = np.zeros((3,)+dim) -magnitude[0, int(dim[0]/2), int(dim[1]/2), int(dim[2]/2)] = 1. +magnitude[:, 3:6, 3:6, 3:6] = 1# int(dim[0]/2), int(dim[1]/2), int(dim[2]/2)] = 1. +magnitude = mc.create_mag_dist_vortex(mc.Shapes.disc(dim, (3.5, 3.5, 3.5), 3, 4)) mag_data = MagData(a, magnitude) mag_data.quiver_plot3d() -tilts = np.linspace(0, 2*pi, num=count, endpoint=False) -projectors = [YTiltProjector(mag_data.dim, tilt) for tilt in tilts] +tilts = np.linspace(0, 2*pi, num=count/2, endpoint=False) +projectors = [] +projectors.extend([XTiltProjector(mag_data.dim, tilt) for tilt in tilts]) +projectors.extend([YTiltProjector(mag_data.dim, tilt) for tilt in tilts]) phasemappers = [PMConvolve(mag_data.a, projector, b_0) for projector in projectors] phase_maps = [pm(mag_data) for pm in phasemappers] -[phase_map.display_phase(title=u'Tilt series $(\phi = {:2.1f} \pi)$'.format(tilts[i]/pi)) - for i, phase_map in enumerate(phase_maps)] +#[phase_map.display_phase(title=u'Tilt series $(\phi = {:2.1f} \pi)$'.format(tilts[i%(count/2)]/pi)) +# for i, phase_map in enumerate(phase_maps)] ################################################################################################### print('--Setting up data collection') dim_uv = dim[1:3] +lam = 10. ** -10 + size_2d = np.prod(dim_uv) size_3d = np.prod(dim) -data_collection = DataCollection(a, dim_uv, b_0) +data_collection = DataSet(a, dim_uv, b_0) [data_collection.append((phase_maps[i], projectors[i])) for i in range(count)] @@ -202,37 +209,62 @@ data = data_collection y = data.phase_vec kern = Kernel(data.a, data.dim_uv, data.b_0) F = ForwardModel(data.projectors, kern) -C = Costfunction(y, F) +C = Costfunction(y, F, lam) ################################################################################################### print('--Test simple solver') -M = np.asmatrix([F.jac_dot(None, np.eye(3*size_3d)[:, i]) for i in range(3*size_3d)]).T -lam = 1*10. ** -10 -MTM = M.T * M + lam * np.asmatrix(np.eye(3*size_3d)) - -A = MTM#np.array([F(np.eye(81)[:, i]) for i in range(81)]) - -b = F.jac_T_dot(None, y) - -b_test = np.asarray((M.T.dot(y)).T)[0] +#M = np.asmatrix([F.jac_dot(None, np.eye(3*size_3d)[:, i]) for i in range(3*size_3d)]).T +#MTM = M.T * M + lam * np.asmatrix(np.eye(3*size_3d)) +#A = MTM#np.array([F(np.eye(81)[:, i]) for i in range(81)]) -x_f = cg(A, b)[0] - -mag_data_rec = MagData(a, np.zeros((3,)+dim)) - -mag_data_rec.mag_vec = x_f - -mag_data_rec.quiver_plot3d() +#class A_adapt(LinearOperator): +# +# def __init__(self, FwdModel, lam, shape): +# self.fwd = FwdModel +# self.lam = lam +# self.shape = shape +# +# def matvec(self, vector): +# return self.fwd.jac_T_dot(None, self.fwd.jac_dot(None, vector)) + self.lam*vector +# +# @property +# def shape(self): +# return self.shape +# +# @property +# def dtype(self): +# return np.dtype("d") # None #np.ones(1).dtype +# +## TODO: .shape in F und C +# +#b = F.jac_T_dot(None, y) +# +#A_fast = A_adapt(F, lam, (3*size_3d, 3*size_3d)) +# +#i = 0 +#def printit(_): +# global i +# i += 1 +# print i +# +#x_f, info = cg(A_fast, b, callback=printit) +# +#mag_data_rec = MagData(a, np.zeros((3,)+dim)) +# +#mag_data_rec.mag_vec = x_f +# +#mag_data_rec.quiver_plot3d() -phase_maps_rec = [pm(mag_data_rec) for pm in phasemappers] -[phase_map.display_phase(title=u'Tilt series (rec.) $(\phi = {:2.1f} \pi)$'.format(tilts[i]/pi)) - for i, phase_map in enumerate(phase_maps_rec)] +#phase_maps_rec = [pm(mag_data_rec) for pm in phasemappers] +#[phase_map.display_phase(title=u'Tilt series (rec.) $(\phi = {:2.1f} \pi)$'.format(tilts[i%(count/2)]/pi)) +# for i, phase_map in enumerate(phase_maps_rec)] +mag_data_opt = rc.optimize_sparse_cg(data_collection) +mag_data_opt.quiver_plot3d() -# #first_guess = MagData(a, np.zeros((3,)+dim)) # #first_guess.magnitude[1, int(dim[0]/2), int(dim[1]/2), int(dim[2]/2)] = 1 @@ -253,6 +285,77 @@ phase_maps_rec = [pm(mag_data_rec) for pm in phasemappers] #phase_opt.display_phase() + +################################################################################################### +print('--Singular value decomposition') + +#a = 1. +#b_0 = 1000. +#dim = (3, 3, 3) +#count = 8 +# +#magnitude = np.zeros((3,)+dim) +#magnitude[:, int(dim[0]/2), int(dim[1]/2), int(dim[2]/2)] = 1. +# +#mag_data = MagData(a, magnitude) +#mag_data.quiver_plot3d() +# +#tilts = np.linspace(0, 2*pi, num=count/2, endpoint=False) +#projectors = [] +#projectors.extend([XTiltProjector(mag_data.dim, tilt) for tilt in tilts]) +#projectors.extend([YTiltProjector(mag_data.dim, tilt) for tilt in tilts]) +#phasemappers = [PMConvolve(mag_data.a, projector, b_0) for projector in projectors] +#phase_maps = [pm(mag_data) for pm in phasemappers] +# +##[phase_map.display_phase(title=u'Tilt series $(\phi = {:2.1f} \pi)$'.format(tilts[i%(count/2)]/pi)) +## for i, phase_map in enumerate(phase_maps)] +# +#dim_uv = dim[1:3] +# +#lam = 10. ** -10 +# +#size_2d = np.prod(dim_uv) +#size_3d = np.prod(dim) +# +# +#data_collection = DataCollection(a, dim_uv, b_0) +# +#[data_collection.append((phase_maps[i], projectors[i])) for i in range(count)] +# +#data = data_collection +#y = data.phase_vec +#kern = Kernel(data.a, data.dim_uv, data.b_0) +#F = ForwardModel(data.projectors, kern) +#C = Costfunction(y, F, lam) +# +#mag_data_opt = opt.optimize_sparse_cg(data_collection) +#mag_data_opt.quiver_plot3d() + + + +#M = np.asmatrix([F.jac_dot(None, np.eye(3*size_3d)[:, i]) for i in range(3*size_3d)]).T +#MTM = M.T * M + lam * np.asmatrix(np.eye(3*size_3d)) +#A = MTM#np.array([F(np.eye(81)[:, i]) for i in range(81)]) +# +# +# +#U, s, V = np.linalg.svd(M) +##np.testing.assert_almost_equal(U.T, V, decimal=5) +# +#for value in range(20): +# print 'Singular value:', s[value] +# MagData(data.a, np.array(V[value,:]).reshape((3,)+dim)).quiver_plot3d() +# +# +#for value in range(-10,0): +# print 'Singular value:', s[value] +# MagData(data.a, np.array(V[value,:]).reshape((3,)+dim)).quiver_plot3d() + + +# TODO: print all singular vectors for a 2x2x2 distribution for each single and both tilt series! + +# TODO: Separate the script for SVD and compliance tests + #################################################################################################### #print('--Further testing') # @@ -281,7 +384,7 @@ phase_maps_rec = [pm(mag_data_rec) for pm in phasemappers] #K = np.asmatrix(K) #lam = 10. ** -10 #KTK = K.T * K + lam * np.asmatrix(np.eye(81)) -#print lam, +#print lam, ##print pylab.cond(KTK), #x_f = KTK.I * K.T * y #print (np.asarray(K * x_f - y) ** 2).sum(), diff --git a/tests/test_datacollection.py b/tests/test_dataset.py similarity index 100% rename from tests/test_datacollection.py rename to tests/test_dataset.py diff --git a/tests/test_optimize.py b/tests/test_reconstruction.py similarity index 79% rename from tests/test_optimize.py rename to tests/test_reconstruction.py index 4cc98625acf36d8591bf5e268343c73dc3aea5a6..7cb6fd3493b09c464564ee6a6e57ec8447502833 100644 --- a/tests/test_optimize.py +++ b/tests/test_reconstruction.py @@ -5,10 +5,10 @@ import os import unittest -import pyramid.reconstructor as rc +import pyramid.reconstruction as rc -class TestCaseReconstructor(unittest.TestCase): +class TestCaseReconstruction(unittest.TestCase): def setUp(self): self.path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'test_phasemapper') @@ -21,5 +21,5 @@ class TestCaseReconstructor(unittest.TestCase): if __name__ == '__main__': - suite = unittest.TestLoader().loadTestsFromTestCase(TestCaseReconstructor) + suite = unittest.TestLoader().loadTestsFromTestCase(TestCaseReconstruction) unittest.TextTestRunner(verbosity=2).run(suite)